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Abstract—In this paper, we analyze the influence of social
status on opinion dynamics and consensus building in collabora-
tion networks. To that end, we simulate the diffusion of opinions
in empirical collaboration networks by taking into account both
the network structure and the individual differences of people
reflected through their social status. For our simulations, we
adapt a well-known Naming Game model and extend it with
the Probabilistic Meeting Rule to account for the social status
of individuals participating in a meeting. This mechanism is
sufficiently flexible and allows us to model various situations in
collaboration networks, such as the emergence or disappearance
of social classes. In this work, we concentrate on studying
three well-known forms of class society: egalitarian, ranked and
stratified. In particular, we are interested in the way these society
forms facilitate opinion diffusion. Our experimental findings
reveal that (i) opinion dynamics in collaboration networks is
indeed affected by the individuals’ social status and (ii) this
effect is intricate and non-obvious. In particular, although the
social status favors consensus building, relying on it too strongly
can slow down the opinion diffusion, indicating that there is a
specific setting for each collaboration network in which social
status optimally benefits the consensus building process.

I. INTRODUCTION

It is our natural predisposition to interact with people who
have a high social status in our social communities. Custom-
arily, our social interactions and, to some extent, our behavior
are influenced by actions of individuals with a high social
status. In the field of social psychology, the social status theory
attempts to explain this phenomenon [1, 2, 3]. According to
it, people tend to form their connections in a social network
to maximize their perceived social benefits arising from the
social status of their connections. Also, in the work of Guha
et al. [4] the authors relate social status to the mechanism of
link formation in a social network, hypothesizing that people
with a lower social status are more likely to create (directed)
links with people of a higher social status.

In this paper, however, we are not interested in the relation
between the social status and the process of link formation,
but rather in the relation between social status and dynamical
processes that may take place in a social or collaboration
network (i.e., a special case of social network, in which users
collaborate). One example of such dynamical process is a so-
called opinion dynamics process. In our daily lives, we interact
with our peers, discuss certain problems, exchange opinions
and try to reach some kind of consensus. The question we
want to answer in this paper is how social status influences

such processes in a collaboration network. For example, in a
university class there is a lively discussion between a student
and her mentor regarding their newest experimental results
and their interpretation. The mentor has a higher social status
than the student, due to a superior education, a broader ex-
perience and a higher position in the organizational hierarchy.
Undoubtedly, while trying to reach a consensus, the student
will be influenced by opinions of her mentor because of the
latter’s convincing power [5, 6]. The literature [5] identifies
this process as dynamics of agreement/disagreement between
persons belonging to a social group. For clarity, in this paper
we will refer to it as opinion dynamics.

Problem. The aim of this work is to investigate the influence
of social status on the process of reaching consensus within
a social community that has a heterogeneous distribution
of social status. In particular, we are interested in social
communities in which interaction between the community
members is empowered by social media. While there is a
substantial body of work on opinion dynamics (see Section
V) in general settings, we focus on a more specific and more
realistic situation in which the dynamics are influenced not
only by the network structure and the relevant parameters but
also by the intrinsic properties of every single node in the
network, such as e.g., social status. In other words, we study
the interplay between structure, dynamics and exogenous node
characteristics and how these complex interactions influence
the process of consensus building. To the best of our knowl-
edge, this is the first study that analyzes the effect of all those
three aspects on opinion dynamics.

Approach & methods. In the field of statistical physics [5],
opinion dynamics are commonly studied by applying mathe-
matical models and analytic approaches. To make these com-
plex problems tractable for mathematical analysis, researchers
make simplifications, such as presenting opinions as sets of
numbers, ignoring the network structure (a typical approach
from e.g. mean-field theory) and neglecting the individual
differences between nodes. Simplifications narrow the scope
of research down to theoretical models, which typically do not
consider empirical data. Even so, statistical physics constitutes
important basics for the state-of-the-art research on social
dynamics in collaboration networks. In this paper, we build
upon these basics.

In our work, we take a computational approach and analyze
opinion dynamics by simulating the diffusion of opinions
in empirical collaboration networks (specifically, we study



datasets from a Q&A site StackExchange). In our simulations,
we consider the network structure, apply a set of simple rules
for opinion diffusion and take into account people’s individual
differences (e.g., their social status). In particular, we simulate
scenarios of peer interactions in empirical datasets assuming
that the status theory holds and observe the consequences. We
model the dynamics of opinion spreading by adapting a well-
known Naming Game model [7] and extending it by incorpo-
rating a mechanism to configure the degree of the influence of
social status on the network dynamics. We termed this mecha-
nism the Probabilistic Meeting Rule. Through parametrization,
we are able to explore various scenarios from the opposite
sides of the spectrum: (i) we can completely neglect the status
by allowing any two individuals to exchange their opinions
regardless of their social status (an egalitarian society) [8],
(i) we can have opinions flowing only in one direction —
from individuals with a higher social status to those with
a lower social status (a stratified society) [9], (iii) we can
probabilistically model any situation in between these two
extreme cases, i.e. a case in which opinions are very likely
to flow from individuals with a higher social status to those
with a lower social status but with small probability they can
also flow into the other direction (a ranked society) [9].

Contributions. The main contributions of our work are two-
fold. Firstly, with our paper we contribute to the field of
opinion dynamics methodologically. Secondly, with our work
we also make an empirical contribution.

Our methodological contribution can be summarized as
follows. To model various scenarios of how social status
may influence the opinion dynamics, we have invented the
Probabilistic Meeting Rule (see subsection II-B) and extended
a standard Naming Game model with that rule. The extension
is flexible and may reflect a variety of interesting scenarios,
such as the emergence or disappearance of social classes in
collaboration networks.

From the empirical point of view, we made a much-needed
contribution to the limited body of research on Naming Game
and empirical data [10] and obtained very interesting empirical
experimental results. For example, based on the status theory
it can be expected that consensus can be reached faster when
social status plays a role. However, our results only partially
confirm this expectation. In particular, if an opinion flows only
in one high-to-low status direction, opinions do not converge at
all since there are always a few people who do not adopt the
common opinion from the network (cf. Figure 1). However,
with only a low influence of social status convergence is
reached faster than with no status at all (as in a standard
Naming Game). These results suggest that finding the optimal
process of consensus reaching is a tuning act of how to
integrate social status in the opinion dynamics.

II. METHODOLOGY
A. Naming Game

Naming Game [7, 11, 12, 13, 14] is a networked agent-
based topology, in which agent-to-agent interactions take place
based on predefined gaming rules. In particular, agents ex-
change their opinions and try to reach a consensus about
the name of an unknown object. When all agents in the
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Figure 1: Consensus building in a network. Blue (circle)
nodes reached consensus (have a single common opinion)
whereas green (triangle) nodes did not adopt a common
opinion (in a typical case they kept two or more opinions).

network agree on the name, the network is considered to have
established a common opinion.

Agents in the game are represented as nodes of a network
and edges between two agents allow them to interact with
each other. Names are represented with an inventory of words
and each agent has her own inventory to store the words.
Technically, an inventory is a set, i.e., a bag of words. In the
initial state, the inventories are empty. Two random adjacent
agents are chosen in each simulation step to interact through a
meeting, one agent is declared as a speaker and the other as a
listener. In the course of the meeting, the speaker selects a word
from her inventory and communicates it to the listener (note
that if the speaker’s inventory is empty, a new unique word is
created and stored in the inventory). After communicating the
word to the listener, two scenarios are possible (see Figure 2):

1) the word is not in the listener’s inventory — the word is
added to listener’s inventory,

2) otherwise, both speaker and listener agree on that word
and remove all other words from their inventories — they
agree on the selected word.

B. Naming Game and Social Status

We modify the Naming Game to account for social status.
As before, the agents are represented as network nodes, edges
denote whether two agents can interact or not and names
(opinions) are represented as word inventories.

The first difference between our model and a standard
Naming Game is the simulation initialization. We initialize
the inventories with a given number of selected words from a
given vocabulary. The words are selected (with replacement
uniformly) at random from the vocabulary. This results in
an initial state where each opinion occurs with the same
probability.

Secondly, we adopt the social status that governs how
agent interactions are turned into meetings — not every agent
interaction is turned into a meeting. During each interaction
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Figure 2: Naming Game meeting. The classical Naming
Game consists of steps 1, 3 and 4, whereas our extension also
includes the step 2. In step 2 we decide whether the meeting
between two agents occurs by evaluating Probabilistic Meeting
Rule (equation 1). For illustration, consider a ranked society
with stratification factor § = 0.0001. Example 1: Speaker’s
status s, = 101 and listener’s status s; = 7967. The meeting
probability evaluates to ps; = 0.45. We then draw a number
from [0, 1] uniformly at random, e.g., 0.93 and compare it
with psl — the meeting does not take place. Example 2: Let
$s = b76 and s; = 865, which leads to the meeting probability
psi = 0.97. We again draw a random number from [0, 1], e.g.,
0.77 — in this case the meeting takes place. If the meeting takes
place two scenarios are possible. 1) If the speaker transmits a
word (red) that is unknown by the listener, the listener adds
it to her inventory (uptake). 2) If the word chosen by the
speaker is also known to the listener, they both agree on this
word. In this case they both remove all other words from their
inventories and keep only the transmitted one (agreement).

a random agent and a random neighbor are chosen to have
a meeting. Then, the speaker and the listener are assigned
randomly. Based on the difference between the speaker’s and
the listener’s statuses, we randomly decide if the meeting
occurs.

To decide if a meeting takes place, we introduce the
Probabilistic Meeting Rule. Basically, the Probabilistic Meet-
ing Rule is a function that takes the agents’ social statuses
as input and, based on the difference between the speaker’s
and listener’s status, calculates the probability of the meeting
taking place. The rule is defined by the following equation:

Dst = min(l,eﬁ(‘qs*s’)), €))

where s; is the speaker’s status, s; is the listener’s status
and 8 > 0 is the stratification factor. The stratification
factor 3, which can be viewed as a measure of conformance to
the agent’s social status, is a tuning parameter in our model.
The above equation results in the following probabilities. If
the speaker’s status is higher than the listener’s status, pg; has
the value of 1, i.e., such a meeting always takes a place. If
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Figure 3: Naming Game and social status. The application
of the Probabilistic Meeting Rule and the emergence of social
classes based on the stratification factor S are illustrated for
the English dataset (see Section III). 5 = 0 indicates an
egalitarian society, in which each agent can meet every other
agent (depicted by the black bar). With an increase in (3, our
society becomes more conservative (as represented with the
blue bar) and becomes a ranked society. Already at § = 1 we
observe a two-class society (red bar), i.e., a stratified society.

the opposite is true, various scenarios are possible, depending
on the value of the stratification factor. For example, 5 = 0,
indicates an egalitarian society and p; is always equal to 1.
However, if we slowly increase the stratification factor, pg; will
start to decay and in general will take a value between 0 and 1,
which signifies a ranked society (see the running example in
Figure 2). If we continue to increase 3, we will soon (because
of the exponential term in the equation) reach a situation where
ps for all practical matters is equal to 0. In other words, we
have reached a stratified society where meetings take place
only if the speaker’s status is higher than the listener’s status
but never in the opposite case.

The application of our Probabilistic Meeting Rule to one of
our datasets (English) is depicted in Figure 3. The probability
of a meeting taking place is shown in correlation with the
percentage of pairs of agents participating in that meeting.
The above mentioned scenarios are represented as follows:
egalitarian society with 5 = 0 - black bar (no texture),
ranked society with 8 = 0.0001 — blue bar (line texture) and
stratified society with 3 = 1 — red bar (star texture).

III. DATASETS AND EXPERIMENTS
A. Datasets

In our experiments, we use datasets from a Q&A site
(StackExchange!), in which users collaborate, ask questions
and give answers on particular problems. After an iterative
discussion process users exchange their opinions, find solutions
to a problem and agree on the best suggested solutions [15].

Thttp://stackexchange.com/



Such Q&A sites have a reputation system which rewards users
via reputation scores based on their contributions [16, 17].
Based on the policies of this reputation system, users get
appropriate reputation scores for giving good answers, asking
good questions or for voting on questions/answers of other
users. It is evident that high reputation users contribute high
quality answers [16]. We expect that high reputation users
also demonstrate high convincing power during the agreement
process, influencing opinions of other (low reputation) users.
In our experiments, we apply reputation scores as a proxy for
the social status and these two terms are used interchangeably
throughout the paper. The StackExchange platform does not
indicate associations between users or friendship links. For that
reason, we turn our attention to collaboration networks which
we extract by analyzing co-posting activities of users in order
to have social ties between them [17, 18, 19]. In Q&A sites, a
co-posting activity between two users refers to a scenario under
which two users comment on the same post. Thus, if two users
contributed in any way to a same post, they are connected
via an edge in the collaboration network. We analyze the
following StackExchange language datasets: French, Spanish,
Chinese, Japanese, German and English. They are available
for downloading for research purpose from the StackExchange
dataset archive.

B. Datasets Statistics

The details of our empirical networks (derived from the
above-mentioned datasets) and their properties are shown in
Table I, with the number of nodes (n), number of edges
(m), mean (u), median (u; /), standard deviation (o) of the
reputation scores, assortativity coefficient () and modularity

(@)

Among our datasets, the English network is the largest one
with 30,656 nodes and 192,983 edges, whereas the French
is the smallest one with 1,478 nodes and 6,668 edges in
the network. The German, Japanese, Chinese and Spanish
networks lie in between the English and French networks in
terms of network size.

A negative assortativity coefficient r [20] indicates a neg-
ative correlation between reputation scores over the network
edges. In other words, users with lower reputation scores are
more likely to connect to users with higher reputation scores.
In particular, a typical post in our datasets has many users
with low scores, e.g., who post a question, and only a few or
even only a single user with a high score, e.g., who answers

Table I: StackExchange language datasets. Description of
StackExchange datasets with the number of nodes (n), number
of edges (m), mean (u), median (441 /7) and standard deviation
(o) of the reputation scores, assortativity coefficient (r) and
modularity (Q).

Dataset n m wo| pr/e o T Q

French 1,478 6,668 [ 298 | 111 1,273 | —0.23 | 0.31
Spanish 1,584 6,908 | 196 | 101 554 | —0.19 | 0.38
Chinese 1,985 8,556 | 160 61 477 | —0.15 | 0.41
Japanese | 2,069 11,155 | 328 77 11,535 | —0.23 | 0.34
German 2,316 12,825 | 285 103 | 1,219 | —0.16 | 0.32
English | 30,656 | 192,983 | 199 48 [ 1,654 | —0.19 | 0.33
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Figure 4: Distribution of reputation scores. The plot on
the right shows the heterogenous distribution of reputation
scores in the English network. The plot on the top presents
the heterogenous distribution of node degrees. In the middle,
the scatter plot of reputation scores vs. node degrees is shown.
The Pearson correlation coefficient between the degree and the
reputation score is 0.88. All other datasets have comparable
distributions and correlation coefficients.

the question. This finding is in line with the assumptions from
the social status theory. The Chinese network has the lowest
assortativity coefficient among our networks indicating that in
this network there is a smaller chance of connection with a
dissimilar reputation score. The Japanese and French networks
have the highest assortativity coefficient.

The modularity score is a measure of strength of the
community structure in a network. A high modularity score
indicates the existence of strong communities in the network,
while a low modularity score means that the community
structure is not that strong [21]. In our networks, we observe
low modularity values corresponding to a very weak or almost
nonexistent community structure. As previously shown in
a network without communities, in general Naming Game
converges quickly to a single opinion [7].

The distribution of reputation scores and node degrees
resemble a heterogenous distribution for all networks, which
indicates that the majority of users in our collaboration net-
works have low reputation scores. Figure 4 shows the English
network, in which the correlation between the reputation
scores and the node degrees is a linear correlation with a
Pearson correlation coefficient of 0.88. All other datasets have
comparable properties.

C. Simulations

In our experiments, we simulate Naming Game extended
with the Probabilistic Meeting Rule. The simulation framework
is provided as an open source project’. Our experiments consist
of the following steps:

1) Depending on the network size, we define the number
of user interactions (iterations) for the simulations. We
perform 2 million interactions for the largest network
(English) and 1 million interactions for the five other
networks.

Zhttps://github.com/floriangeigl/reputation_networks



—e =0
v (3=0.00001
+—¢ (=0.0001 3.0§
3=0.00013
=—a (3=0.00016
e—e (3=0.0002
= « (=0.001
p=1

N
o

agents inventory size
agents inventory size

1.5

1.0

=0
(#=0.00001
#=0.0001
(#=0.00013
3=0.00016
3=0.0002
3=0.001
p=1

=0
(#=0.00001
#=0.0001
(#=0.00013
3=0.00016
3=0.0002
3=0.001
p=1

Il
IR

3.0

!
!

9
+
9
P

agents inventory size

-
FEEh g e alaa

1 Mil 1.5 Mil 2 Mil )
interactions

(a) English

0 0.5 Mil

50000 100000 150000 200000 250000 300000 350000
interactions

(b) German

50000 100000 200000

interactions

150000

(c) Japanese

Figure 5: Inventory size evolution. Mean values of the agent’s inventory size in relation to the number of interactions for
English (a), German (b) and Japanese (c) networks. In an egalitarian society (8 = 0) a common opinion is reached and the
convergence rate is fast. In a stratified society (8 = 1), the opinions do not converge (mean number of opinions lies between 1
and 2). Ranked societies (e.g. § € {0.0001,0.00013,0.00016}) also reach a common opinion with the highest convergence rate.
Thus, the consensus building depends on the status but in a non-obvious way, indicating that there is a specific setting at which

the influence of the social status reaches the optimal state.

values of the stratification
factor 3. For all networks, we  perform
simulations with the following values of j:
(0,0.00001, 0.0001, 0.00013,0.00016,0.0002, 0.001, 1).

3) During the simulations, we store important information
such as the appearance of agents as listeners/speakers,
their participation in overall interactions versus successful
meetings and the evolution of the agent’s inventory size.

4) Each agent’s inventory is initialized with a fixed number
of three opinions (represented through numbers from 0
to 99). These opinions are selected uniformly at random
from a bag of opinions to ensure that each opinion occurs
with the same probability.

2) We investigate various

IV. RESULTS AND DISCUSSION

Figure 5 summarizes the results of our experiments by
depicting the agent’s inventory size as a function of the
simulation progress. We show results for three largest networks
(i.e., English, German, and Japanese). The simulation results
for the three remaining networks (French, Spanish, Chinese)
are comparable to the largest three.

In the case of egalitarian society (8 = 0), the networks
converge to a single opinion. This is in line with the previous
experiments with Naming Game — in networks without a strong
community structure we always reach a consensus. In the
case of stratified society we do not observe convergence —
consensus cannot be reached. This seems slightly counter-
intuitive — an intuition would be that consensus building would
benefit from the presence of agents with a high social status
and their influence on agents with a lower social status.

Finding 1: Opinion dynamics in collaboration networks are
affected by the individual’s social status. If, due to the social
status, opinions flow only in the high-low direction, the con-
sensus building process is disturbed and consensus cannot be
achieved, as opposed to when the status does not play any role
at all.

The simulation results for ranked societies indicate that the
impact of the social status on opinion dynamics is a complex
one. In all our networks, we observe the following situation. By
starting at 5 = 0 and slowly increasing the stratification factor,
we are at first still able to reach consensus. Moreover, the con-
vergence rate increases with a slightly increased stratification
factor (cf. Figure 5 for e.g. stratification factor 0.0001, 0.00013
and 0.00016). However, by further increasing the stratification
factor, we reach a tipping point after which a further increase
of the stratification factor results firstly in slower convergence
rates before we again reach a state of no convergence at all
(within e.g. stratified society and § = 1). The optimal value
for the stratification factor is very similar in all networks and
lies in range between 0.0001 and 0.00016.

Finding 2: The relation between the opinion dynamics and the
stratification factor of a society is intricate. Low values of strat-
ification tend to favor consensus reaching — in such societies,
consensus is always reached at a very fast convergence rate,
which is higher than in egalitarian societies. However, if the
stratification factor becomes too large, the consensus reaching
process is hindered.

To further analyze these findings, let us investigate in
more details the direction and intensity of opinions flow in
our networks. To that end, we separate the agents into two
classes: high (agents with the status above 90th percentile)
and low (agents below 90th percentile) class. All reputation
distributions are skewed to right and resemble a heterogenous
distribution and the division into classes results in a reputation
boundary of e.g. 364 for English network with all agents
having reputation above 364 belonging to the high class
and all agents below 364 belonging to the low class (for
comparison the highest reputation score in English dataset is
around 37, 000). All other networks are comparable to English
and our analysis produces similar results. For that reason, we
henceforth discuss only the English network.



An important question is what happens when agents in-
teract and how the Probabilistic Meeting Rule evaluates de-
pending on the classes of agents participating in a meeting. In
other words, we want to investigate the fraction of interactions
that turn into a successful meeting (which consequently results
in an opinion flow and increases the likelihood of two agents
agreeing on a single word). We therefore classify each inter-
action according to the agent classes into four possible pairs:
(1) low-low, (ii) low-high, (iii) high-low, (iv) and high-high
where the first class corresponds to the speaker’s class and
the second corresponds to the listener class. Figure 6 depicts
the fractions of successful meetings among all interactions in
the English dataset for three values of the stratification factor—
egalitarian society with 8 = 0, stratified society with 5 = 1
and ranked society with the optimal value for this dataset
B8 = 0.0001.

In the case of stratified society (red bars), opinions flow
without restrictions only in high-low direction. Thus, the
agents with a higher status can pass over their opinions to the
agents with a lower status. The flow in the opposite direction is
completely prohibited and therefore agents with a lower status
cannot influence the opinions of the agents with a higher status.
However, the Probabilistic Meeting Rule in this case is so strict
and prohibitive that it greatly inhibits the opinion flow within
the agents of the same status, i.e. high-high and low-low pairs.
Because of the skewed nature of the reputation distributions,
the inhibition in the low-low group (which is considerably
larger than the high-high group) is more severe — the agents
with a lower social status cannot efficiently exchange their
opinions with each other and must rely on the agents with a
higher social status to inject opinions into the low group by
meeting each low agent separately. Since there are few high
and many low status agents, consensus is never reached.

On the other hand, in the case of egalitarian society (black
bars), opinions flow without any restrictions in all directions.
This results in the convergence of opinions and a rather fast
convergence rate. However, the convergence rate is slightly
slower as compared to the optimal case (ranked society). In
our opinion, the explanation for this phenomenon lies in the
dynamics of the low-high group meetings. Since everybody
can impose her opinion onto everybody else, low status agents
very often change the opinions of high status agents. Thus, low
status agents increase the variance in the inventories of high
status agents and they need additional meetings to eliminate
these opinions. This results in slower convergence rates.

A particular dynamics of low-high meetings also explains
faster convergence rates in ranked societies (blue bars). In
this case, the opinion flow from the agents of low status to
the agents of high status is strongly slowed down. Therefore,
the disturbances in the opinions of high status agents are
not substantial any more. On the other hand, as opposed to
the stratified society, the opinion flow within the low-low
group is not impaired at all. Thus, the injected opinions from
the high status agents can be diffused among the low status
agents themselves without need to address each low status
agent separately. This, combined with the reduced disturbances
flowing from low to high status agents, results in optimal
opinion convergence rates.
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Figure 6: Participation of agents in meetings across status
groups. The percentage of interactions resulting in meetings
as a function of reputation classes in the English network.
The high class comprises agents with the status above 90th
percentile and the low class all other agents. In the stratified so-
ciety (red bars), a common opinion cannot be reached because
the meeting rule is so strict that even communications between
low agents (low-low pairs) are severely impaired. In the egali-
tarian society (black bars), the convergence is slower because
low status agents disturb high status agents by inflicting their
opinion upon them (low-high pairs). In the ranked society (blue
bars), the optimal convergence is achieved because low status
agents can diffuse opinions among themselves (low-low pairs).
At the same time, since the communications between low and
high status agents are inhibited (low-high pairs), low status
agents’ opinions cannot disturb those of high status agents.

Finding 3: The optimal convergence of opinions is achieved
when low status agents can exchange their opinions among
themselves without any restrictions. In addition, there must be
a barrier that prohibits low status agents to inflict their opinions
on high status agents so that disturbances in the opinions of
high status agents are minimized.

V. RELATED WORK

At present, we identify three main lines of research related
to our work: opinion dynamics, social status theory and naming
game.

A. Opinion Dynamics

Opinion dynamics is a process characterized with a group
of individuals reaching a consensus (i.e., the majority of a
group share the same opinion). In opinion dynamics, the focus
is on modeling the opinion state of an individual in particular
and a population in general. Opinion dynamics has been tack-
led in the past in the context of statistical physics (see e.g., [5],
[22]). As discussed in [5], if opinion dynamics is viewed from
a perspective of statistical physics, an individual is analogous
to a particle with properties that may or may not change



over a period of time. Thus, the social process of interaction
among individuals can be designed as a mathematical model
that represents a change in the local and global state of an
individual and a group. One of the examples of such a process
is the Naming Game model, a variant of which we are using
in our work, that models how individuals behave during a
meeting and exchange their opinions. In our experiments, the
meeting process is further enhanced by taking reputation scores
of individuals into account. Constraining the system to favor
high reputation nodes resulted in reaching consensus later as
compared to an unconstrained model.

B. Social Status Theory

Research on how the position and status of a node influence
a network is mostly carried out in the context of network
exchange theory (e.g., [1, 2, 3]). This theory states that connec-
tions and a position in a network lead to a power condition that
is based on how the nodes are connected and which position
they take in the network [2]. For example, in [1], researchers
differentiate between weak and strong powers network in
terms of node positions and network properties. The authors
give a theoretical extension to the network exchange theory
to explain why in sparsely connected networks a stronger
power effect is observed than in densely connected networks.
They found that in densely connected networks, weak position
nodes have an advantage since they have a higher connectivity,
which enables them to short circuit the structural advantages
of strong position nodes. This is related to our work, as we
concentrate on investigating how the reputation of a node in a
network affects the spread of opinion that leads to establishing
consensus in the network. Also, we define various classes of
nodes based on reputation and determined how their interaction
affects their overall process of consensus building.

C. Naming Game

The Naming Game has been introduced in the context of
linguistics [23] and the emergence of a shared vocabulary
among agents [7] with the aim to demonstrate how autonomous
agents can achieve a global agreement through pair-wise
communications without central coordination [24]. With that
regard, we present a selection of variations of the Naming
Game that are relevant to our work.

Similarly to our approach, the work of Brigatti et al. [25]
describes a variation of the Naming Game that incorporates
the agents’ reputation scores. In the beginning, reputation is
randomly distributed (Gaussian distribution) among the agents.
Successful communication increases the agents’ reputation and
during each iteration, the agent with a higher reputation score
acts as a teacher and the one with the lower score as a
learner. The main difference from our work is that in [25], they
use synthetic data for the simulations and that the assigned
reputation scores are random numbers that change during
iterations. In our work, we employed empirical collaboration
networks from StackExchange with reputation scores that were
assigned by the community. As opposed to the work of [25]
where there is an open-ended game with unlimited number of
words, the inventory of our agents consists of predefined sets
of three opinions.

Other examples for the Naming Game variations include
the work of Li et al. [26] who studied the impact of spa-
tial structures, e.g., geographical distances, have on meetings
between individuals in a network, and [27], who proposed a
Naming Game that follows an asymmetric negotiation strategy
and investigated the influence of hub effects on the agreement
dynamics with specific focus on how quickly consensus could
be achieved. Each agent in the network is assigned a weight
defined by the agent’s degree and a tuneable parameter .
During iteration, two nodes are randomly selected and based
on their degree and the configuration of the parameter «, they
are either the speaker or the listener (i.e., if a > 0, high degree
agents have more chances to be speakers and vice versa). This
way, the dynamics of the game can be investigated in light
of the varying influence of high degree agents. Our work is
somewhat related to this work as we also use a parameterized
probability function to define the probability of a meeting
taking place between two nodes, in our case depending on
their reputation score. The main difference to our work is that
agents’ selection is unbiased and empirical data with explicitly
provided reputation scores are used.

The diffusion of opinions across networks and the potential
of reaching consensus are strongly influenced by the availabil-
ity of communities and, specifically, by the presence of strong
community boundaries [28]. To investigate this effect, Lu et
al. [28] assigned a group of nodes in a network as a committed
fraction, i.e., nodes that are not influenced by other nodes in
a network and don’t ever change their opinion. In our dataset,
however, no strong community structures are present.

VI. CONCLUSION AND FUTURE WORK

Understanding opinion dynamics and how consensus is
reached in social networks has been an open and complex
challenge for our community for years. In this work, we ad-
dressed a sub-problem related to this challenge by investigating
a specific case of collaboration networks in which individual
nodes have a certain social status.

To that end, we presented an extension (Probabilistic
Meeting Rule) to the standard Naming Game model of opinion
dynamics and computationally analyzed six large empirical
collaboration networks. This extension constitutes our method-
ological contribution. Apart from this methodological contribu-
tion to the field, we have experimentally evaluated various real
world scenarios such as the emergence and disappearance of
social classes in collaboration networks. From the empirical
point of view, our investigations revealed interesting facts
about the influence of social status on the diffusion of opinions.
Our main finding indicates that social status strongly influences
the opinion dynamics in a complex and intricate way. More
specifically, weakly stratified societies reach consensus at
the highest convergence rate, whereas completely stratified
societies do not reach consensus at all. The most important
issue in this process is related to low status agents and how
their communication is controlled. In particular, the optimal
convergence is achieved when (i) low status agents are allowed
to freely exchange opinions between themselves (since this
reduces the need for high status agents to interact with low
status agents) and (ii) simultaneously there is a communication
barrier reducing the number of interactions of low status agents



towards high status agents (since this reduces the variance in
opinions of high status agents).

Limitations. In our opinion, our work has the following
limitations. Firstly, we represent social status with a single
number — for certain scenarios this representation may be
too simplistic. For example, people often play different roles
in social networks and a non-simple interplay between the
roles and status may exist. Secondly, a more finely grained
classification of agents into various groups (e.g., low, mid and
high groups or even finer divisions) may shed more light on
the opinion dynamics. Finally, in our work we consider only
static snapshots of networks and reputation scores. However,
not only opinions but also networks are dynamic, as new agents
may arrive to the network, new edges may form and inactive
edges may disappear from the network. Moreover, reputation
itself is very dynamic and depends on the agent’s activity and
the current perception of an agent by her peers.

Future work. In our future work, we plan to address some
of the limitations of our current work and extend our ap-
proach and experiments to other scenarios. For example, one
interesting avenue for further research are the networks with
a strong community structure. As communities tend to slow
down the consensus reaching process, it would be interesting to
investigate how status and/or network structure can be adjusted
to support the process. Apart from social status, the influence
of trust is of utmost importance in various social systems and
in particular in social media. Thus, adapting the presented
approach to analyzing how trust relates to opinion dynamics
is another promising research direction for the future.
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