
Fabio Rutter

Email Search Tool based on

Associative Memory

Bachelor’s Thesis

to achieve the university degree of

Bachelor of Science

Bachelor’s degree programme: Softwareentwicklung - Wirtschaft

submitted to

Graz University of Technology

Supervisor

Kern Roman, Dipl.-Ing. Dr.techn.

Institute of Interactive Systems and Data Science

Head: Lindstaedt Stefanie, Univ.-Prof. Dipl.-Inf. Dr.

Graz, September 2020

A�davit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present bachelor thesis.

Date Signature

iii

Privat
28.09.2020

Privat

Abstract

A problem that came up during the last twenty-five years is the re-finding of
emails. Many different groups of people have thousands of emails in their
inboxes, which often causes frustration during the search for older emails.
This fact is reason enough to think about new solutions for this issue. Is
the continually managing of your emails with folders and labels the best
answer? Or is it more efficient to use a memory-based attempt?

In this thesis, we planned and implemented a search tool for Mozilla Thun-
derbird to test if it is reasonable to use the human’s associative memory for
re-finding. The first step was to investigate which different things, besides
the conventional text and name, people potentially remember to an email.
The decision fell on the separation into three additional searching features.
They focus on the email partner’s primary data, on side facts to the date, and
the option to search for a second email, which the user possibly associates
with the wanted email.

To check if the tool is applicable, we evaluated it with several test persons
by giving them tasks to complete in a test email environment. The results
showed a positive attitude toward these new searching ways. Especially the
date-related features were rated very high.

These results lead to the motivation of potentially starting further research
on the topic. By discovering that dates tend to be remembered quite well, we
can improve the tool in this direction before starting a large-scale evaluation
with real email data.

iv

Contents

Abstract iv

1 Introduction 1

2 Background 2
2.1 Associative Memory . 2
2.2 State of the Art . 2
2.3 Thunderbird . 3
2.4 Used technologies . 3

3 Methods 5
3.1 Concept . 5

3.1.1 Introduction . 5
3.1.2 Basic Search Tool . 5
3.1.3 Associations . 6
3.1.4 Email Association . 6
3.1.5 Date Specification . 8
3.1.6 Person Specification . 8
3.1.7 Multiple Associations 9

3.2 Implementation . 10
3.2.1 Thunderbird Plugin . 10
3.2.2 Data Import . 11
3.2.3 Basic Search Tool . 12
3.2.4 Associations . 13

4 Evaluation 18
4.1 Methodology . 18
4.2 Results . 19
4.3 Discussion . 19

v

Contents

4.4 Limitations . 20

5 Conclusions 22

6 Future Work 23

7 Acknowledgements 24

8 Appendix 25
8.1 GUI designing with Zurb Foundation 25
8.2 Source code . 26

8.2.1 Email Association . 26
8.2.2 Euclidean distance calculation 27
8.2.3 Generation of content elements 27

8.3 Evaluation examples . 28

vi

List of Figures

3.1 Flowchart for email association 7
3.2 Search Tool . 10
3.3 Hierarchical structure of Thunderbird 12
3.4 Email class . 12
3.5 Transformation of input values to numeric vectors 13
3.6 Basic Search tool. 14
3.7 Second tab for email association 15
3.8 Email Association . 16
3.9 Date Specifications . 16
3.10 Person Specifications . 17

8.1 Basic HTML structure . 25
8.2 Email Association filtering . 26
8.3 Euclidean Distance calculation 27
8.4 GUI element generation . 28
8.5 Evaluation tasks . 28

vii

List of Tables

4.1 Evaluation table . 19

viii

1 Introduction

The email was created as an asynchronous communication tool to send
messages between persons in the first place, but research has confirmed that
emails are used for many different applications. For instance, collaborative
working, data archiving, management of tasks, and personal contacts. As a
result, many persons have a collection of thousands of emails stored, span-
ning several decades. This fact implies the challenge of re-finding certain
emails, especially when they were sent or received some time ago. [4] [5]

There are different kinds of approaches for organizing and re-finding emails.
I describe some of them in the background chapter, but in this Bachelor
thesis, I focus on the attempt of re-finding emails by providing an extended
way of searching, based on the human associative memory. I designed and
implemented a search tool for the email client Mozilla Thunderbird to test if
it is more efficient to use a memory-oriented approach to help people save
time to find emails. More precisely, the tool provides additional searching
methods, focused on using remembered context data to individual emails.

Summed up, the first question to be answered in this thesis is if the tool is
capable of searching emails by using options to access associated context
data. And the second question is, what kind of provided type of data is the
most useful one, given the features provided by the tool.

1

2 Background

In the background chapter, I describe the essential parts of underlying
knowledge and technology, used for this project. Furthermore, the state of
the art of email re-finding gets treated.

2.1 Associative Memory

The human memory is a mental system that stores and uses information
that a person experiences. These kinds of information can not be retrieved
as a whole package but can be reconstructed from small pieces of memories
in an associative network. The network consists of several links between
nodes of data. For instance, these relations are belongingness to a category,
or one thing is part of another thing. If one node in this memory network
gets activated, the other relations, depending on the link’s strength, also get
activated. [2]

2.2 State of the Art

The two main types of email management are, on the one hand, the preparat-
ory organization and on the other hand, opportunistic management. [4] The
first one is based on folder structures, where the user can move emails to a
certain folder, based on the topic or some other organizational parameter.
Modern email clients, such as Mozilla Thunderbird1 , also offer automatic
filtering, where the user can define specific rules to move emails to the right

1www.thunderbird.net (Accessed on: 2020-08-07)

2

www.thunderbird.net

2 Background

folder. The second type, opportunistic management, is based on scrolling,
sorting, and searching. This method does not need any preparation and
focuses on the user’s search queries about attributes he or she can remember.
[4]

A newer version famously used by Google’s Gmail 2 web client is the
intrinsic organization of emails. [9] Here conversions, which consist of
answered emails, are displayed as separate threads. This is a potential
improvement to having every single email in an inbox list or folder. Fur-
thermore, Gmail offers an automatic separation between emails written by
real persons, advertisements, social media platforms, and notifications. This
filtering may also be beneficial for the process of re-finding.

2.3 Thunderbird

The decision, which email client is being used for this project, fell on Mozilla
Thunderbird 3. The open-source application is developed by the Mozilla
Foundation and is one of the most widely used email clients.

Besides emails it also supports newsgroups, contact-managing, RSS and chat
client. With a broad range of different addons, it is possible to extend the
basic functionalities, for instance, by a calendar. These additional features
could be useful for adding associations to the email search tool. The main
benefit, especially for this thesis, is the addon support and the available
documentation 4 for developing them.

2.4 Used technologies

Mozilla Thunderbird uses the following four technologies to run addons:
JavaScript for the algorithms and the intelligent part, Gecko as layout engine,

2mail.google.com (Accessed on: 2020-08-07)
3Version: 60.9.0 for Ubuntu 16.04
4developer.mozilla.org/de/docs/Mozilla/Thunderbird (Accessed on: 2020-09-02)

3

mail.google.com
developer.mozilla.org/de/docs/Mozilla/Thunderbird

2 Background

XUL as User Interface Language and XPCOM as Cross-Platform Component
Object Model. [8]

The most important part of the thesis is the development in JavaScript. JavaS-
cript is an interpreted programming language, which has been developed
by Brendan Eich in 1995. Eich was working at Netscape Communications at
this time, when they had the most widely spread browser in the world. [1]
In the early days, it has mainly been used for scripts that control the site’s
behavior and add more interaction. [6] Now also non-browser environments,
like Thunderbird, use JavaScript.

4

3 Methods

This chapter contains the concept and the implementation of the search
tool and provides detailed information about the used techniques and
algorithms.

3.1 Concept

This section gives an insight into why the particular features got selected
and how the algorithm filters and ranks emails based on the user input.

3.1.1 Introduction

The approach to use human memory for re-finding implies to neglect the
preparatory organization and go with an opportunistic way of searching.

The whole concept is built on two main aspects of filtering the existing
emails. On the one hand, it is the usage of a rating, where every email gets a
score on how close it is to the given input. On the other hand, it is a boolean
of whether it is relevant or not. The result is always a list of emails sorted
by the rating and filtered by the “relevance”-boolean.

3.1.2 Basic Search Tool

First of all, the tool had to have the basic functionality of a common email
search tool. The following five categories got picked:

5

3 Methods

• To/From: A boolean, which defines whether the email got sent or
received by the user.

• Name of the person the user is in contact with
• Text or subject of the email
• Date
• Daytime

The tool takes the input from above and calculates the rating from each
email to the given input data. This gets achieved by transforming all the
emails, as well as the input data, into comparable, five-dimensional vectors.
Then it is possible to calculate the Euclidean distance from each email to the
input, which finally results in the rating of each email. So the lowest rating
is the closest to the searched one and is on top of the result list.

3.1.3 Associations

This section and the following four contain the new part of searching emails,
the associations. As mentioned above, the second aspect of the search tool
is the “relevance”-boolean. In most cases, this boolean is the only way the
association features are influencing the outcome. One particular case is
described in subchapter 3.1.7, where different association tools are working
in parallel and affect the rating too.

3.1.4 Email Association

The email association tool is based on the idea of people remembering, they
wrote another email to a person, and this email has something in common
with the email he or she is currently searching for. This feature’s idea came
through an example given in the description for this thesis. Since date and
time are quite rememberable topics [7] , many parts of the search tool are
including time-related functionalities.

The picked types of associations are:

• same daytime
• same month

6

3 Methods

• same year
• same weekday
• same date
• same name

The user has to fill in the same input fields as in the basic search tool and
one of the association types, listed above. The algorithm now creates the
same kind of ratings for this second email and lists them starting with
the lowest. Per default, it takes the first five entries and checks if the rule,
defined by the association, is fulfilled or not. These five associations get
linked by an “or” disjunction because it is not sure which of the emails is
the one he searched for, so it does not matter if one or four of the rules are
fulfilled. But those five default picks are probably wrong, or at least some
of them are. Therefore the user can pick the correct ones from a separate
list and recalculate the association rules to get the new results. The boolean
result flows into the “relevance” value of the email item, and the resulting
list. This list, which gets displayed to the user, contains the best-rated emails,
except those that don’t match the rule.

Figure 3.1: This figure shows the flow for the email association feature.

An use case for this tools would be:
John wrote an email to somebody from another department about some
flower orders, but he does not know the date or the person’s name. All
he knows is, he wrote another email to Jennifer from the human resource

7

3 Methods

department, about his new hours of labor, around the same period. So he
can type in the topic into the basic search and add an association to define
the information he knows about the email he sent to Jennifer.

3.1.5 Date Specification

This tool is based on the idea, that a person can more easily find an email
by remembering certain details to the sending date and time [7].

So the tool implies three main categories:

• public holidays
• weekdays and workday or weekend
• month and seasons

The user can pick, for instance, Easter Sunday, and the algorithm iterates
through all the emails again and checks if it is near Easter Sunday. Since
people do not tend to remember exact dates [2], the feature has a tolerance
of several days before and after the event. As described above, the results
get filtered, and the ones where the rule fits are shown. With this tool, it is
also possible to combine two or all three categories. The resulting booleans
then get linked by an “and” conjunction.

A use case for this feature would be:
John knows he wrote an email about an order of a new notebook to some-
body, some years ago. He only remembers it was a weekend during Christ-
mas time. The tool now provides the opportunity to add this information to
ease the search.

3.1.6 Person Specification

This search tool provides the option of entering how much contact someone
has had with another person and what number of emails is the wanted
email with this person. This feature may be useful if the user does not know
the name of the person, he or she is searching for. The first feature is divided
in five categories from “once” to “very much”. The second one is more

8

3 Methods

specific and provides an input for the exact number of the email. Assuming
the user can not guess the correct number, results with slight variance are
also getting accepted. If both features are used, they also get linked by an
“and” conjunction.

An use case for this, would be:
John bought a monitor from a webshop a year ago. He got the recommend-
ation by a comparison-shopping website. The monitor breaks, so he tries
to find the email, containing the bill. He can not remember the webshop’s
name, but he knows he just once had email contact with this shop.

3.1.7 Multiple Associations

The three types of specifications, described in the last three sections, can
also be used together. The email association is the only tool that can be
added more than once because it is reasonable to add an association, for
instance, for “same time” and another one for “same name”. Where on the
other hand, date and person specifications can just be added once.

As mentioned above the state of having more than one association is not
just affecting the “relevance” boolean but also the ranking. For every true
outcome of an association rule check the rating gets halved. So the email,
which matches most of the associations, gets ranked higher than another
that only fits one association. So all the emails that have at least one true
rule get listed in the final result list.

9

3 Methods

3.2 Implementation

This chapter is about the technical implementation of individual features,
described in the concept chapter. The whole searching program is com-
pletely built as a browser application, despite the given email data from
Thunderbird and some lines of code to run it as an addon, the application
could run in every modern web browser, with JavaScript enabled. This
means the business logic is programmed in JavaScript and the graphical
user interface in HTML and CSS.

Figure 3.2: The figure shows a screenshot of the GUI of the search tool. On the left side,
there is the basic input and all the association fields. On the right side are all
the resulting emails, sorted by rating.

3.2.1 Thunderbird Plugin

The thunderbird addon’s grafical user interface is made with XUL. The first
file has to contain a window tag to create a new page in Thunderbird. The

10

3 Methods

tag’s body includes some JavaScript files and an iframe to integrate the
HTML file to the main page of the search tool.

The second thing to do with XUL is to create an overlay to have an access
point, such as a button at the bottom of the Thunderbird GUI. This button
triggers the initialization process, which compromises the import of email
data and the creation of a new tab for the search tool.

3.2.2 Data Import

The first step to gain access to the emails is to import the MailServices
module from the internal resources. 1

After that, it is possible to iterate through the mail accounts belonging to
the launched Thunderbird profile. These accounts consist of several nested
folders, where the emails are stored. The algorithm recursively goes through
these directories and stores their objects combined with their type, which
tells whether it is an “Inbox” or “SentMail” flagged folder. The folder objects
provide access to all the message headers, containing data about the author,
subject, recipient, date, etc. For getting the email body it is necessary to use
a stream listener2 in combination with the data from the message header to
extract the text for each email.

The information gained here is stored in new email objects, shown in 3.4, for
later usage at the search tool. Since the program is looping over all emails
here, the number of emails with each person also gets calculated and stored
for later usage of the person specification.

1developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Resource_URLs
(Accessed on: 2020-09-02)

2developer.mozilla.org/en-US/docs/Mozilla/Tech/XPCOM/Reference/
Interface/nsIMessenger,developer.mozilla.org/en-US/docs/Mozilla/Tech/XPCOM/
Reference/Interface/nsIMsgMessageService (Accessed on: 2020-09-02)

11

developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Resource_URLs
developer.mozilla.org/en-US/docs/Mozilla/Tech/XPCOM/Reference/Interface/nsIMessenger,%20developer.mozilla.org/en-US/docs/Mozilla/Tech/XPCOM/Reference/Interface/nsIMsgMessageService
developer.mozilla.org/en-US/docs/Mozilla/Tech/XPCOM/Reference/Interface/nsIMessenger,%20developer.mozilla.org/en-US/docs/Mozilla/Tech/XPCOM/Reference/Interface/nsIMsgMessageService
developer.mozilla.org/en-US/docs/Mozilla/Tech/XPCOM/Reference/Interface/nsIMessenger,%20developer.mozilla.org/en-US/docs/Mozilla/Tech/XPCOM/Reference/Interface/nsIMsgMessageService

3 Methods

Figure 3.3: The figure displays the hierarchical structure within an Thunderbird user profile.

Figure 3.4: The figure shows the data collected and stored to one email during the initializ-
ation process.

3.2.3 Basic Search Tool

As shown in 3.6, there are five different input fields to consider. The first step
is to determine which ones contain anything to define the vector’s number
of dimensions. The date, time and “from/to” values get normalized and put
into the final vector. The name input gets compared to every other person in

12

3 Methods

the user’s contact list. For this case a JavaScript Library called Fuzzyset.js3

is included. It turns strings into numeric vectors to compare them with
cosine similarity. The result for every name is a normalized number, which
represents the similarity. The highest one is the best rating, so the input
vector gets set to the value one, for later calculation over all inputs. It is also
possible to type in more than one name. In this case, the rating gets added
up.

Figure 3.5: The figure displays the transformation of the input date to a comparable vector.

A similar library called Lunr.js4 is being in use at the text and subject
searching. The difference here is the program searches for multiple keywords
in a text and returns a score, which then has to be normalized manually.
Again the input vector place for the text field is set to one.

In the end, the Euclidean distance gets calculated for every email vector
available. The resulting list gets sorted by the distance and printed in the
GUI.

3.2.4 Associations

The resulting list consists of arrays containing the rating, the email object,
and a “deleted” flag. The rating is treated in the last section, the new point
that is relevant for the association features is this mentioned flag. It defines
if an email matches one of the given associations or not and is the indicator

3glench.github.io/fuzzyset.js/ (Accessed on: 2020-09-02)
4lunrjs.com/ (Accessed on: 2020-09-02)

13

glench.github.io/fuzzyset.js/
lunrjs.com/

3 Methods

Figure 3.6: The figure shows the basic search tool containing trivial searching fields like
name, topic and date.

if the email gets presented to the user. The situation of multiple associations
represents a special case and gets described in the last paragraph.

Email Association

The email association feature includes the same input fields as the basic
search and an additional combobox to select the association type. The first
step is to calculate the results for these new search inputs and store them
separately. After that, the five highest-rated findings get extracted for further
processing. Every email from the main result list then gets compared to
these five emails regarding the selected type of association. If an email
fits the given rule, it stays. Otherwise, it is not visible on the main list
anymore.

The users can now look at the results, and if the email they are searching
for does not show up, they can access the second tab. In this tab,as shown
in the 3.7, the email association feature results are presented in the same
way as the main results, except that the users can select the correct ones.
After selecting, they have to click “recheck association” to recalculated the
“deleted” boolean for the main results.

14

3 Methods

Figure 3.7: The figure shows a screenshot of the second tab, which contains the email
association feature results. The green region marks the correct emails, which the
user can update. As soon as the email selection changes, a red button ”recheck
association” appears and leads the user back to the main result list containing
the new updates.

Date Specifications

As described in the 3.1.5 concept chapter, the date specification feature
consists of three main parts: Public holidays, weekdays, and months. The
calculation is similar to the email association above. The algorithm checks
if an email is fulfilling the definition and then gets marked as deleted or
kept. The weekdays, months and seasons can be stored in constant lists. The
public holidays, on the other hand, have to be loaded from an API 5 because
they can change over the years and some events like the Easter holidays are
not on fixed dates every year.

5holidayapi.com/ (Accessed on: 2020-09-02)

15

holidayapi.com/

3 Methods

Figure 3.8: The figure shows the email association feature, where users can search for
another email that is, in some way, related to the email they are searching for.

Figure 3.9: The image displays the person specification feature, which provides input
fields for public holidays, days and months.

Person Specifications

This feature’s implementation varies from the others because it needs further
information beyond the email itself. The first input field provides the option
to enter how much exchange there has been with a person. Since it would be
too computationally expensive to calculate these values at every search run,

16

3 Methods

a dictionary, with email addresses as keys and counter integers as values,
gets filled up in the initialization step.

The second field is about which number of emails, with a specific person,
it is. For implementing this feature, the email object has to have a second
index, which only regards the person’s emails. As shown in figure 3.4,
this index is named ”numOfPerson” and gets calculated during the data
import.

These two inputs then get compared to every email’s values, and again the
relevance boolean gets modified if they match.

Figure 3.10: This figure displays the person specifications feature, which provides fields
for defining how much contact the user had with a specific person and what
number of email it is.

Multiple Associations

As described in 3.1.7, if more than one association feature is in use, there
are three different outcomes for one email. If no association fits the input, it
gets filtered out as usual. If just one of the association fits, the email gets
displayed in the resulting list. And if two association feature inputs suit,
the distance value gets halved. The same happens when a third or fourth
association input is added. This is necessary to ensure these emails are
ranked higher.

17

4 Evaluation

4.1 Methodology

With the shift of the main questions for this thesis, described in the limita-
tions chapter, I started using the Enron email data set. Enron is a formerly
large energy concern, which became insolvent in 2001. The dataset got later
collected and preprocessed by several researchers. It includes about 500.000
emails from 150 users. [3]

I took one person called Mark Taylor from the set and created a Thunderbird
profile for him. He was chosen because he has a large data set, which is
important for providing a realistic evaluation basis. Then, all his emails
got imported by using an addon called ImportExportTools NG1. Since the
Enron data set mainly consists of emails between 1999 and 2001, the years
got randomized between 1999 and 2020 to have a wide date range for better
testing.

The testing process started with asking the person about age, job, and
currently used email search methods. Then I presented every feature step by
step and gave them a few minutes to get familiar with the tool. Afterward,
they had to complete four email re-finding tasks, consisting of a short text
containing hints to different associative context data types. These short texts
are adjusted to the email data of Mark Taylor. The evaluation ended with a
final question about what feature they think is the most useful.

1addons.thunderbird.net/de/thunderbird/addon/importexporttools-ng/ (Ver-
sion: 4.1.0)

18

addons.thunderbird.net/de/thunderbird/addon/importexporttools-ng/

4 Evaluation

4.2 Results

Three men and four women participated in the evaluation. The table 4.1
shows all the gained information. The first columns present the basic facts
to the person, with their currently used email clients and their ways of
searching for older emails. The last two columns contain the actual results,
consisting of the most useful feature and the average time needed for an
evaluation task.

Job Gender Age
Current way

of searching
Email Client

Most useful

feature

average

Time needed

1 banking empolyee m 53 folder-based Lotus Notes email association 1.5 min

2 self employed f 50 query-based Thunderbird date specification 2 min

3
bachelor student

teacher education
f 22 query-based Gmail date specification 1.5 min

4
master student

software engineering
m 24 query-based Gmx date specification 1 min

5 software engineer m 23
query-based

and labels

Thunderbird,

Gmail
date specification 1 min

6
master student

computer science
f 23 query-based

Outlook,

Gmail, GMX
date specification 1 min

7
bachelor student

midwifery
f 19

query-based

and labels

Gmail,

Outlook
date specification 1.5 min

Table 4.1: The table contains the results and basic information of the seven persons, who
evaluated the search tool. They had to complete four tasks with emails from an
test email data set.

4.3 Discussion

The goal was to find out if it is possible to use this search tool for further
research evaluations. And the feedback was quite positive, the test persons
quickly accepted the new search fields, and everyone was able to complete
the given tasks. The IT background users completed the assignments a little
faster, but the others also finished rather quickly.

19

4 Evaluation

As shown in the table 4.1 above, most users rated the date specification
feature as the most useful. During the feedback conversation at the end, it
was quite clear that most of the test users do not think it is rememberable
to know how much contact you had with a specific person or what number
of emails it is. One argument, which was mentioned several times, was that
they might remember if it was just one email, but higher numbers are hard
to separate.

The feature that remains in the middle is the email association feature.
Especially the idea that they wrote emails to another topic or person during
the same period got evaluated as very useful.

One last mentionable topic, which came up a few times, is the usability
and the wording. Mainly persons without IT background sometimes had
minor issues with the simple design. For instance, the search button does
not stand out from the association buttons. Or the field named ”from/to”,
which defines whether you wrote or got the email, was twice wrongly used
as the name field. The fact that every person, except for one, is a German
native speaker probably also impacted the outcome here in some cases.

4.4 Limitations

There were multiple different approaches for testing this tool. At first, the
question I wanted to explore was to find out if it is beneficial to use the
associative memory for re-finding emails. So the evaluation would have
needed real historical email data of the testing persons. The three different
ideas were, we track all searching operations of a person for one week to
test the same searching tasks with the new tool. The other way would have
been to obtain access to a person’s email history and create searching tasks
based on their data. And the third one was randomly generating tasks based
on their emails, but without a human ever reading them.

These first two methods of testing appeared to come with many complic-
ations since this would be a matter of data privacy and despite the fact
that test persons are harder to find, the effort for individually testing each
person would have been a task for more than one researcher. On the other

20

4 Evaluation

hand, the third method turned out to be not realizable since it is necessary
to generate actual tasks that make sense to the user.

21

5 Conclusions

The Bachelor thesis treated how the human associative memory can be used
in combination with the information retrieval problem of email re-finding.
In detail, this includes the development of an addon for the email client
Mozilla Thunderbird and evaluation with several test persons to check if
the coded tool is capable of being used for other research purposes and
which of the implemented features has the most potential.

The new search tool consists of standard search options, like name, topic,
date, etc., and three additional features based on the associative memory.
The first one, named email association, provides the possibility to search
for another email, to which the user, for instance, knows that he had email
contact during the same time. The second feature is named person specific-
ation. Here the user can add information he knows about the person he
is searching for, like how much email traffic he had with this individual.
The last one, date specification, consists of input fields for public holidays,
weekdays, months, and season. This can be used if users know details to
the date or know it was sent or received around a holiday.

The evaluation consisted of several tasks, where the users had to use the
new search features. This testing has shown that the tool is quite intuitive,
and even test persons without IT background completed the given tasks in
a short time. The most useful feature appeared to be the date specification.
Additionally, the email association also was positively mentioned multiple
times, especially the idea to know if the user has written emails with
somebody else during the same period.

22

6 Future Work

This Bachelor thesis potentially serves as a starting point for further research.
The tool provided here can be used for a large-scale evaluation to test if
using associative memory positively impacts email re-finding. To ensure a
scientifically acceptable answering of this question, it is necessary to work
with the person’s real email data of several years. And create practical tasks
for each user to test if they re-find emails easier with the new tool or the
common ways of searching.

Furthermore, some points could be added or changed, like the fact that the
tool currently has a relatively long initialization time. This is mainly caused
by the JavaScript library LunrJs. Besides that, one can think of changing the
whole loading process since currently all the emails get loaded and stored
into email objects, shown in 3.4, at the start of the searching tab. This works
fine for a few thousand emails, but it is too much with having more than
ten thousand. It is possible to store the information in a file or database
for later re-use to solve this problem. Another possible solution would be
to load less information and use Thunderbird’s searching system named
Gloda1.

An additional improvement for a larger study would be to add more fields
of associations and other search features. As described in the background
chapter, a large number of people use folders. Thunderbird also provides
folder structures, and it would be simple to add another combo box to select
the folder. Since the evaluation has shown that people tend to remember
parameters related to dates and periods, an additional point would be a
connection to the personal calendar. More precisely, to provide the option
to filter by meetings and events in the test person’s life.

1developer.mozilla.org/en-US/docs/Mozilla/Thunderbird/gloda (Accessed on:
2020-09-08)

23

developer.mozilla.org/en-US/docs/Mozilla/Thunderbird/gloda

7 Acknowledgements

I wish to express my sincere thanks to Roman Kern, my advisor, for giving
me the chance to write my Bachelor thesis about this topic and for sharing
expertise as well as providing support during several stages of the project.

Furthermore, I take this opportunity to express gratitude to all persons who
spend their time participating in the evaluation.

24

Bibliography

[1] Brent W Benson Jr. ‘Javascript’. In: ACM SIGPLAN Notices 34.4 (1999),
pp. 25–27.

[2] Yi Chen and Gareth JF Jones. ‘Are episodic context features helpful
for refinding tasks? lessons learnt from a case study with lifelogs’. In:
Proceedings of the 5th Information Interaction in Context Symposium. 2014,
pp. 76–85.

[3] William W. Cohen. Enron Email Dataset. 2015. url: www.cs.cmu.edu/~.
/enron/.

[4] David Elsweiler, Mark Baillie and Ian Ruthven. ‘Exploring memory
in email refinding’. In: ACM Transactions on Information Systems (TOIS)
26.4 (2008), pp. 1–36.

[5] Sudheendra Hangal, Monica S Lam and Jeffrey Heer. ‘Muse: Reviving
memories using email archives’. In: Proceedings of the 24th annual ACM
symposium on User interface software and technology. 2011, pp. 75–84.

[6] Jeremy Keith. ‘A Brief History of JavaScript’. In: DOM Scripting: Web
Design with JavaScript and the Document Object Model (2005), pp. 3–10.

[7] Liadh Kelly et al. ‘A study of remembered context for information
access from personal digital archives’. In: Proceedings of the second in-
ternational symposium on Information interaction in context. 2008, pp. 44–
50.

[8] Mozilla. Building a Thunderbird extension. 2019. url: developer.mozilla.
org/en-US/docs/Mozilla/Thunderbird/Thunderbird_extensions/
Building_a_Thunderbird_extension.

[9] Steve Whittaker et al. ‘Am I wasting my time organizing email? A
study of email refinding’. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. 2011, pp. 3449–3458.

25

www.cs.cmu.edu/~./enron/
www.cs.cmu.edu/~./enron/
developer.mozilla.org/en-US/docs/Mozilla/Thunderbird/Thunderbird_extensions/Building_a_Thunderbird_extension
developer.mozilla.org/en-US/docs/Mozilla/Thunderbird/Thunderbird_extensions/Building_a_Thunderbird_extension
developer.mozilla.org/en-US/docs/Mozilla/Thunderbird/Thunderbird_extensions/Building_a_Thunderbird_extension

8 Appendix

8.1 GUI designing with Zurb Foundation

The decision to use the Zurb Foundation1 framework fell quite early during
the development because I have been using it for many years, especially
during my time working as a web developer. It provides many content
elements such as a tab view, used for the association search results displayed
in 3.7, or a practical grid system. Furthermore, Foundation has a good
looking basic design for form fields, tables, and other fundamental HTML
elements.2

Figure 8.1: This figure shows the basic structure of the search tool, implemented with the
grid provided by Foundation. The container with the id named ”main” contains
the input fields and has a width of three out of twelve columns of the grid.
The other box called ”content” has a width of nine columns and contains the
resulting table.

1https://get.foundation/ (Version: 6.4.2)
2https://get.foundation/sites/docs (Accessed on: 2020-09-19)

26

https://get.foundation/
https://get.foundation/sites/docs%20

8 Appendix

8.2 Source code

8.2.1 Email Association

The email association described in chapter 3.1.4, has the purpose of filtering
the emails by a particular term. For instance, the piece of code presented in
8.2 shows the process of the ”same month” type. Since there can be multiple
mails selected as correct second email, it is needed to collect all the months
occurring in those and store them in an array. After that, there are two
nested loops to iterate over the months and all the resuls from the basic
search. Inside the inner loop, the month of every email gets compared to
the wanted months, and the ”deleted”-boolean, stored on the second place
of the item, either turns true or false.

Figure 8.2: This figure shows how the email association feature filters emails by the same
month. At first, the valid months get collected, then the main results get filtered
by them.

27

8 Appendix

8.2.2 Euclidean distance calculation

The distances between the input vector and the email object vectors get
calculated by the Euclidean distance. Figure 8.3 shows how this calculation
is implemented and how the resulting list gets returned.

Figure 8.3: The figure displays the code for the Euclidean distance calculation. At first, I
iterate over every email vector. Inside, I square every difference between the
vector’s items and store the sum’s square root into a new object of the resulting
list. In the end, the list gets sorted by difference and returned.

8.2.3 Generation of content elements

A big part of the search tool are dynamic content elements like new associ-
aion search boxes, tables or, new tabs. These elements get generated using
JavaScript. At first the container gets determined by the id and then new
elements can be added to HTML code. The example below is a rather simple
one, it shows the creation of an email association search box, displayed in
the screenshot 3.8.

28

8 Appendix

Figure 8.4: The left code box contains the JavaScript code needed to generate the search
box for email associations. The left box contains the resulting HTML code

8.3 Evaluation examples

The hands-on part of the evaluation consists of four tasks the user has to
master. Two of them are presented in figure 8.5. The descriptions focus on
the new search tool’s primary use cases and should provide a check if users
get along with the new fields.

Figure 8.5: The figure shows two tasks used for the evaluation.

29

	Abstract
	Introduction
	Background
	Associative Memory
	State of the Art
	Thunderbird
	Used technologies

	Methods
	Concept
	Introduction
	Basic Search Tool
	Associations
	Email Association
	Date Specification
	Person Specification
	Multiple Associations

	Implementation
	Thunderbird Plugin
	Data Import
	Basic Search Tool
	Associations

	Evaluation
	Methodology
	Results
	Discussion
	Limitations

	Conclusions
	Future Work
	Acknowledgements
	Bibliography
	Appendix
	GUI designing with Zurb Foundation
	Source code
	Email Association
	Euclidean distance calculation
	Generation of content elements

	Evaluation examples

