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Abstract

Wikipedia is the biggest online encyclopedia and it is continually growing. As its
complexity increases, the task of assigning the appropriate categories to articles
becomes more di�cult for authors. In this work we used machine learning to auto-
matically classify Wikipedia articles from speci�c categories. �e classi�cation was
done using a variation of text and metadata features, including the revision history
of the articles. �e backbone of our classi�cation model was a BERT model that was
modi�ed to be combined with metadata. We conducted two binary classi�cation
experiments and in each experiment compared various feature combinations. In
the �rst experiment we used articles from the category ”Emerging technologies”
and ”Biotechnology”, where the best feature combination achieved an F1 score
of 91.02%. For the second experiment the ”Biotechnology” articles are exchanged
with random Wikipedia articles. Here the best feature combination achieved an F1
score of 97.81%. Our work demonstrates that language models in combination with
metadata pose a promising option for document classi�cation.
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1 Introduction

Wikipedia is a great source of knowledge, but it must be ordered and classi�ed
to become useful to us. �e complex structure of Wikipedia, which is steadily
increasing, makes it di�cult to assign articles to all of its corresponding categories.
In this work we use machine learning to create a model that is able to classify
Wikipedia articles from a speci�c category. Automatically assigning articles would
help authors to �nd suitable categories for newly created articles and could overall
improve Wikipedia’s categorization system.

We focus on the classi�cation of articles from the category ”Emerging technologies”.
For our experiment we use past revisions of the articles where they have not yet
been classi�ed as ”Emerging technologies”. �e control-set consists of articles from
the category ”Biotechnology” and a set of random Wikipedia articles. We perform
binary classi�cation of ”Emerging technologies” and ”Biotechnology” articles and
then of ”Emerging technologies” and the random articles. We use a combination of
features that include the article content, the links to other articles, the categories
the article is part of and the revision history. In our classi�cation model the text
features are processed with a pre-trained Bidirectional Encoder Representations
from Transformers (BERT) [2] model, an in�uential deep language representation
model. With BERT we can create contextualized sequence embeddings, which
comprise the meaning of a sequence into a vector representation. �ese embeddings
are combined with the metadata and classi�ed in an additional output layer. �e
goal of this work is to �nd out if metadata can increase the model performance
and if a BERT based approach for document classi�cation is a viable option. As a
baseline our model is compared to a traditional TF-IDF classi�er.

Being able to detect which articles are part of the category ”Emerging technologies”
can also help detecting technologies that may play an important role in the future.
�is would help investors and businesses to predict future trends in the technology
sector or stock market and could enable earlier business decisions. We hypothesize
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1 Introduction

that there exist pa�erns in the revision history of ”Emerging technologies” articles
which would indicate a rise of interest in a technology.
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2 Related Work

2.1 Background

�is chapter �rst gives an overview of the prerequisites of machine learning in the
context of natural language processing. �en the structure of Wikipedia and its
articles is examined, in order to identify the important characteristics for classi�ca-
tion.

2.1.1 Machine Learning (ML)

�e aim of ML is to generate a computer program that is able to learn from experi-
ence and solves a speci�c task.

ML problems are usually divided into three main categories.

• Supervised learning
• Unsupervised learning
• Reinforcement learning

It should be noted that there exist other ML approaches that do not �t into these
categories or are a combination of them. �e basics of the three main approaches is
now explained.

Supervised Learning

In supervised learning problems a model is given input data with the corresponding
output data. �e model learns from these examples, similar to humans, to map new
unseen input to corresponding output. �e input data in ML is typically a vector or
matrix, and the individual values are called features. �e output can be either a real

3



2 Related Work

or categorical value, depending on the application. �e process of learning from
examples in ML is called training. �e training data used in supervised learning
is mostly labeled by humans, and typically the more labeled data is available the
be�er the predictions of the model become. Popular supervised learning models
include neural networks, support vector machines and logistic regression. Classic
applications of supervised learning are object recognition or spam detection.

Unsupervised Learning

In unsupervised learning the model is given input data without the corresponding
output data. �is data is therefore unlabeled. �e model now tries to �nd structures
or pa�erns in the unlabeled data. Examples of unsupervised learning are clustering,
dimensionality reduction and autoencoders. It plays an important part in systems
that deal with large amounts of unlabeled data.

Reinforcement Learning

In reinforcement learning the model tries to improve in a task without supervision.
It learns which actions are favorable and which are not. A popular example of
reinforcement learning is Google’s AlphaGo1, which was the �rst program to beat
a Go world champion.

2.1.2 Neural Networks

�is section provides a short overview of neural networks and their in�uence on
current trends in ML.

�e structure and idea behind neural networks is loosely related to that of the
human brain. �e key components of neural networks are arti�cial neurons. �ese
neurons receive one or more inputs and produce an output. Usually the inputs are
weighted, summed together and passed through a non-linear activation function to
produce the output. Neurons are stacked together to form layers. A neural network

1https://deepmind.com/research/case-studies/
alphago-the-story-so-far (Accessed on: 2020-06-27)
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2.1 Background

Figure 2.1: Basic structure of a neural network. �e neural network is separated into an input, a
hidden and an output layer. �e layers consist of multiple neurons, each line represents
a connection with an associated weight.

has an input layer, one or more hidden layers and an output layer. �e output
of neurons in a layer becomes the input of neurons in the following layer. �e
general architecture of a neural network is seen in Figure 2.1. Training is done by
optimizing the weights of the neurons using an algorithm called backpropagation.
If several hidden layers are used, we speak of deep learning (DL).

Neural networks have many advantages to traditional ML models. �ey are able
to approximate complex functions, they generalize well and they are able to cope
with large amounts of data. �is comes, however, at some cost. Neural networks
are computational intensive and it is di�cult to understand their inner workings.
In recent years neural networks had a rise in popularity in ML applications. �e
increase in computer resources made it possible to apply deep neural networks for
many tasks. �ey have elevated the standard in various ML areas, including image,
speech and text processing [13].

5
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2.1.3 Natural Language Processing (NLP)

In this section NLP is introduced and an overview of its most important historical
milestones is given.

NLP is the task of teaching a computer program to understand human language.
�ere exist a wide area of NLP applications, including speech recognition, language
generation, machine translation and text classi�cation.

NLP problems were one of the �rst ML problems researchers tried to solve. In
1954 there was a famous a�empt at automatically translating between English and
Russia, which was called the Georgetown-IBM experiment2. First results of the
project looked promising, but soon it became evident that the problem was far
more complex than anticipated and further research was stopped. In the 1960s the
computer program ELIZA3 was developed, which was able to communicate with
humans. It used the users input and special rules to construct responses, which
created the illusion of a sentient conversation partner. ELIZA’s understanding of
human language however was very limited. Only in the 1980s ML began to play a
larger role in NLP. Until then mostly handwri�en and domain-speci�c rules were
used in NLP-models. �e reason for this was the increase in computation power
and a be�er linguistic understanding. In recent years the focus in research has
shi�ed to an unsupervised learning approach and neural networks, using vast text
corpora that are available through the internet, for example Wikipedia.

As NLP has many application domains, this work focuses on the NLP task of text
classi�cation. Kowsari et al. [4] divide the process of text classi�cation into four
phases.

• Feature extraction
• Dimension reduction
• Classi�er selection
• Evaluation

�e input is typically a text data set. In feature selection, the data set is transformed
into a structured feature space by cleaning the data and applying speci�c techniques
like term frequency–inverse document frequency (TF-IDF) or converting the data

2https://en.wikipedia.org/wiki/Georgetown-IBM experiment
(Accessed on: 2020-06-22)

3https://en.wikipedia.org/wiki/ELIZA (Accessed on: 2020-06-22)
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2.1 Background

into a vector representation. Dimension reduction can then be applied to increase
the performance of the system by only focusing on the signi�cant features. Choosing
the right text classi�er depending on the application is di�cult. Popular classi�ers
are logistic regression, naive Bayes classi�er, support vector machines and neural
networks. In the evaluation step the metrics of the model are analyzed, for example,
accuracy or the F1 score. In recent years neural network language models have
set new standards in various NLP tasks. �ese will be explained in detail in the
following pages.

2.1.4 Important Concepts in State-of-the-Art NLP Models

�is section gives an overview of the foundational ideas behind state-of-the-art
neural network NLP models according to Young [13]. First word embeddings and
contextualized word embeddings are explained. �en the transformer architecture
is introduced.

Word Embeddings

DL models make up the majority of current state-of-the-art NLP models. An im-
portant building block for this success is the use of word embeddings as features
instead of hand-cra�ed features. Word embeddings are vectors that capture the
characteristics of a certain word in a vector space that has far fewer dimensions
than the original vocabulary. It follows the idea that words with a similar meaning
are likely to occur in the same context. �is is best explained with an example.

In Figure 2.2, we can see the visualized vector representation of the words “King”,
“Man”, “Woman” and ”�een”. �e vectors “King” and “Man” have many simi-
larities, as have the vectors “Man” and “Woman”. “Woman” and “King” have less
similarities. In the vector space, words with a similar meaning are closer together.
�erefore the vectors for “Man” and “King” are closer together than the vectors
”King” and ”Woman”. We can even do mathematically operations with these vectors.
For example, the result of the operation “King” - “Man” + ”Woman” is the vector
for the word “�een”.

State-of-the-art word embedding models are DL models and are pre-trained on
very large datasets. �e training goal is usually to predict a word from the words

7
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Figure 2.2: Visualization of word embeddings [13]. A word embedding is a vector representation of
a word. Each value in the vector represents an abstract property of the meaning of the
word. �is enables mathematical operations on word embedding that can be interpreted
in a semantic context.

surrounding it. A major limitation of word embeddings is that they are unable to
represent phrases or a di�erent meaning of a word depending on the context. For
example, they are unable to di�erentiate between the meanings of the word “bank”,
as it can mean the bank of a river or the �nancial institution. A widely used word
embedding model is word2vec4.

Contextual Word Embeddings

Contextual word embedding models overcome these shortcomings, as the speci�c
context of a word is also considered. One such model is Embedding from Language
Model (ELMo). ELMo creates a di�erent word embedding for each context the word
is used in. So for the word “bank” of the example before there now exist two distinct
vector representations. ELMo is a bidirectional model, which means it processes a
sentence one time in forward and a second time in backwards direction. ELMo uses
a recurrent neural network (RNN) architecture. In RNNs, the output of a token in a
sequence is dependent on the previous calculations, which can be interpreted as
giving each token context from the previous tokens in a sequence. �is results in
two hidden representations from each direction, which are then combined. By doing

4https://code.google.com/archive/p/word2vec/ (Accessed on: 2020-06-
29)
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Figure 2.3: Overview of the transformer architecture. �e encoder and decoder part of a transformer
consist of 6 encoders and decoders. �e intermediate representation made by the en-
coder is given to the decoder. Source: h�ps://jalammar.github.io/illustrated-transformer/
(Accessed on: 2020-06-22)

this the model can take more of the surrounding context into consideration than
traditional word embedding models. Bidirectional Encoder Representations from
Transformers (BERT) is another model that takes context into consideration and
outperforms ELMo in most tasks. BERT is based on the transformer architecture,
which will be explained now.

Transformer

Transformers are the fundamental idea behind BERTs architecture. �ey were
proposed in the in�uential paper ”A�ention Is All You Need” by Vaswani et al.
[11].

Transformers use an encoder-decoder design for sequence to sequence represen-
tation. �e encoder creates an intermediate representation of a sequence of input
words that is passed to the decoder, who in turn decodes the intermediate represen-
tation to a sequence of output words. A classic application of this process is text
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Figure 2.4: Single encoder in detail. A single encoder consists of two sublayers: �e self-a�ention
layer and a feed forward neural network. Each token gets individually processed. Source:
h�ps://jalammar.github.io/illustrated-transformer/ (Accessed on: 2020-06-22)

translation. For example, in French to English translation the text “Je suis étudiant”
in French would �rst be encoded into an intermediate representation, which is
then given to the decoder who outputs the English sentence “I am a student”. In
the proposed architecture the encoder and decoder are made of 6 identical layers.
�e layers in the encoder and decoder are basically again encoders and decoders
themselves, as seen in Figure 2.3.

As seen in Figure 2.4, each layer in the encoder consists of 2 sublayers: a self-
a�ention layer and a neural network. Self-a�ention is a mechanism to focus on the
important parts of a sequence. For example, in the sentence “�e cat crossed a street
because it saw a mouse”, the word “it” references “�e cat”. In order to encode this
sentence and its meaning correctly, the encoder must be aware of this connection.
With self-a�ention, the encoder looks at all the other words when encoding “it”
and calculates a score of how relevant each word is for the understanding of
“it”. �e second sub-layer is a fully connected feed-forward neural network. �is
network helps to make sense of the di�erent a�entions each word calculates to all
other words in the sequence. �e transformer architecture and a�ention greatly
increase computational performance compared to an approach with RNNs, as
the RNN computations are sequential, while the transformers operations can be

10



2.1 Background

parallelized.

2.1.5 Wikipedia

�is section gives information about Wikipedia, its article structure and features of
articles.

�e Wikipedia article about Wikipedia5 states the following:

‘Wikipedia is a multilingual online encyclopedia created and maintained as an open
collaboration project by a community of volunteer editors using a wiki-based editing
system.’

It is the largest online encyclopedia in the internet and was created in 2001 by
Jimmy Wales and Larry Sanger. Wikipedia has a total of more than 53 million
articles, from which 6.1 million articles are just of the English Wikipedia. �ere are
currently more than 300.000 active volunteers contributing to the development of
Wikipedia.

Structure of Wikipedia Articles

�e structure of Wikipedia articles is explained in detail in Wikipedia’s Manual of
Style/Layout page6. An overview of the most important parts is given now.

Wikipedia articles can be divided into four elements.

• Before the lead section
Metadata about the article and a short description, which is shown when
searching for an article.

• Body
Main part of the article. Consists of a lead section, a table of contents and the
content.

5https://en.wikipedia.org/wiki/Wikipedia (Accessed on: 2020-06-24)
6https://en.wikipedia.org/wiki/Wikipedia:Manual of Style/

Layout (Accessed on: 2020-06-24)
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• Appendices
References and further links.

• End matter
Additional metadata, navigational links and a list of categories the article is
in.

It is not mandatory for an article to include all elements of the proposed layout.

Most information about a topic is comprised in the body part. �e body consists
of a lead section, a table of contents and the content itself. �e lead section7 is a
summarization of the most important points of a topic and serves as an introduction.
Is has a special importance since most people looking for information on a Wikipedia
article �rst read the lead section. A�er that comes the table contents8, which is
only present if the article has at least four headings. It helps navigating the content,
which comes a�er. �e content is the main source of information, and is typically
divided into several sections with headings.

Wikipedia pages include links to other information sources on Wikipedia itself or
to external sources. Wikipedia’s internal links give the user a quick way to navigate
to related Wikipedia pages. �ese links are called wikilinks9. A page also stores a
list of all Wikipedia pages that link to this page10.

Wikipedia uses a category system11 to organize its pages. Pages are grouped together
by categories and subcategories in a hierarchical tree organization. One page can be
part of several categories. �is enhances the navigability by helping users who just
know the characteristics of a topic to quickly �nd matching articles. Wikipedia’s
recommendation is that every article should be part of at least one category.

7https://en.wikipedia.org/wiki/Wikipedia:Manual of Style/
Lead section (Accessed on: 2020-06-24)

8https://en.wikipedia.org/wiki/Help:Section#Table of
contents (TOC) (Accessed on: 2020-06-24)

9https://en.wikipedia.org/wiki/Help:Link#Wikilinks
(internal links) (Accessed on: 2020-06-24)

10https://en.wikipedia.org/wiki/Help:What links here (Accessed on:
2020-06-24)

11https://en.wikipedia.org/wiki/Wikipedia:Categorization (Ac-
cessed on: 2020-06-24)
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Features of Wikipedia Articles

For Wikipedia articles we can identify several types of features [3, 14, 6].

• Content-based features
Words or n-grams in the article.

• Link-based features
Links to and from other Wikipedia pages, including the categories the page
is in.

• History-based features
Article edit histories, for example the frequency of edits.

• Usage-pattern features
Data about how o�en an article was viewed and what the previous viewed
site or article was12.

2.2 State of the Art

�is section explains the state-of-the-art methods in text classi�cation. First the
architecture of BERT, an in�uential deep learning language model, is explained.
�en it is described how BERT can be applied for document classi�cation. Lastly the
current state-of-the-art methods for classifying Wikipedia articles are discussed.

2.2.1 BERT

In this section the architecture and work�ow of BERT is explained.

When BERT was �rst introduced by Devlin et al. [2] it achieved state-of-the-art
results in 11 NLP tasks, for example, named entity recognition and question an-
swering. Since then BERT has been outperformed in many tasks by other models,
e.g. XLNet or RoBERTa [12, 5]. �ese models use a similar architecture to BERT

12https://meta.wikimedia.org/wiki/Research:Wikipedia
clickstream (Accessed on: 2020-06-24)
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with certain improvements or optimizations. �erefore this section focuses only on
BERT, since it set the foundation for many subsequent top performing models.

BERT is a deep language representation model. It is based on the transformer
architecture, with the di�erence that it only uses the encoder stack, and instead
of 6 encoders the standard BERT model has 12. �e input to BERT is a sequence,
which can consist of several sentences, with maximal 512 tokens. �e �rst token of
the input is always a special classi�cation token called ”CLS”. If a sequence consists
of more than one sentences, a ”SEP” token is used to separate them. Each word is
�rst converted into a word embedding and combined with information about the
position in the sequence. How the input is combined is visualized in Figure 2.5. �e
transformer architecture allows BERT to look at each word individually and check
the context of the word in both directions. BERT outputs a representation for each
token, including the ”CLS” token. �e ”CLS” token can be seen as the aggregate
sequence representation and can be used for classi�cation tasks.

BERT is designed as a pre-trained model. In the paper they trained it on a large text
dataset, consisting of the English Wikipedia and a vast book corpus. BERT uses
two unsupervised pre-training tasks: masked language modeling (MLM) and next
sentence prediction. In MLM, 15% of the input words are masked at random, and
BERTs task is to predict these words. In next sentence prediction, BERT gets a pair
of sentences from a document as input. In 50% of the cases the second sentence
really comes directly a�er the �rst, and in the other 50% the second sentence is
taken randomly from the document. BERT has to decide if the second sentence
comes directly a�er the �rst sentence or not. A pre-trained BERT model can then
be used for downstream tasks using �ne-tuning. In the paper they proposed two
models with di�erent sizes, BERTBASE and BERTLARGE . �ey di�er in the number
of layers and size of hidden units, which results in about three times as many
parameters in BERTLARGE . BERTLARGE outperforms BERTBASE in all performed
tasks, however the computational cost also increased. A variety of pre-trained BERT
models have been made publically available13.

13https://github.com/google-research/bert (Accessed on: 2020-06-28)
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Figure 2.5: BERTs input representation [2]. Each token gets combined with its word embedding and
additional information about its position in the sequence.

Document Classification with BERT

In this section state-of-the-art applications of BERT in the context of document
classi�cation are explained.

A pre-trained BERT model can be applied for downstream tasks which require
language understanding, including text and document classi�cation. Adhakari et
al. [1] used BERT for document classi�cation and achieved state-of-the-art results.
�is was achieved by connecting BERTs �nal hidden state of the special ”CLS”
token to a fully-connected layer. BERTs architecture only allows a limited amount
of tokens to be processed together, therefore they truncated documents that were
too long. To cope with the computational overhead, they applied a technique called
knowledge distillation. First they �ne-tuned a large BERT model and then they
distilled the knowledge of the BERT model into a much smaller and e�cient long
short-term memory (LSTM). �is means the LSTM learns the representations of the
BERT model, which were acquired prior. �is smaller LSTM model overall achieved
similar results to the basic BERT model while having far fewer parameters and a
signi�cantly smaller computational overhead.

Ostendor� et al. [7] used BERT for the classi�cation of books. �ey had various kinds
of data available: A short summary of the book, metadata and knowledge graph
embeddings of the author. �e knowledge graph embeddings were constructed with
data from Wikipedia. �e book title and the book summary were �rst processed
with BERT to create a contextual representation. �ese representation were then
concatenated with the metadata and author embeddings and served as input for a 2-
layer neural network. Each unit in the output layer corresponds to a class label. �e
complete model architecture can be seen in Figure 2.6. �eir results demonstrated
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Figure 2.6: Architecture of the model used in [7]. Text data is �rst processed with BERT, then
concatenated with metadata and author embeddings and fed into a neural network.

two points: Firstly, the additional metadata and author representation improved
the overall result. Secondly, they compared the results achieved with BERT on
document classi�cation to a baseline done with logistic regression and TF-IDF, and
BERT performed signi�cantly be�er.

2.2.2 Wikipedia Article Classification

�is section discusses di�erent approaches of the classi�cation of Wikipedia articles.
It is a well-known problem, however it is not trivial. �ere have been various
approaches, but more research is needed to achieve useable results.

Gantner and Schmidt-�ieme [3] showed that classifying Wikipedia articles is a
feasible problem. �ey extracted content-based and link-based features from two
di�erent categories of the German Wikipedia corpus. �e text was converted into
a 1-gram representation and no stemming or stop-word removal was done. For
classi�cation they used support vector machines and achieved reasonable good
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results. It should be noted here that this paper was published before neural networks
models became state-of-the-art.

A di�culty with classifying Wikipedia articles is its detailed classi�cation system
and the data sparseness. �erefore many researchers use custom labels instead
of the original Wikipedia categories. Suzuki et al. [10] classi�ed articles to 200
�ne-grained custom labels. �eir dataset consisted of about 22.000 articles of the
Japanese Wikipedia. �e input features included the article title, headings, the
article’s �rst sentence and Wikipedia’s categories the article was part of. An inter-
esting feature they added is the way an article is linked from in other articles. For
example, the article ”Mount Everest” is linked from another article in the sentence
”… reached the summit of Everest for the twenty-�rst time …”. �e surrounding words
provide additional information about the article. With word2vec they extracted this
information by generating an embedding for each article using the surrounding
text. �e classi�cation was done with a 2-layer neural network. To cope with the
data sparseness, the labels were all jointly learned. Related labels formed clusters
together and that improved the accuracy of the individual labels.

Shavarani and Sekine [8] extended this approach. �ey utilized multi-lingual fea-
tures by using the content of the same article from di�erent languages. �e features
were otherwise very similar to the ones extracted in [10]. �ey also labeled the
data with a di�erent label set than what Wikipedia is using. For classi�cation, they
extended the neural network model of [10] with an additional layer. �ey concluded
that the best current models are neural networks, but they also struggled to achieve
a good accuracy.
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3.1 Concepts

In this section the dataset is examined and the proposed model for our experiments
is explained.

3.1.1 Dataset and Features

�is section gives information about the type and structure of the used dataset.

Our dataset consists of Wikipedia articles of the categories ”Emerging technologies”
(ET) and ”Biotechnology” (BT), and an additional set of random (R) articles. Both
ET and BT are subcategories of the category ”Technology by type”.

It is important to note that usually not the most recent revision of an article is used.
For articles of ET and BT we look at the point in the article’s revision history just
before the article was classi�ed as the respective category. �e last revision before
the classi�cation is taken. For the R articles, a random revision is selected to mimic
the work-in-progress state of the ET and BT articles.

For each article we have text and metadata features.

Text Features

• Plain text
�e unforma�ed article text without meta-information like links, pictures
and supplementary sections (e.g. “Further reading”, “See also”).
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• Categories
Categories the article is part of.

• Wikilinks
Outgoing links to other Wikipedia articles that are referenced in the article.

Metadata Features

• Revision frequency per day
Calculated by dividing the number of earlier revisions by the number of days
that passed since the creation of the article and the used revision.

• Mean size increment per revision (MSI)
Mean increment of revision size between earlier revisions. �e size is given
in bytes.

• Scaled revision peaks
Measures the amount of peaks in the revision history. We de�ne revision
peaks as timespans with a high number of revisions. �e peaks are scaled by
the total number of revisions.

• Scaled editorial peaks
Similar to revision peaks, but focuses on the change of the article size per revi-
sion. We de�ne editorial peaks as timespans where the article’s size changed
by a large amount. �e peaks are scaled by the �nal size of the article.

• Length of plain text

• Number of categories

• Number of wikilinks

�e revision frequency, the MSI, the revision and editorial peaks represent features
of the revision history; the other features are extracted directly from the used
revision.
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Figure 3.1: Visualization of number of categories/wikilinks and length of plain text for articles in
comparison to their type. �e diagonal graphs show the univariate distribution for that
feature, all other graphs show a sca�er plot of two combined features.
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Figure 3.2: Visualization of the MSI, revision frequency, revision and editorial peaks in comparison
to their type. �e diagonal graphs show the univariate distribution for that feature, all
other graphs show a sca�er plot of two combined features. Some outliers had to be
removed for the sake of clarity.
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Emerging technologies Biotechnology Random
Number of articles 319.00 292.00 300.00
Mean length of plain text 10220.10 4712.36 2159.35
Mean number of wikilinks 72.63 37.60 38.09
Mean number of categories 2.79 1.30 4.00
Mean revision frequency 1.63 1.96 0.58
Mean size increments 504.88 579.76 523.18
Mean revision peaks 0.64 0.52 0.52
Mean editorial peaks 0.58 0.31 0.31

Table 3.1: Statistics of the dataset.

Table 3.1 shows an overview of the features of the dataset. �e articles from ET are
generally longer, have more wikilinks and a higher frequency of peaks; however
the size increments per revision and the revision frequencies are smaller than in
BT.

In the Figures 3.1 and 3.2 the metadata features can be seen more clearly in context
to their type. �e diagonal graphs show a univariate distribution of that feature, all
other graphs show a sca�er plot of two combined features. Some feature combi-
nations show a similar or random distribution, e.g. the MSI for BT and R have a
nearly identical distribution, as can be seen in the top le� graph of Figure 3.2. But
there exist correlations, e.g. in Figure 3.1, the sca�er plot of the length of the plain
text and the number of categories approximate the type to some degree. It also
has to be noted that in Figure 3.2 some outliers had to be removed for the sake of
clarity. We choose to still include these outliers in our experiments, as our sample
size is already small.

We had to make certain assumptions about the data to extract the metadata features.
For example, the data about the peaks proofed di�cult to extract because many
articles only have a sparse or short revision history. �erefore the resulting values
vary depending on the de�nition of what quali�es as a peak in the data.

3.1.2 Model Architecture

In this section the architecture of the classi�cation model is explained.
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Figure 3.3: Model architecture. Textual features are �rst converted into sequence embeddings,
averaged together and concatenated with the metadata features. �e concatenated data
is then classi�ed using a linear output layer. �e architecture is an adapted version of
the architecture in [7].
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�e proposed architecture is similar to the model used in [7], the adapted archi-
tecture can be seen in Figure 3.3. �e main idea is to combine text and non-text
features for classi�cation. We use the model for binary classi�cation, �rst with the
classes ET and R, and a second time with ET and BT.

�e text features are processed with BERT. Due to BERTs limited input size, we
use BERT twice: once for the plain text, and a second time for the concatenated
categories/wikilinks (C/W). �e plain text of many articles has to be truncated, but
we hypothesize that most of the information about a Wikipedia article is found in
the lead section at the beginning. As proposed by Sun et ali. [9], we compute the
mean of both BERT outputs. �is mean and the metadata are then concatenated
and classi�ed using a neural network. Our model is �ne-tuned and tested on both
classi�cation tasks separately.

3.2 Implementation

3.2.1 Acquirement of Data

To our knowledge there does not exist a suitable dataset for our problem, therefore
we had to collect it manually. �is was done in Python1 with the help of the Medi-
aWiki API2. Unwanted pages in the categories were removed, e.g. subcategories,
lists and user-pages. Since BT and ET are similar categories, they contain duplicate
articles, which were also removed.

To extract the plain text, wikilinks and categories from the article data we used
the Python package mwparserfromhell3. Articles that have always been part of
either ET or BT, or had less than 20 plain text tokens, were not considered for our
experiments.

1Version 3.6.9
2https://www.mediawiki.org/wiki/API:Main page (Accessed on: 2020-07-

29)
3Version 0.5.4 https://mwparserfromhell.readthedocs.io/en/latest/

api/modules.html (Accessed on: 2020-07-29)
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3.2.2 Preprocessing

�is section explains which steps need to be taken to process text with BERT and
the preprocessing of the metadata.

BERT

In our experiments we use the HuggingFace4 BERT implementation. �is includes
the BERT model and the BERT Tokenizer.

Before the text can be processed with BERT, it has to be transformed into a for-
mat that BERT can work with. Several steps are needed to transform the text
accordingly5.

1. Tokenization
�e Tokenizer splits the words into tokens and converts these to a vector
with pre-trained word embedding ids. For performance purposes we had to
truncate our input to 200 tokens.

2. Adding special tokens
�e Tokenizer adds the [CLS]-token to the beginning and the [SEP]-token to
the end of the word embedding id vector. �ese two tokens are needed for
sentence classi�cation.

3. Padding and attention mask
Some vectors are shorter and have to be padded with [PAD]-tokens. Also an
a�ention mask has to be created to prevent BERT from processing padded
tokens.

�e padded input vector and the a�ention mask are then ready to be processed
with BERT.

4https://huggingface.co/ (Accessed on: 2020-08-1)
5https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/

(Accessed on: 2020-08-1)
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Metadata

�e metadata included some outliers, especially for the revision frequency and
the MSI. To still make this data usable, we scale it using the RobustScaler from
scikit-learn6. �is scaler is robust to outliers.

3.2.3 Classification Model

In this section the classi�cation model is inspected in more detail.

Our model is implemented in PyTorch7. �e internal structure is similar to the
HuggingFace BertForSequenceClassi�cation model8, but instead of a single BERT
layer our model consists of 2 BERT layers and incorporates additional data. �e
�rst BERT model processes the plain text, the second the C/W. �e mean of both
[CLS]-tokens is �rst fed through a dropout layer and then combined with the
metadata. �e [CLS]-token has a length of 768 and the metadata has a length of
7, which results in a combined vector of the length 775. �is vector is then fed
through a linear layer to compute the prediction.

�e �ne-tuning and validation code is based on the script ”BERT Fine-Tuning
Tutorial with PyTorch”9 by Chris McCormick and Nick Ryan. Training is done
with a batch size of 16 with 3 epochs. For optimization we use the HuggingFace
Adam optimizer with a learning rate of 2−5 and a dropout probability of 0.1. �ese
hyperparameters are proposed by Devlin et al. [2]. All experiments are run on a
Tesla K80 GPU.

Listing 3.1 describes the most important parts of the proposed model and what
operation are applied on the data during a forward pass in PyTorch pseudocode.

1 class ComBert():
2 def init(
3 self,

6Version 0.22.2
7Version 1.6.0
8https://huggingface.co/transformers/model doc/bert.html#

bertforsequenceclassification (Accessed on: 2020-08-6)
9https://colab.research.google.com/drive/

1Y4o3jh3ZH70tl6mCd76vz IxX23biCPP#scrollTo=6J-FYdx6nFE (Accessed
on: 2020-08-6)
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4 dimensionsBert=768,
5 dimensionsMeta=7,
6 numLabels=2,
7 dropoutProb=0.1):
8

9 self.bertForPlainText = BertModel(”bert-uncased”)
10 self.bertForCatwiki = BertModel(”bert-uncased”)
11 self.dropout = Dropout(dropoutProb)
12 self.classifier = Linear(
13 dimensionsBert+dimensionsMeta,
14 numLabels)
15

16 def forward(
17 self,
18 plainTextIds,
19 plainTextAttention,
20 catwikiIds,
21 catwikiAttention,
22 metadata,
23 labels):
24

25 plainTextCLS = self.bertForPlainText(
26 plainTextIds,
27 plainTextAttention)
28

29 catwikiCLS = self.bertForCatwiki(
30 catwikiIds,
31 catwikiAttention)
32

33 meanCLS = (plainTextCLS + catwikiCLS) / 2
34 meanCLS = self.dropout(meanCLS)
35 CLSMetaCombined = cat(meanCLS, metadata)
36 logits = self.classifier(CLSMetaCombined)
37 return logits

Listing 3.1: Model architecture in PyTorch pseudocode. Describes the main parts of the model and
shows the path the data takes on a forward pass.
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In this section the evaluation methodology is explained and the results of the
experiments are presented and discussed.

4.1 Methodology

Our experiments consist of two binary classi�cation tasks. ”Emerging Technologies”
(ET) articles are �rst classi�ed against ”Biotechnology” (BT) articles and then against
random (R) articles. �e experiments where done using 10-fold strati�ed cross-
validation. Strati�ed means that in each partition the percentage of each class stays
approximately the same. We trained our model with di�erent combinations of the
features and compared the results. When using less features, e.g. only the plain
text, the model parts for the other features are le� out.

In the following results the mean of the cross-validation results is taken. �e
baseline is a simple logistic regression TF-IDF classi�er from scikit-learn. �e
TF-IDF classi�er only uses the plain text without additional metadata.

4.2 ET/BT Classification

In Table 4.1 the results for the ET/BT binary classi�cation can be seen. �e model
with the plain text and the metadata had the highest F1, accuracy and precision
score. �e second best F1 score got the model with all three features. Models
with the plain text yield be�er results than the ones without it. �e plain text
and metadata performed be�er than the plain text alone. �e same is the case for
categories/wikilinks (C/W) and metadata, which also performed be�er than just
the C/W.
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Accuracy Precision Recall F1
Mean Std Mean Std Mean Std Mean Std

Plain text 89.69 4.64 90.03 5.20 90.58 6.61 90.13 4.33
Plain text + metadata 90.84 4.63 92.35 3.90 89.97 7.18 91.02 4.70
Plain text + C/W + metadata 90.51 3.93 91.82 4.15 89.95 5.72 90.77 3.83
C/W 88.55 5.96 91.67 6.87 86.20 7.26 88.67 5.85
C/W + metadata 88.88 5.37 91.69 5.10 86.52 6.25 88.99 5.38
Baseline 88.38 7.14 88.83 6.65 89.02 8.24 88.84 6.87

Table 4.1: Mean of the cross-validation results for ET/BT classi�cation in combination with di�erent
features.

4.3 ET/R Classification

Accuracy Precision Recall F1
Mean Std Mean Std Mean Std Mean Std

Plain text 97.25 1.73 96.16 3.59 98.75 1.61 97.39 1.60
Plain text + metadata 97.25 2.53 96.39 3.34 98.44 3.04 97.36 2.46
Plain text + C/W + metadata 97.73 1.92 97.23 2.28 98.42 2.26 97.81 1.88
C/W 96.28 1.88 95.46 2.49 97.50 3.23 96.42 1.85
C/W + metadata 95.95 3.00 95.96 3.33 96.22 3.29 96.06 2.94
Baseline 97.25 1.56 96.76 3.70 98.12 2.19 97.37 1.43

Table 4.2: Mean of the cross-validation results for ET/R classi�cation in combination with di�erent
features.

In Table 4.2 the results for the ET/R Classi�cation tasks can be seen. �e best results
on the F1, the accuracy and precision score were achieved using all 3 features. �e
TF-IDF baseline also performs very well on this task. Like in 4.2 the results obtained
with the plain text were be�er than without it. Including the metadata alone does
not improve the results, neither when used with the plain text nor in combination
with C/W.
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4.4 Discussion

For both tasks our model performed be�er than the baseline on the F1 score. �e
ET/R classi�er overall performed be�er than the ET/BT classi�er, which is probably
because the articles in ET and R are more di�erent than the articles in ET and BT.
�e plain text seems to be the most important feature in both tasks. �e metadata
and the C/W clearly in�uence the result, but it is not entirely conclusive in which
direction. For the ET/BT task, the metadata in combination with the plain text
performed best, whereas on the ET/R task the plain text alone performed be�er.
�e C/W data however improves the result on the ET/R task but worsens it on the
ET/BT task. �e positive or negative in�uence might be dependent on the speci�c
task.

�e standard deviation for the ET/BT task is quite high. We hypothesize that certain
articles in ET and BT have a high signi�cance for our model. In the ET/R task this
is not the case, as the di�erences between ET and R articles are more distinct.

By combining all 3 features we beat the baseline in both tasks. On the ET/BT task
our model is clearly be�er than the baseline, in the ET/R task there is only a slight
di�erence. We showed with our result that a BERT based model can outperform
the traditional TF-IDF approach on tasks involving long documents.

�e small sample size makes it di�cult to draw conclusions which combination of
features is to be preferred, as no combination clearly outperforms the others. With
a larger sample size the performance of the model could probably be improved and
clearer pa�erns in the features would emerge.

�e model architecture could also be re�ned for be�er performance. One weakness
is the computation of the mean from the sequence embeddings of the plain text
and the C/W. We hypothesize that by doing so useful information of each sequence
embedding is lost. Also the classi�cation layer has potential for improvement. We
only used a single classi�cation layer, and we hypothesize that with more layers
the model might be able to capture the information in the text and metadata be�er.
�ese optimizations will be le� for future research.

To minimize target leakage we speci�cally used the revision of the article before
it was added to the category. Since Wikipedia articles are continually improving,
the category names ”Emerging technologies” or ”Biotechnology” can be found in
some of the revisions before the article is classi�ed. However we are con�dent that
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Figure 4.1: Most important terms with weights for both classi�cation tasks from the TF-IDF baseline
model. Terms in green are the most de�ning terms for ET, and the terms in red are the
most de�ning terms for BT and R respectively.

our predictions were not signi�cantly in�uenced by this. In Figure 4.1 the words
with the highest and lowest weight of both classi�cation tasks are shown. �is data
comes from the TF-IDF baseline model, but the signi�cance of the terms to some
degree also applies to our BERT based model. �e term ”biotechnology” plays an
important role in the ET/BT task, but this can be expected, as ”biotechnology” is a
popular term in this topic. Other than that no traces of target leakage have been
detected. In the ET/R classi�cation task two terms with high weights for ET are
”used” and ”using”. Both words are probably used more frequently in a scienti�c
context, but their importance could also be caused by the small sample size.

In the context of predicting emerging technologies for identifying promising stocks
or emerging technology sectors, our model is not advanced enough to provide
useful assistance. Unfortunately we were unable to �nd pa�erns in the metadata of
the revision history of ET articles which would clearly indicate a rise in interest of
a certain technology. However the overall results are promising enough to continue
further research in this direction.

It must be noted that even though our model performs be�er than the TF-IDF
baseline, the computational cost of training and applying BERT is far greater.
Fortunately this is mitigated by the fact that most of the resources are only needed
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during training. Still the computational cost could pose an obstacle in a practical
application where speed is an important factor.
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We classi�ed Wikipedia articles of di�erent categories with the help of text and
metadata features. �e di�erent feature combinations show that metadata can
increase the performance, however it depends on the task. In the binary classi�-
cation of ”Emerging technologies” (ET) and ”Biotechnology” (BT) a combination
of plain article text and metadata performed best. In the second experiment, the
classi�cation of ET and random articles (R), the combination of plain text, metadata
and the wikilinks/categories (C/W) yielded the best results. In both tasks our BERT
based model with included metadata performed be�er than the traditional TF-IDF
approach. �e metadata and C/W could at best only slightly improve the result of
using just the plain text. Using the C/W and metadata alone yielded worse results in
both experiments. �erefore we conclude that the plain text is the most important
feature for our model. Despite our results the computational overhead involved in
processing long texts with BERT is signi�cant and more research needs to be done
before a practical application can be considered.

5.1 Future Work

We identi�ed several possible optimizations in our model which could be explored
in future works. In the model architecture, more classi�cation layers and a more
sensitive approach when combining the sequence embeddings of di�erent text
features could prove bene�cial. A major restricting factor of our experiments was
the limited sample size. One possible solution would be to include the articles of the
subcategories of ”Emerging technologies”, e.g. the category ”Arti�cial intelligence”.
Another idea would be to include metadata features from other datasources besides
Wikipedia, e.g. data from the Google search engine or various social media sites.
Finding pa�erns there could not only improve the performance, but also help
identifying emerging topics where none or only a rudimentary Wikipedia article
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exists. Emerging technologies could possibly be detected earlier than with just
the Wikipedia data. From a business perspective, the ability to detect emerging
technologies as soon as possible is an important aspect, as it would give investors
an edge over competitors.
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6 Appendix

6.1 10-Cross-Validation Folds

�is section shows all 10-cross-validation folds of the model with the best F1 score
for the ET/BT and ET/R classi�cation task respectively. In Table 6.1 are the results
of the model for ET/BT classi�cation using the plain text and metadata and in Table
6.2 are the results for ET/R classi�cation using the plain text, metadata and C/W.

Fold Accuracy Precision Recall F1
1 87.10 96.15 78.12 86.21
2 83.61 86.67 81.25 83.87
3 88.52 87.88 90.62 89.23
4 91.80 90.91 93.75 92.31
5 100.00 100.00 100.00 100.00
6 88.52 90.32 87.50 88.89
7 93.44 91.18 96.88 93.94
8 95.08 93.94 96.88 95.38
9 88.52 93.10 84.38 88.52
10 91.80 93.33 90.32 91.80

Table 6.1: �e results of all 10-cross-validation folds for ET/BT classi�cation of the best model. �e
model used the plain text and metadata as features.
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Fold Accuracy Precision Recall F1
1 98.39 100.00 96.88 98.41
2 100.00 100.00 100.00 100.00
3 96.77 96.88 96.88 96.88
4 98.39 96.97 100.00 98.46
5 98.39 96.97 100.00 98.46
6 100.00 100.00 100.00 100.00
7 98.39 96.97 100.00 98.46
8 96.77 94.12 100.00 96.97
9 96.77 96.88 96.88 96.88
10 93.44 93.55 93.55 93.55

Table 6.2: �e results of all 10-cross-validation folds for ET/R classi�cation of the best model. �e
model used the plain text, metadata and C/W as features.
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