

Data-centric ML Pipelines in Various Application Domains

Prof. Dr. Matthias Boehm

Technische Universität Berlin Berlin Institute for the Foundations of Learning and Data Big Data Engineering (DAMS Lab)

About Me

- Since 09/2022 TU Berlin, Germany
 - University professor for Big Data Engineering (DAMS)

• 2018-2022 TU Graz, Austria

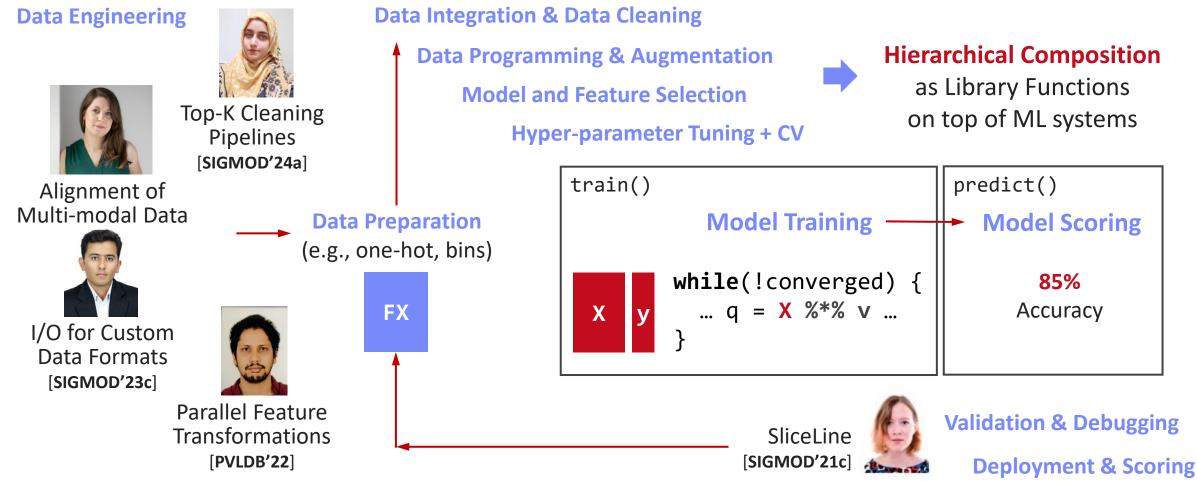
- BMK endowed chair for data management + research area manager
- Data management for data science (DAMS), SystemDS & DAPHNE

2012-2018 IBM Research – Almaden, CA, USA

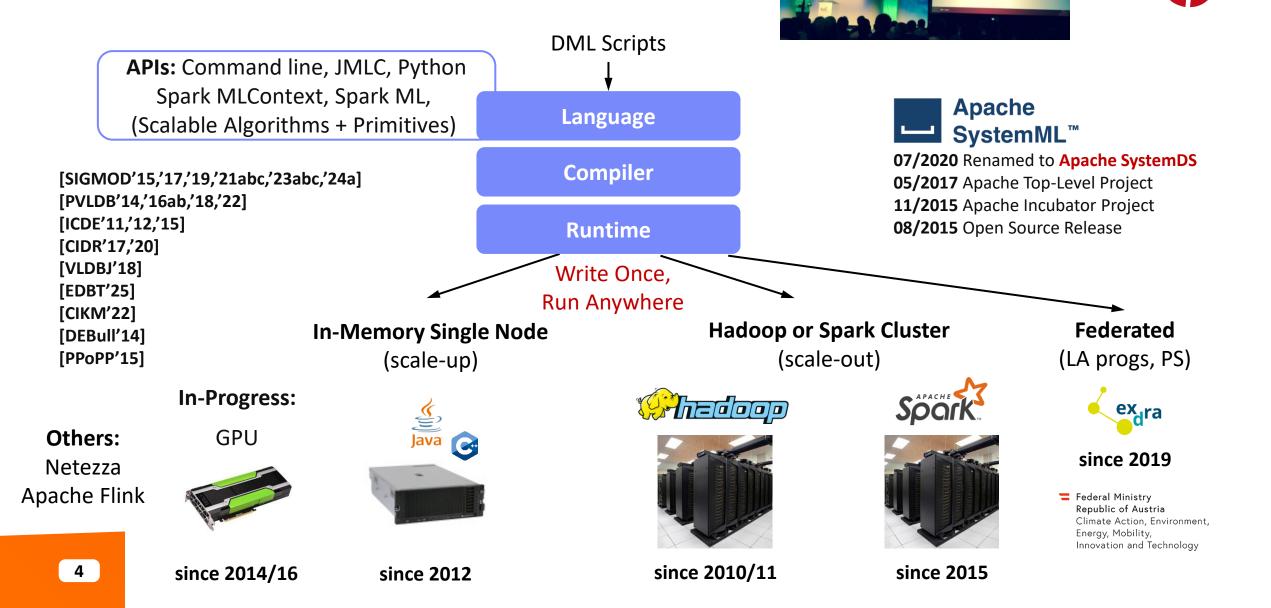
- Declarative large-scale machine learning
- Optimizer and runtime of Apache SystemML
- 2007-2011 PhD TU Dresden, Germany
 - Cost-based optimization of integration flows
 - Time series forecasting / in-memory indexing & query processing

Data-centric ML Pipelines

Key observation: SotA data engineering/cleaning based on ML



Apache SystemDS [https://github.com/apache/systemds]



berlin

Open Source SystemML Educate One Million

Establish Spark Technology Center

FG Big Data Engineering (DAMS Lab) – Selected Applications

- Inter-disciplinary Collaborations for Grounding and Preventing Artificial Problems & Solutions
- Positioning in BIFOLD

Earth Observation

- BigEarthNet / EO
 Reproducibility (TUB)
- EO Citizen Science Platform and Eco System (TUB)
- Interaction of Climate Turning Points (PIK)
 - Surface Cover
 Classification (DLR)
- BS/MS Thesis on Data Augmentation

Health-care / Medical

- LungCAIRE multi-modal data representations and debugging (Charite)
- Stomach cancer anomaly detection (Charite)
- Time Series Alignment in NebulaStream (Charite)
- MRI Scanner Artifacts Detection & Segmt. (TUB, Siemens Healthineers)

Others

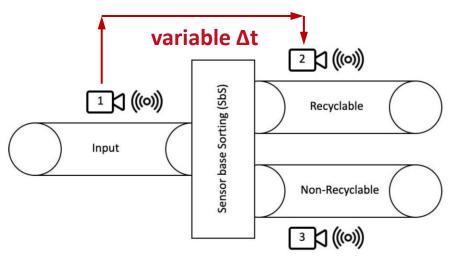
- Automotive (MAGNA, AVL, Porsche, BMW, DB Services)
- Process Industry / Recycling (Siemens, Bayer, VoestAlpine, REDWAVE, Andritz)
- Energy (SAP, EnBW, AEE-Intec, DigSilent, Energiequelle)
- Semiconductor Manufacturing (Infineon, KAI, Intel)

Data-centric ML in Example Applications

Spatial-temporal Alignment (in Recycling)

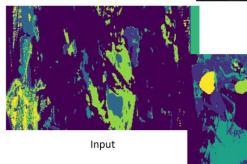
- ReWaste F Project
 - Digital Platform for Austrian Recycling Economy
 - 4 scientific and 14 industrial partners

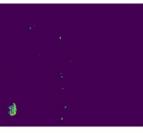
- Example Use Case: Prediction Model for Material Composition after Sorting
 - 1-3: Video + NIR sensors



Input

Non-Recyclable material





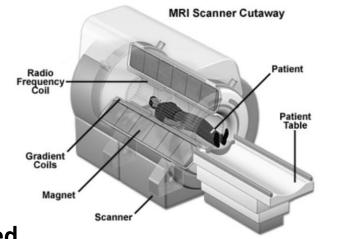
Non-Recyclable material

→ Alignment via Dynamic Time Warping, Anchor Objects, and Cross-correlation

Data Augmentation (in Health-Care)

- Magnetic Resonance Imaging (MRI) Scanners
 - Widely used in various medical applications
 - Various sources of image artifacts (noise, movement, interference HW defects, transitions)
- Example Use Case: ML-based Artifact Detection and Quantification
 - Physics-based data simulator for artifacts

 (Turbo Spin Echo, HASTE, Flash2D, Beat, Space, Flash3D
 Vibe, Echo Planar 2D Diffusion, Gradient Echo GRE)
 - Highly accurate but slow, combination w/ traditional data augmentation (distortions and noise)
 - ResNet50 → 95+% accuracy



Infolding (brain)

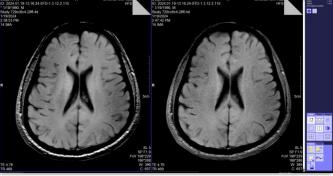
Noise

(brain)

SIEMENS

Healthineers

berlin



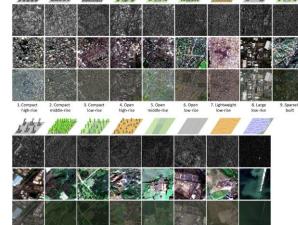
Movement (abdomen)



Data Preprocessing (in Earth Observation)

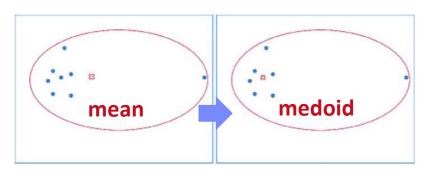
[Xiao Xiang Zhu et al: So2Sat LCZ42: A Benchmark Dataset for the Classification of Global Local Climate Zones. **GRSM 8(3) 2020**] [So2Sat LC42: https://mediatum.ub.tum.de/1454690]

- DLR Earth Observation Use Case
 - ESA Sentinel-1/2 datasets → 4PB/year
 - Training of local climate zone classifiers on So2Sat LCZ42 (15 experts, 400K instances, 10 labels each, 85% confidence, ~55GB H5)
 - ML Pipeline: ResNet20, climate models



Preprocessing

- LTSM for combing patches from four seasons
- Time series of patches per location
 Combine cloud- and shadow-free pixels
 via cloud masks → select medoid



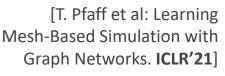
ML-based Simulations (in Energy & Automotive)

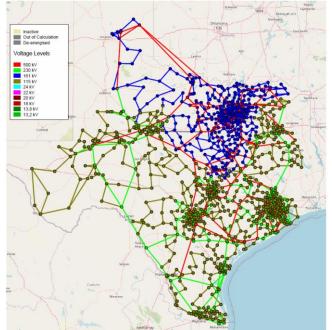
- Background ML-based Simulations
 - Trend to replace traditional HPC simulation by cost-effective ML models
 - CFD simulation through ML (MLP enc/dec + MLP/GraphNet message passing)
- Example #1: Dynamic Security Assessment of Energy Grids
 - Traditional RMS simulation too slow for online use
 - Train prediction model for critical fault clearing time (CFCT), metric how close a system is to its stability limits
 - Simulate fault conditions to create training dataset

(w/ careful composition of failure scenarios, and CFCT ranges)

- Example #2: AVL Ejector Geometry Optimization (fuel cells)
 - Currently mixed of data-driven
 ML pipeline and **3D CFD simulation**
 - Towards cost-effective ML-based CFD simulation

[**Credit:** Ann-Sophie Messerschmid, Texas Transmission Grid]



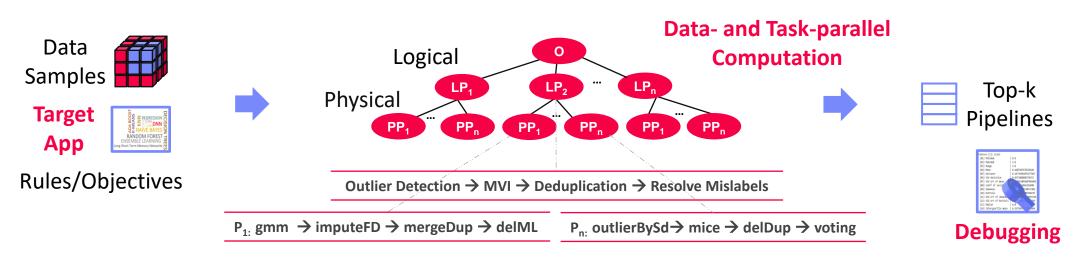


Selected Research Results & Directions for Data-Centric ML Pipelines

SAGA for Finding Data Cleaning Pipelines [SIGMOD'24a]

- Automatic Generation of Cleaning Pipelines
 - Library of robust, parameterized data cleaning primitives,
 - **Enumeration of DAGs of primitives & hyper-parameter optimization** (evolutionary, HB)

[best paper runner-up w/ Shafaq and Roman]



University	Country		University	Country
TU Graz	Austria		TU Graz	Austria
TU Graz	Austria		TU Graz	Austria
TU Graz	Germany		TU Graz	Austria
IIT	India		IIT	India
IIT	IIT		IIT	India
IIT	Pakistan		IIT	India
IIT	India		IIT	India
SIBA	Pakistan		SIBA	Pakistan
SIBA	null		SIBA	Pakistan
SIBA	null		SIBA	Pakistan

	D	C	B	A
]	1	1	0.80	0.77
]	1	1	0.12	0.96
]	1	null	0.09	0.66
]	1	17	0.04	0.23
	null	17	0.02	0.91
	1	17	0.38	0.21
	1	17	null	0.31
]	1	20	0.21	0.75
]	1	20	null	null
	1	20	0.61	0.19
]	1	20	0.31	0.64

A	В	С	D
0.77	0.80	1	1
0.96	0.12	1	1
0.66	0.09	17	1
0.23	0.04	17	1
0.91	0.02	17	1
0.21	0.38	17	1
0.31	0.29	17	1
0.75	0.21	20	1
0.41	0.24	20	1
0.19	0.61	20	1
0.64	0.31	20	1

Dirty Data

After imputeFD(0.5) **Dirty Data**

SliceLine for ML Model Debugging [SIGMOD'21b]

- berlin [Credit: sliceline, Silicon Valley, HBO] Problem Formulation $\alpha\left(\frac{\bar{e}(S)}{\bar{e}(X)}-1\right) - (1-\alpha)\left(\frac{|X|}{|S|}-1\right)$ sc = Intuitive slice scoring function Exact top-k slice finding $= \alpha \left(\frac{|X|}{|S|} \cdot \frac{\sum_{i=1}^{|S|} es_i}{\sum_{i=1}^{|X|} e_i} - 1 \right) - (1 - \alpha) \left(\frac{|X|}{|S|} - 1 \right)$ • $|S| \ge \sigma \land sc(S) > 0, \alpha \in (0,1]$ slice error slice size Properties & Pruning $O(2^{l} - \sum_{j=1}^{m} 2^{d_{j}} + l + m)$ $\emptyset \mid \mathbf{X} (|S|=n, se=e)$ Monotonicity of slice sizes, errors Level 1: с а (1 in, 3 out) Upper bound sizes/errors/scores Level 2: ad bc bd cd ab ac \rightarrow pruning & termination (2 in, 2 out)010 Level 3: Candidate abc abd acd bcd 101 (3 in, 1 out) 100 Slices $|S| \le \min(|S| \text{ parents})$ 000 Level m: abcd Data $se \le min(se parents)$ 010 Linear-Algebra-based Slice Finding 0 2 0 0 2 0 0 Recoded/binned matrix X, error vector e
 - Vectorized implementation in linear algebra (join & eval via sparse-sparse matmult)
 - Local and distributed task/data-parallel execution

0

20

0 2 0

111

== Level

Reline

SliceLine Extensions (Sampling, Incremental, Multi-modal)

- #1 Distribution Tailoring for ML
 - Model training \rightarrow SliceLine \rightarrow Sampling
 - Iterative procedure w/ debugging dashboard
 - [SIGMOD'24 demo]

- #2 Incremental SliceLine (under submission)
 - Leverage collected state of previous SliceLine execution of modified dataset
 - Pruning by previous top-K score, unchanged sizes, maximum reachable scores
- #3 SliceLine for Multi-modal Data (in progress)
 - Modality-specific embeddings and combination
 - Find high-level features for debugging (e.g. distinct tokens, bounding boxes)



New Direction #1: Data Representation Search

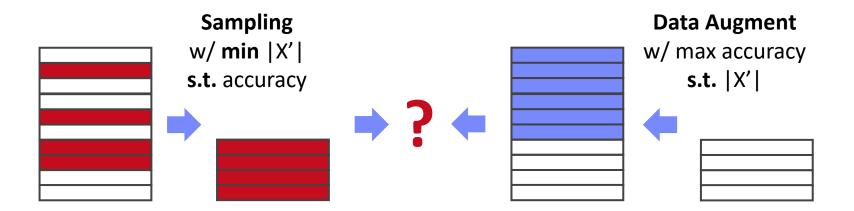
- Goal: Find effective data representations for multi-modal ML models
- Objectives: accuracy, runtime, and label-efficiency

Scuro Library (part of SystemDS)

- Different modality representations and modality-specific features (e.g., pitch, intonation)
- Spatial-temporal alignment through different alignment strategies
- Algebra for composition of representations + search for alternative plans

New Direction #2: Learned Sampling & Augmentation

- Goal: Create small, high-quality datasets via learned sampling and augmentation
- Objectives: accuracy s.t. preserved data distribution



Compositional Dataset Search

- DendroGrad: dendrogram of gradients of real and synthetic examples
- Sampling while preserving topological structure (e.g., representation topology divergence)
- Kernel density estimation and distribution sampling

Conclusions & QA

#1 Data-centric ML Pipelines

- Increasingly complex, composite ML pipelines
- State-of-the-art data engineering methods based on ML
- Partial resource, operational, and data redundancy

#2 Data-centric ML in Applications

- Spatial-temporal Alignment (in Recycling)
- Data Augmentation (in Health-Care)
- ML-based Preprocessing (in Earth Observation)
- ML-based Simulations (in Energy & Automotive)

#3 New Research Directions

- Data Representation Search
- Learned Sampling & Augmentation

Need for Abstractions and inter-disciplinary Collaborations

Optimizing Compiler and Runtime Infrastructure

Application-agnostic and Application/Domain-specific Primitives

https://github.com/apache/systemds https://github.com/daphne-eu/daphne

