
Manfred Milchrahm

Improving Browser Bookmark
Practicability

Bachelor’s Thesis
to achieve the university degree of

Bachelor of Science

Bachelor’s degree programme: Computer Science

submi�ed to

Graz University of Technology

Supervisor

Dipl.-Ing. Dr.techn. Roman Kern

Knowledge Technologies Institute
Head: Univ.-Prof. Dipl.-Inf. Dr. Stefanie Lindstaedt

Graz, September 2020

Abstract

This present work elaborates on how a browser’s bookmark functionality, a common
tool to aid revisitation of web pages, can be improved concerning performance and
user experience. After identifying and investigating issues arising with state-of-the-
art approaches, solutions to that issues were elaborated and a browser extension
for the Google Chrome browser was implemented based on the gathered insight. A
special focus was put on developing novel functions that allow for incorporating
temporal relations between bookmarks of a given bookmark collection as well
as a feature that supports searching for bookmarked web pages by colour. Ten
participants completed an evaluation of the implemented browser extension in
order to investigate its performance and usability. The study showed that users
familiarise quickly with the proposed novel functions and rated their ease of use and
helpfulness positively. However, though the suggested functions were commented
positively on by participants and showed advantages over traditional full-text
search for special cases where some (temporal) context is required, full-text search
extended by widespread functions like autocomplete su�ce for most of the basic
use cases.

iii

Contents

Abstract iii

1 Introduction 1
1.1 Motivation . 1

1.1.1 Bookmarks hold little relevant Information 1
1.1.2 The E�ort of Maintenance 3
1.1.3 Adding Information e�ortlessly 5

1.2 Main Challenges . 5
1.2.1 Memorising Websites . 5

2 Background 9
2.1 Related Work . 9

2.1.1 Node.js . 9
2.1.2 Apache Tika . 9
2.1.3 Indexing . 10
2.1.4 Precision and Recall . 10
2.1.5 Tokenisation . 11
2.1.6 Stemming . 11
2.1.7 TF-IDF . 12
2.1.8 Lunr.js . 13

2.2 State of the Art . 14
2.2.1 Keyword Search and Full-text Search 14
2.2.2 Tagging . 15
2.2.3 Automatic Categorisation 17

3 Method 19
3.1 Concepts . 19

3.1.1 Model–View–Controller 19
3.1.2 Observer Pattern . 19

v

Contents

3.1.3 AJAX . 20
3.1.4 Parallel vs. non-blocking Javascript 21

3.2 Implementation . 22
3.2.1 The Browser Extension . 22
3.2.2 The Content Extraction Server 40

4 Evaluation 45
4.1 Method . 46

4.1.1 Participants . 46
4.1.2 Preparations . 46
4.1.3 Procedure . 49

4.2 Results . 51
4.3 Discussion . 54

4.3.1 Lessons learnt . 55
4.4 Conclusion . 56

4.4.1 Limitations . 57
4.4.2 Future Work . 58

Bibliography 69

vi

List of Figures

1.1 Title Tag vs. actual Content . 4

3.1 MVC Architecture . 20
3.2 The Popup User Interface . 22
3.3 Extension Options . 28
3.4 Date Filter gui . 30
3.5 Temporal Search gui . 31
3.6 Di�erentiating Colours within a Gradient 33
3.7 “Did you mean” Suggestions gui Example 1 36
3.8 “Did you mean” Suggestions gui Example 2 37
3.9 Autocomplete gui . 39
3.10 Autocomplete Sequence Diagram 41

4.1 Bookmark Catalogue pdf File . 48
4.2 Certainty and Number of Queries needed 52
4.3 Usefulness of Functions . 53
4.4 GIMP Colour Picker . 61

vii

1 Introduction

1.1 Motivation

According to studies (Tauscher and Greenberg 1997), (Cockburn and Bruce 2001),
(Herder 2005), a major part of web browsing involves requesting web pages that
have been visited before. As a consequence, the research topic of supporting web
page revisitation emerged, leading to a number of browser extensions and other
software following various approaches to enhance web page revisitation.

1.1.1 Bookmarks hold li�le relevant Information

Personalised (hierarchical) lists of urls, sometimes called favourites or bookmarks,
are one common way to save urls for later use. Even though the bookmark feature
is implemented in all current browsers, none of these browsers provide native
tools to e�ciently search and �nd previously stored bookmarks again to allow
revisitation. Most browsers provide basic search functionality, which oftentimes
does not deliver the desired results since there is very little information connected
to a bookmark.

In this work we will discuss a method for improving the bookmark feature by
adding more searchable information to bookmarks. The aforementioned problem
concerns all current major browsers, so the approach suggested in the present
work tries to provide a possible improvement that can be adapted for all browsers
that allow developing extensions or plug-ins with access to a user’s bookmarks.
However, since each browser provides its own api and system architecture, a
separate implementation is needed for each browser. Due to the popularity of the
Google Chrome browser, the decision was made to make use of said browser’s
bookmark feature in the implementation proposed in this present work.

1

1 Introduction

The Google Chrome browser was developed by Google and released to the public
in 20081. As of January 2020, with 68.78% Google Chrome is the browser with the
largest desktop market share, according to statcounter.com2.

Google Chrome’s adress bar is called omnibox, for it does not only allow to type in
a website adress but functions as the main interface of the browser by providing
additional, more advanced functionality. A user can type urls or search queries
into the omnibox. On user input, the omnibox displays search results gathered
from sources like the user’s default search engine, so-called rich results which
are generated from sources like Wikipedia, as well as personalised results taken
from a user’s history and bookmarks. Although this may be convenient in some
cases, due to a usability through simplicity approach, which, in essence, is hiding
information from the user, this method is very intransparent with respect to how a
result’s relevance is rated and also which source the result was retrieved from. Also
the number of search results presented to the user is limited. The main problem
with omnibox search and current state-of-the-art solutions, as described later in
Section 2.2, regarding searching for bookmarks is, though, that the browser often
does not have much searchable or relevant information stored for a bookmark.
These state-of-the-art approaches typically try to provide a way to add information
like hierarchy or context to a users’ bookmarks. However, the process of deriving
and adding such information usually can not be automised completely. Hence, user
e�ort is needed to be put into maintenance of the given bookmark collection. The
present work seeks to reduce this e�ort.

Concerning searchable information, usually only a title or description of the book-
mark and the time of when the bookmark was saved the �rst time is stored for each
bookmark 3. Google Chrome most likely uses the timestamp internally for rating
the relevance of a result incorporating heuristics when searching via the omnibox.
However, this approach is not transparent, as mentioned earlier, especially since the
timestamp information is not indicated to the user, nor does the user know whether
the source of a given omnibox result is their bookmark collection or browser history.
Furthermore, the timestamp of the bookmark is not directly searchable in Google
Chrome and also if it was, it would not be very userfriendly since a user would
have to know the exact timestamp of the bookmark.

1https://en.wikipedia.org/wiki/Google_Chrome
2https://gs.statcounter.com/browser-market-share/desktop/worldwide/

#monthly-201910-201910-bar
3https://developers.chrome.com/extensions/bookmarks#type-BookmarkTreeNode

2

https://en.wikipedia.org/wiki/Google_Chrome
https://gs.statcounter.com/browser-market-share/desktop/worldwide/#monthly-201910-201910-bar
https://gs.statcounter.com/browser-market-share/desktop/worldwide/#monthly-201910-201910-bar
https://developers.chrome.com/extensions/bookmarks#type-BookmarkTreeNode

1.1 Motivation

The only information connected to a bookmark that users can utilise directly in
their queries, is the title of the bookmark. In theory, the title of a bookmark can
hold a lot of relevant information that can be exploited for search. In practice,
however, users usually do not spend time to think about meaningful, descriptive
or relevant bookmark titles, so oftentimes a default bookmark title is used, as
Abrams, Baecker and Chignell found out (Abrams, Baecker and Chignell 2002). The
default bookmark title suggested by the browser is simply taken from the html
title meta tag of a website or some title tag of a pdf document, et cetera. When
comparing typical html title tags to actual content, it is easy to recognise that there
is much information available that is currently left unused. As Abrams, Baecker
and Chignell put it, “bookmarks aren’t great describers of the actual content [of
the Web page]”. They suggest this might be the case due to “traditional di�culties”
when it comes to �nding descriptive names for items. An example of this issue is
shown in Figure 1.1.

1.1.2 The E�ort of Maintenance

One common method of organising bookmarks is to create folders which the book-
marks can then be assigned to. These folders are usually organised in hierarchical
structures. This method requires the user to explicitly create the folder structures
as well as the bookmark to folder assignments which tends to get unhandy for
bigger bookmark collections. As explained in more detail in Section 2.2.3, there
are approaches to reduce this maintenance e�ort, for example through automatic
categorisation. Still, these tools do not solve the following problem: when searching
for a certain bookmark, the user has to �gure out to which automatically created
folder the bookmark has been assigned to (Do and Ruddle 2017) and navigate
through a potentially large number of bookmark folders. This task becomes even
more of a problem as these tools tend to have di�culties classi�ying bookmarks
correctly. For example, HyperBK (Sta� and Bugeja 2007), presented in Section 2.2.3
was not able to correctly classify 39% of given bookmarks. Thus, our approach aims
to get rid of having to assign bookmarks to certain folders and putting much e�ort
into folder maintenance by providing the user with a simpler search interface.

3

1 Introduction

Figure 1.1: The Wikipedia page of Drew Brees: on creating a bookmark, the browser suggests the
web page’s html title tag “Drew Brees - Wikipedia” as the bookmark title, when there
is much more relevant information that could be used. For example, “Quarterback”,
“Football”, “Chargers”, “New Orleans” and “Saints” would provide relevant searchable
terms. Imagine now searching your bookmarks for an nfl player who’s name you just
forgot.

4

1.2 Main Challenges

1.1.3 Adding Information e�ortlessly

Storing little information and not extracting any content made sense in the early
days of the internet, due to little computer performance. Nowadays relatively big
and fast memory allows for search indices being held locally on a client computer.
Moreover, today’s internet infrastructure allows for parallelising the task of fetching
websites in order to process them and add to a search index. As a result, bookmark
collections with large amounts of documents can be fetched and indexed relatively
fast even on a client device.

In this present work, we make use of the content of bookmarked documents by
building a search index out of this content in order to add searchable information
to bookmarks without having to put e�ort into maintenance. Furthermore, in an
approach to provide for more e�ciency and thus a better user experience, a search
interface that allows for advanced search queries is discussed. Finally, the approach
is evaluated and the results are discussed in Chapter 4.

A qualitative user evaluation was conducted to measure (a) if, and if yes, how the
plugin helps improving users’ con�dence in having found the desired document,
and (b) if the plugin helps raising a users’ willingness to use bookmarks more
frequently, or if the user did not use bookmarks before, the willingness to use
bookmarks at all for website revisitation purposes.

1.2 Main Challenges

In order to perform indexing of browser bookmark data there are typical Natural
Language Processing (nlp) tasks which have to be considered. Especially when
keeping localisation and multilingual environments in mind, nlp tasks may pose a
di�cult problem to solve. An example of such tasks are Tokenisation and Stemming,
which are being dealt with in more detail in Chapter 2.

1.2.1 Memorising Websites

Besides aforementioned nlp considerations, the main task of this work is to im-
plement a query system that takes advantage of how a human user memorises

5

1 Introduction

bookmarked websites.

In order to understand how users formulate queries when searching for a speci�c
bookmark, it is important to take into account that users sometimes do not memorise
the exact name of a bookmark. In this work we hypothesise this is especially the case
when bookmarking websites which have not been accessed directly, but through
some hyperlink, for example after querying a search engine. For example, a user
queries a search engine looking for a used Ferrari and �nds one on some used car
website and bookmarks the page. After two weeks the user wants to access the
bookmarked website again. It is much more likely that the user will query their
bookmarks collection for something like “used car” or even “used ferrari” rather
than the name of the used car website.

Another hypothesis we propose is, that users think in so-called “temporal episodes”
when creating bookmarks. For example, after creating a bookmark for a website
presenting some front end development tools, the user, who is a web developer, also
created a bookmark for some JavaScript framework. With the help of a temporal
search feature, the user now could query for “JavaScript that has been bookmarked
shortly after front end” in order to improve search e�ciency, instead of just search-
ing for “Javascript”. Of course this approach requires the user to explicitly bookmark
at least two interrelated web pages within the same browser session. It has to be
evaluated if such behaviour corresponds to reality, or if the requirement to manually
create bookmarks poses a problem to this approach. This problem could be solved
by using browser history, which is recorded automatically, instead of manually
created bookmarks. It is worth noting that some browsers already support full-text
search for browser history, but not for bookmarks. However, given the fact that most
major browsers do not keep an unlimited amount of browser history records due
to performance reasons (Sousa, Pereira and Martins 2012), using browser history
poses no solution to long term revisitation.

We also hypothesise that users are likely to memorise dominant colours of a website.
While there have numerous studies been conducted on the e�ects of colour in the
context of memorisation in the �elds of e-commerce (Pelet and Papadopoulou 2012)
and e-learning (Pelet and Papadopoulou 2011), as of now the question remains
whether colour can be perceived in such a manner that allows for remembering
the colour or shade and formulating good information retrieval queries after some
given time. A given colour does not necessarily have to be memorised consciously,

6

1.2 Main Challenges

instead it is relevant if a colour can be recalled to memory even if it has been
perceived unconsciously at the previous visit of the concerned web page.

Therefore it is important to �nd a way to e�ciently retrieve, extract and index
relevant information like textual content, colour and temporal context from a given
bookmarked web page, so that this information can be made searchable for the
user. How textual content can be extracted and indexed is shown in Chapters 2
and 3.2, where a major challenge is the resulting index size for potentially large
bookmark collections.

Temporal context can be extracted relatively easyily by making use of the book-
marks’ timestamps. In contrast, extracting and processing colours is a rather di�cult
task. On the extraction side, there is the issue of determining which colour of a
website really is prominent to the user. For example, if a website is made up of a
large proportion of white background and just a few coloured, say, red, accents
that catch the user’s eye, the user, if asked, would probably not state the website to
be “white”, but instead remember the red accents, even though the mathematical
proportions of the colours would suggest otherwise. Another problem that arises
here, is that di�erent users can have a di�erent perception of one speci�c given
colour. A very prominent example of this e�ect is the photograph of a dress, which
is perceived by some people as white and gold, whereas others see the dress as blue
and black (Chetverikov and Ivanchei 2016). However, the e�ect does not necessarily
have to be as drastic. Take, for example, colours with very low saturation. Some
people still can recognise some colour, but others are less sensitive to saturation
and therefore just see grey. Naturally, this poses a problem for information retrieval,
because we do not know for sure by which term a user will refer to a given colour.

As this work focuses on the question if bookmarks can be used more e�ciently
and not on content extraction, instead of writing our own content extractor, the
decision was made to use a state-of-the-art third party content extractor called Tika,
which is presented in Section 2.1.2. However, the incorporation of Tika in a browser
extension poses another challenge, since extensions are typically sandboxed and
therefore do not allow the use of the operating system’s jre. Consequently, since
Tika is implemented in Java and depends on being run within a jre, it can not
be executed directly within such a sandboxed extension. As a compromise, in
this present work Tika is being run on an external Node.js server as described in
Section 3.2.2.

7

2 Background

2.1 Related Work

2.1.1 Node.js

Node.js is an open-source JavaScript runtime environment that allows for running
very resource-saving webservers. JavaScript’s event-driven architecture enables the
webserver to have a large number of open connections due to low memory usage.
Node.js’s basic functionality can be extended with so-called modules, which can be
installed, for example, via Node’s package manager npm. How such modules have
been incorporated in this present work’s content extraction server is described in
Section 3.2.2.

2.1.2 Apache Tika

The aim of this work is for each of a user’s bookmarks to gather a lot more infor-
mation than current solutions do. Current solutions, like the default in-browser
bookmark functionality and even third-party extensions only use a small portion of
available information and big parts of relevant information gets lost, thus obviously
can not be employed for search. Our approach parses each of a user’s bookmarked
documents and stores the whole extracted content to be used for later search. We
do so by making use of Apache Tika1, which is a toolkit to parse documents by
detecting and extracting data from various document types like html, pdf or o�ce
documents. The information retrieved by Apache Tika can then be used to build a
search index.

1https://tika.apache.org

9

https://tika.apache.org

2 Background

Originally, Apache Tika was written in Java. For this present work the decision
was made to utilise a Node.js port of Tika by Matthew Caruana Galizia2, which can
be installed via npm. This module makes use of the node-java bridge3, in order to
provide for a jre that is a requirement for Tika.

2.1.3 Indexing

The purpose of a search index is to provide for fast querying. There are various
approaches for index design trying to optimise factors like query time or index size
by making use of various data structures like trees, matrices or inverted indices.
In contrast to simply storing every document as-is and searching all of them
sequentially on each query, indexing is faster for potentially large amounts of
documents. However, usually there is a trade-o� between query time and build-up
time.

2.1.4 Precision and Recall

Precision and recall both are typical measures of relevance in information retrieval.
They are de�ned in terms of a set of retrieved documents and a set of relevant
documents4, where precision is de�ned as

precision =
|{relevant documents} ∩ {retrieved documents}|

|{retrieved documents}|

and indicates how many of the retrieved documents are relevant. On the other
hand, recall is de�ned as

recall = |{relevant documents} ∩ {retrieved documents}|
|{relevant documents}| ,

which is the number of retrieved relevant documents out of all relevant docu-
ments.

2https://github.com/ICIJ/node-tika
3https://github.com/joeferner/node-java
4https://en.wikipedia.org/wiki/Precision_and_recall#De�nition_(information_retrieval_

context)

10

https://github.com/ICIJ/node-tika
https://github.com/joeferner/node-java
https://en.wikipedia.org/wiki/Precision_and_recall#Definition_(information_retrieval_context)
https://en.wikipedia.org/wiki/Precision_and_recall#Definition_(information_retrieval_context)

2.1 Related Work

2.1.5 Tokenisation

Tokenisation describes the process of splitting text into smaller entities, called to-
kens, each of which having semantic value. While this task is rather straightforward
for languages like German or English, there are languages for which tokenisation
is not as trivial. This is the case for languages like Chinese, where word boundaries
are not indicated by whitespace characters and therefore are ambiguous.

2.1.6 Stemming

Stemming is a process that aims to reduce tokens to their common word stem, or
root, in order to group words with similar meaning. It is not necessarily required
to �nd the actual morphological root, it is oftentimes su�cient that semantically
similar words map to the same stem. This can be bene�cial to rating documents,
because the recall is increased. High recall essentially means, as explained earlier
in Section 2.1.4, that most of the relevant documents are retrieved. For example, a
document containing the word “Flowers” is most likely relevant to a user searching
for “Flower”. Furthermore, stemming reduces the total number of tokens in the
index, thus results in better performance.

There are di�erent types of stemming algorithms, or stemmers, which can be
grouped into a number of categories. For example, there are truncating algorithms,
like the Porter Stemmer (Porter 1980) used in this present work, or statistical ap-
proaches like n-grams. While truncating algorithms, as the name suggests, remove
su�xes or sometimes pre�xes in order to group words by their root word, the
n-gram algorithm generates substrings of length n extracted from consecutive
characters of a word. As a result, n-gram algorithms produce O(n) n-grams for
each word. The idea of the n-gram algorithm is that syntactically similar words
have a high number of common n-grams. According to Damashek (Damashek
1995), the n-gram approach is superior to truncating algorithms in a multilingual
environment since statistical approaches are language-independent, which does not
hold true for truncating algorithms as explained below. Nonetheless, for the time
being, we stick with the default stemming algorithm of the indexing framework
used in this present work, which is one of the most commonly used truncating
stemming algorithms, the Porter stemmer, which allows for smaller index sizes. The
Porter stemmer is a rule-based stemming algorithm, which means a given set of

11

2 Background

rules is applied on each token, until a certain minimum number of syllables remain.
For example, OSCILLATORS is stripped to OSCILLATOR, then to OSCILLATE, then
to OSCILL, and then to OSCIL. This example illustrates that the stem a token is
reduced to does not necessarily have to be a valid word, but related words should
produce the same stem, which usually is su�cient.

It is important to keep in mind that a rule-based stemming algorithm, due to its
underlying rules, is language-dependent. While the original Porter stemmer was
implemented for the English language, there are versions for other languages like
German, French and Russian available as well by now. It is worth noting that
stemmers for languages like Arabic and Hebrew are still regarded as a di�cult
research topic. This has to be taken into account when implementing support for
di�erent localisations or multilingual bookmark collections, which is not part of
this work though.

2.1.7 TF-IDF

To rate the relevance of a speci�c document for a given query, various statistics
can be used. One of the best performing and most commonly used ones is term
frequency-inverse document frequency (tf-idf), which is used by the Lunr frame-
work that is presented in Section 2.1.8.

Term frequency describes how often a term appears in a document. In the simplest
case this value is just the raw number of occurences of the speci�c term.

Since there are words that are very common, their appearance in a document does
not give reliable information about the relevance of the document. For example, the
occurence of the very common word “the” is likely to boost the score of a document
while diminishing the emphasis put on words that are more distinctive. In order to
compensate for this falsely emphasised terms, term frequency is multiplied by an
inverse document frequency factor, which is a measure of how common a word
is across the whole document collection, hence how signi�cant an occurence of
this word is. The speci�c computation of this value by Lunr is described in the
following section.

12

2.1 Related Work

2.1.8 Lunr.js

Lunr.js, or simply Lunr5, is an open-source full-text search framework written in
JavaScript.

For determining similarity between and ranking of documents, Lunr uses a vec-
tor space model. In this model, for each document a multi-dimensional vector is
computed. In fact, since a document can be composed of multiple �elds, there can
be multiple vectors describing the document, one vector for each �eld. Each of a
vector’s dimensions corresponds to a term that occurs in the regarding document
�eld and a weighting score is assigned to each dimension, or term, respectively.
These scores are computed by using an implementation of the bm25 algorithm
(Robertson et al. 1995), which is a state-of-the-art tf-idf algorithm. To be precise,
an improvement of bm25, referred to as bm25f (Zaragoza et al. 2004), is being
employed. bm25f allows for better performance across multiple weighted �elds. In
Lunr’s implementation6, given a query term q, the score of a document’s �eld f is
computed as

score(f, q) = IDF(q) · tf(q, f) · (k1 + 1)

tf(q, f) + k1 ·
(
1− b+ b · |f |

avg�

) ,
where tf(q, f) is the term frequency of the term q within �eld f , |f | is the �eld
length in number of terms, avg� is the average �eld length of all documents in
the collection and k1 and b are free parameters with default values 1.2 and 0.75
respectively, that can be used for advanced optimisation.

The idf weight is computed as

IDF(q) = log

(
1 +

∣∣∣∣N − n(q) + 0.5

n(q) + 0.5

∣∣∣∣) ,

where N = |D| is the total number of documents in the collection, and n(q) =
|{d ∈ D : q ∈ d}|, that is the number of documents d containing term q7.

The similarity between a document and a query is then computed by computing
the dot product of the corresponding vectors.

5https://lunrjs.com/
6https://github.com/olivernn/lunr.js/blob/master/lunr.js#L2576
7https://github.com/olivernn/lunr.js/blob/master/lunr.js#L319

13

https://lunrjs.com/
https://github.com/olivernn/lunr.js/blob/master/lunr.js#L2576
https://github.com/olivernn/lunr.js/blob/master/lunr.js#L319

2 Background

2.2 State of the Art

2.2.1 Keyword Search and Full-text Search

Keyword search solutions, as the name suggests, annotate bookmarks with key-
words which then can be searched for. These keywords are either retrieved auto-
matically or have to be de�ned by the user for each bookmark. Sometimes these
two approaches are combined by suggesting keywords which then can be edited
further by the user. However, keyword search has the obvious disadvantage that
relevant content can be missed when choosing the wrong keywords.

In contrast, there already exist full-text search applications, that allow for retrieving
and indexing the complete content of a given web page. Examples for such browser
extensions that have been implemented for the Google Chrome browser are Falcon8

and WorldBrain’s Memex9. One issue regarding these browser extensions that
should be considered, though, is that these extensions do require the user to visit
a web page after the extension has been installed in order to index the contents
of the concerned page. This is due to the extension parsing the dom of the web
page instead of requesting the page autonomously and independently from the
user. Consequently, two drawbacks arise, the �rst one being that some of these
extensions can not index web pages that have been bookmarked or visited before
the installation of the extension, which obviously can lead to a user being unable
to �nd web pages that have not been visited recently. Data protection issues may
pose another problem, since these extensions are allowed to access the complete
dom of a viewed web page. To be clear, this means that such an extension has
access to any page the user is able to access. For example, the content of web pages
that are password-protected is exposed after the user logs in to such pages, hence
sensible data like bank account sites might be exposed. That said, these extensions
usually do provide the possibility to exclude certain pages from being indexed,
but considering real world user behaviour, the question remains if this opt-out
approach is a good �t from a data privacy perspective.

Furthermore, although Memex allows for �ltering by date range and even formu-
lating those date ranges in natural language, a user is required to remember the

8https://chrome.google.com/webstore/detail/falcon/mmifbbohghecjloeklpbinkjpbplfalb
9https://chrome.google.com/webstore/detail/worldbrains-memex/

abkfbakhjpmblaafnpgjppbmioombali

14

https://chrome.google.com/webstore/detail/falcon/mmifbbohghecjloeklpbinkjpbplfalb
https://chrome.google.com/webstore/detail/worldbrains-memex/abkfbakhjpmblaafnpgjppbmioombali
https://chrome.google.com/webstore/detail/worldbrains-memex/abkfbakhjpmblaafnpgjppbmioombali

2.2 State of the Art

(approximate) date the desired web page was visited or bookmarked. While this
might be less of an issue when searching for recently added records, it might become
problematic when trying to obtain results from long term history. On the other
hand, the approach employed in the present work tries to provide for narrowing
down search results by allowing for formulating a temporal relation between two
search terms instead of the temporal context of just a single search query. That is,
for example, searching for records that (a) match term A, and (b) have been viewed
or bookmarked shortly after results that match term B. An implementation of such
a feature is shown in Section 3.2.1. In Chapter 4 this method has been evaluated.

2.2.2 Tagging

There exists a number of browser extensions, for example Bookmark tags10 that
provide a tagging feature for a user’s bookmarks. Essentially, this is not much of a
di�erence to keyword search, but tags usually are represented in a speci�c visual
manner. Similar to keywords, a single tag also can be composed of one or more
words. Such grouping can be an advantage over just writing all keywords into the
bookmark title.

Besides the usual maintenance e�ort issue, keywords and tags have following
typical problems as well.

Synonyms

Using tags that have same or similar meaning is one typical information retrieval
problem. For example, when a user tags some bookmarks as “football” and others
as “soccer”, querying for “football” does not yield all bookmarks that concern a “a
sport played by two teams of 11 players, who try to kick a round ball into their
opponents’ goal”11.

10https://chrome.google.com/webstore/detail/bookmark-tags/
edpeidcfjfmepdgdjnodefckgdjbigem

11https://www.ldoceonline.com/dictionary/soccer

15

https://chrome.google.com/webstore/detail/bookmark-tags/edpeidcfjfmepdgdjnodefckgdjbigem
https://chrome.google.com/webstore/detail/bookmark-tags/edpeidcfjfmepdgdjnodefckgdjbigem
https://www.ldoceonline.com/dictionary/soccer

2 Background

Homonyms

A homonym is a word that has di�erent meanings. For example, the word bow
can refer to a long wooden stick with horse hair that is used to play certain string
instruments or a weapon to shoot projectiles with. As opposed to synonyms where
queries can miss a subset of relevant results, homonyms can lead to retrieving
too many results. That is, obtaining results that contain the queried term but are
semantically irrelevant.

Level of Abstraction

Using tags with di�erent levels ob abstraction can have the same consequences as
using synonyms. For example, a user might tag some web pages by the term “beer”
in general, but di�erentiate between lager, ale and stout for some other websites.
The same user might even tag some web pages as “Guinness” speci�cally, that is,
refer to the web page by the brand name instead of the type of beer.

Typos and di�erent Ways to write Keywords

While di�erent usages of plural and singular, for example sometimes tagging “pints”
and some other time using the singular “pint”, can be addressed by some kind of
stemming as explained in Section 2.1.6, typos or di�erent notation, for example
“PintOfGuinness” versus “pint_of_guinness” versus “Pint of Guinness”, maybe pose
an issue that can not be tackled by (rule-based) stemming as easily.

In order to address the aforementioned issues, Social Semantic Bookmarking (Braun,
Zacharias and Happel 2008) tries to add semantic value by providing context through
using ontologies, but again the user is required to put maintenance e�ort into such
ontologies and keeping semantic relationships up-to-date.

16

2.2 State of the Art

2.2.3 Automatic Categorisation

HyperBK

HyperBK is an extension for the Firefox browser that tries to classify a given web
page into a bookmark folder, where the title of a bookmark folder is made up of the
keywords of the bookmarks the folder contains. One disadvantage of this approach
is that only a fraction of the keywords extracted from a web page is actually being
used and stored. Another issue is that a user still has to �gure out to which folder
a bookmarked web page she wants to revisit has been classi�ed to and navigate
through a potentially complex folder hierarchy in order to �nd it.

HiBo

Another approach similar to HyperBK was proposed by Kokosis et al. HiBo (Kokosis
et al. 2005) also employs techniques to categorise and organise bookmarks. In
contrast to HyperBK, HiBo takes a prede�ned set of topical hierarchies as input
and classi�es a given bookmark collection automatically. Thus, HiBo has the same
drawback as HyperBK, as the user has to �gure out to which topical category the
bookmark has been assigned to.

17

3 Method

3.1 Concepts

3.1.1 Model–View–Controller

Model-view-controller (mvc) is a software design pattern that is mainly used for
developing front-end graphical user interfaces (gui). The aim of this pattern is to
improve maintenance, �exibility and reusability of code. This is done by separating
program logic into the three components model, view and controller. Each compo-
nent is responsible for a certain part of the program logic, but communicates with
the other components, either directly or via an observer pattern as illustrated in
Figure 3.1.

The model holds the program data. If any of the data is updated, which usually is
done by the controller, the view is noti�ed via the observer pattern.

The view is responsible for the presentation of information to the user. This is
done by fetching the data from the model. On user interaction the view noti�es the
controller to handle the input.

The controller handles view and model. It gets informed about user interaction
by the view, processes the information of that user interaction and updates view
and model accordingly.

3.1.2 Observer Pa�ern

The observer pattern is commonly used in software design for implementing event
handling, especially in systems where data is not ready for use at startup, but
instead comes in at some unpredictable time. An event maintains a list of observer

19

3 Method

Controller

ModelView

Figure 3.1: MVC Architecture: Solid connections represent direct associations between components.
Dashed lines indicate connections via an observer pattern, where the direction of the
arrow represents informing an observer about the occurrence of an event.

objects. An arbitrary number of observers can register to an event. An event could
be some user interaction or an update of the data in the model. When such an event
occurs, all registered observers are noti�ed that this event happened. Usually a
certain method of the observer object is being called upon noti�cation.

3.1.3 AJAX

Basically, JavaScript scripts run in a single-threaded environment where functions
are added to a so-called event loop. JavaScript then processes each of these functions
sequentially. There are methods to defer function calls for a certain amount of time,
but these methods just defer the point in time where the function call is added
to the event loop. When the deferred function call is added to the event loop,
the function is still being processed in order. However, JavaScript allows for non-
blocking execution of time-consuming procedures by providing mechanisms to call
functions asynchronously. This concept is called Asynchronous JavaScript and xml
(ajax) and usually depends on a so-called XMLHttpRequest (xhr) object, which
allows to send a server request and wait for the response in a non-blocking manner.
On response the xhr object is noti�ed and then can execute a so-called callback
method. This means, for example, that user interface interactions can be handled
while waiting for a response of a server request.

20

3.1 Concepts

3.1.4 Parallel vs. non-blocking Javascript

As described in the previous chapter, ajax can be used to make asynchronous
requests. However, ajax does not solve the issue of computationally expensive
script functions that do not rely on a server call, but are executed within the
script locally. Such functions de facto do exist, for example when processing large
amounts of information locally. Due to the single-threaded nature of JavaScript,
such processing will block even if it is executed asynchronously. Web workers
address this issue. Speci�cations for this programming interface are currently being
developed by the World Wide Web Consortium (w3c) and the Web Hypertext
Application Technology Working Group (whatwg), however, the feature is already
supported by most current browsers. A web worker essentially is a JavaScript script
that runs in a di�erent thread than, and therefore is independent of, the main script.
However, it usually is necessary that the web worker communicates with the main
script. This task is achieved via message passing. Listings 3.1 and 3.2, inspired by
whatwg’s living standard speci�cations1, illustrate how this can be done. The main
script is as follows:

Listing 3.1: Creating a web worker in the main script and listening for messages sent by this worker.
var worker = new Worker(’worker.js’);
worker.onmessage = function (event) {

var result = event.data;
};

Listing 3.2: The web worker (worker.js) uses the postMessage() method to communicate the result
to the main script.

let rand = Math.random()
postMessage(n);

How such webworkers have been utilised in this present work is described in 3.2.1.

1https://html.spec.whatwg.org/multipage/workers.html

21

https://html.spec.whatwg.org/multipage/workers.html

3 Method

Figure 3.2: By clicking on the extension’s icon the popup is loaded.

3.2 Implementation

3.2.1 The Browser Extension

A Google Chrome browser extension is a set of html, css, JavaScript and image
�les. The manifest �le manifest.json informs the browser about important �les
and permissions needed by the extension. Another required �le is the icon image
�le titled icon.png, that can be used by the browser as a button to trigger the
popup that serves as the user interface as shown in Figure 3.2.

22

3.2 Implementation

Popup

A popup page essentially is a regular html page containing all ui markup. In
this present work basic css de�nitions have been added inline to the popup �le
(titled popup.html) itself, whereas JavaScript logic is being loaded from separate
�les as required by Chrome’s Content Security Policy2. The JavaScript �les being
requested are shown in Listing 3.3. The �le popup.js contains the script to create
and initialise the mvc and observer instances. It is worth noting that the order of
the scripts matters since there are mutual dependencies between the �les. Also
note that these scripts are unloaded upon closing of the popup, for example by
performing a mouseclick outside of the popup page.

Listing 3.3: JavaScript �les requested at the end of the popup.html �le. Model, view and controller are
initialised by the popup.js script. The order of the �les is important due to dependencies
between them.

<script src="event.js"></script>
<script src="model.js"></script>
<script src="view.js"></script>
<script src="controller.js"></script>
<script src="popup.js"></script>

Background Script

Background scripts usually are not visible to the user, but are loaded and un-
loaded as they are needed. A background script and its context, that means all its
functions and variables, can be invoked by any other view, for example a popup.
Background scripts contain event listeners that are crucial to the extension. In
this present work, the background script contained in the eventPage.js �le
has event listeners for adding, updating or removing a bookmark as shown in
Listing 3.5. This is also the place where the index creation is triggered by the
chrome.runtime.onInstalled event. However, the index creation can also be
initiated by the controller by requesting the background page as shown in List-
ing 3.4

Listing 3.4: The controller can request the background script and instruct it to start index creation.
chrome.runtime.getBackgroundPage(function(bgPage) {

2https://developer.chrome.com/extensions/contentSecurityPolicy

23

https://developer.chrome.com/extensions/contentSecurityPolicy

3 Method

//provide user with feedback to indexing progress
_this._view.showProgress(’block’)
//used to allow just one indexing progress at a time

_this.saveIndexingStatus(1)
bgPage.startIndexCreation()

})

In contrast to scripts loaded in a popup as described in Section 3.2.1, a background
script is not unloaded as long as it executes a task. Note that background scripts also
will not be unloaded as long as any messaging port or visible view, like a popup, is
open. That means, since indexing is done in a background script, index creation
and manipulation does not depend on any popup but happens in the background
hidden from the user. The only limitation in terms of background script lifetime
regards the closing of the browser window. An indexing process can be interrupted
by closing the browser window either intentionally or not, for example when the
extension or browser crashes, which possibly leads to data loss.

Listing 3.5: A background script listening for events the extension relies on. The addBook-
mark(document, update=0) respectively removeBookmark(id) handle the request for
updating the index.

chrome.bookmarks.onCreated.addListener(function(id, bookmark) {
if(bookmark.url){ //if there’s no URL, it’s a folder

var document = {
"bookmarkID": bookmark.id,
"bookmarkURL": bookmark.url,
"bookmarkTitle": bookmark.title,
"bookmarkContent": "",
"bookmarkMeta": "",
"bookmarkColors": ""

}
addBookmark(document)

}
})

chrome.bookmarks.onRemoved.addListener(function(id, removeInfo) {
removeBookmark(id)

})

24

3.2 Implementation

Message Passing

Oftentimes some kind of communication between the di�erent parts of the ex-
tension is required. For example, it is bene�cial to the user experience when the
background script informs a popup about the progress of the indexing process.
Since background and popup script variables reside in separate scopes, there is
no direct way of sharing any information. However, chrome.runtime provides a
mechanism that allows for such communication. This api is used in this present
work as shown in Listings 3.6 and 3.7. While the background script sends progress
noti�cations, any controller is listening to the onMessage event and handles in-
coming messages accordingly, for example by loading a newly created index or by
passing the information on to the view which again renders the new information
for the user.
Listing 3.6: The background page uses chrome.runtime’s sendMessage() method to communicate its

progress to every content or popup script listening.
chrome.runtime.sendMessage({

message: "THIS IS BACKGROUNDPAGE TALKING: progress notification.",
docs: numDocs,
processed: docsProcessed

})

Listing 3.7: The controller listens for the onMessage event and handles messages from the back-
ground script accordingly.

chrome.runtime.onMessage.addListener(
function(request, sender, sendResponse) {

if(request.message.includes("index has been saved")) {
... //clean up
_this.loadIndexFromStorage() //load newly saved index

}
if(request.message.includes("index not saved")) {

... //error handling
}
if(request.message.includes("progress notification")) {

//give feedback to the user
_this._view.setProgress(request.processed / request.docs * 100)

}
}

)

25

3 Method

Chrome Storage

Chrome storage3 is an api that provides storing and retrieving functionality. It can
be used by an extension to persist user data. That way, user data does not get lost
when the browser is being closed. For the present work, this api has been utilised
to store the index that was created from a user’s bookmarks, so that the index has
not to be rebuilt upon browser restart. Furthermore, any extension settings can be
persisted. It is worth noting that the api provides a chrome.storage.local as
well as a chrome.storage.sync area. Though the sync area, as the name suggests,
can be used to store information that should be synchronised along di�erent devices,
since this storage area is limited to just a few kilobytes, it does not serve the purpose
of storing potentially large indices very well. The local storage area’s storage limits
are a lot less restrictive, large bookmark collections’ indices still can exceed these
limits as well. However, in contrast to the sync storage area, the storage limits of the
local storage area can be bypassed by setting the unlimitedStorage permission
in the extension’s manifest �le. This option was used in this present work to allow
for large index sizes. Listings 3.8 and 3.9 show how the controller uses the storage
api for persisting the index within the lunrjsindex item.

Listing 3.8: The controller’s function to load the index from local storage. In the callback function
it is checked if an index has been created yet. If not, instruct the background page to
create one.

loadIndexFromStorage: function() {
var _this = this
chrome.storage.local.get(’lunrjsindex’, function(result) {

if(result[’lunrjsindex’] !== undefined) {
//send idx to worker for autocomplete function
_this._acWorker.postMessage({"idx": result[’lunrjsindex’]});

var idx = lunrMutable.Index.load(
JSON.parse(result[’lunrjsindex’])

)
_this._model.setIdx(idx)
...

}
else { //if index has not been created, do it now

chrome.runtime.getBackgroundPage(function(bgPage) {
...
bgPage.startIndexCreation()

3https://developer.chrome.com/apps/storage

26

https://developer.chrome.com/apps/storage

3.2 Implementation

});
}

});
}

Listing 3.9: When the background page (eventPage.js) completes creating an index, it stores the
serialised index to local storage. Upon successful storing notify the controller about the
newly available index.

function saveIndexToStorage(serialisedIdx) {
chrome.storage.local.set({’lunrjsindex’: serialisedIdx},

function() {
... //clean up progress status variables

//notify the controller that the index is available now
chrome.runtime.sendMessage(

{
message:
"THIS IS BACKGROUNDPAGE TALKING: index has been saved."
}

)
});

}

As mentioned on the api description webpage, Chrome storage is not intended to
store con�dential user information since the storage area lacks encryption.

Installation

Generally, to publish a Google Chrome extension, the extension is "distributed
through the Chrome Developer Dashboard and published to the Chrome Web
Store"4, from where it can then be downloaded by the public. As the software
developed in this present work is intended to be just a proof-of-concept prototype,
the present extension is not released to the public but can be installed as follows:

1. Navigate to chrome://extensions in the Google Chrome browser
2. Check the box next to Developer Mode
3. Click "Load Unpacked Extension" and select the directory that contains the

code of the extension to be installed
4https://developer.chrome.com/extensions

27

https://developer.chrome.com/extensions

3 Method

Figure 3.3: The options page provided by the extension in order to allow for customisation by the
user.

Extension Options

An options page allows the user to customise an extension. Such an options page
can provide various form �elds or other html markup. The corresponding user
input has to be persisted as explained earlier. According to the Chrome developer
guide5, an extension’s options page can be reached by right-clicking the exten-
sion icon and then selecting options from the context menu or via the extension
management page6. For convenience, the extension’s popup can also link directly
to the options page by calling chrome.runtime.openOptionsPage(). In this
particular implementation such a page is used to allow for setting preferences
concerning the date �lter function, as can be seen in Figure 3.3.

Lunr.js

The lightweight full-text search framework Lunr was used to build the search index
in this present work. The underlying concepts of Lunr have already been described
in Section 2.1.8.

Lunr also supports so-called pipelines. A pipeline maintains “an ordered list of
functions to be applied to all tokens in documents entering the search index and
queries being ran against the index”7. Such pipeline functions can be added to

5https://developer.chrome.com/extensions/options
6chrome://extensions
7https://lunrjs.com/docs/lunr.Pipeline.html

28

https://developer.chrome.com/extensions/options
chrome://extensions
https://lunrjs.com/docs/lunr.Pipeline.html

3.2 Implementation

improve an application that employs Lunr in a �exible manner. For example, words
with the same meaning but di�erent spelling like the British grey and American
gray can be normalised using a speci�c pipeline function, in order to allow for
retrieving results that match one of both variants when searching for one of them.

Another example of such a function is the stop word �lter8 that Lunr applies by
default. This pipeline function �lters common words that usually have no relevance
in order to prevent them from being indexed. The default stop word list provides
words of the English language only, but can be extended or customised for other
languages as well.

Lunr Mutable

As a consequence of reducing index size and thus memory usage, Lunr does not
allow for updating an existing index, that is without rebuilding the index completely
whenever a change has to be made. Therefore, the default implementation is not
well suited for our use case, as the index would have to be rebuilt every time a
new bookmark is added to a user’s bookmark collection. An index with such a
behaviour is called unmutable. Conveniently, there exists a library called Lunr
Mutable Indexes9 that adds the required �exibility to Lunr. Although the index size
tends to become larger in contrast to the default Lunr index, this is a reasonable
trade-o�.

Date Filter

Search results can be narrowed down further by �ltering them by date. A simple
drop-down �eld as shown in Figure 3.4 functions as an interface to let the user select
a timespan for which search results should be displayed. When a date range other
than “All time” is selected, the search results list only those bookmarks that have
been saved or updated within the selected range, where the most recent saving or
updating action is used for comparison. The extension’s options page, as explained
in Section 3.2.1, provides the possibility to choose a default date range which is
then loaded by the popup on every start.

8https://github.com/olivernn/lunr.js/blob/master/lunr.js#L1194
9https://github.com/hoelzro/lunr-mutable-indexes

29

https://github.com/olivernn/lunr.js/blob/master/lunr.js#L1194
https://github.com/hoelzro/lunr-mutable-indexes

3 Method

Figure 3.4: A simple drop-down list provides an option to �lter search results by date. Only those of
the retrieved bookmarks that have been saved or updated within the selected timespan
will be displayed.

30

3.2 Implementation

Figure 3.5: Showing results for bookmarks that match the term “label” and have been saved shortly
after bookmarks that match either (or both) of the terms “ed” or “sheeran”.

Temporal Search

The temporal search functionality allows for search queries to include temporal
context between bookmarks, which may prove bene�cial to revisitation as explained
earlier in Section 1.2.1. In the present implementation, the user interface is designed
to be as simple as possible, therefore a temporal search can be initiated the same
way as a basic query. However, in order to express temporal context in a query,
the greater-than or less-than sign have to be used, where term1 > term2 can be
interpreted as results for term2 that have been saved (or updated) shortly a�er
term1. Consistently, a query searching for results for term2 that have been saved (or

31

3 Method

updated) shortly before term1 can be expressed as term1 < term2.

In our implementation of this functionality, the �rst step after the query has been
initiated and parsing the user’s input, is to start two separate queries, one for each
side of the greater-than or less-than sign, respectively. The results of each query
are then stored in the model, which in turn noti�es the view using the observer
pattern. On noti�cation, the view renders the results as can be seen in Figure 3.5.
The results of the second query are �ltered, so that only results that were stored
or updated after or before, respectively, each result from the �rst query are being
shown. Furthermore, the results of the second query are sorted by date instead of
being sorted by the score of a bookmark for the given query in order to emphasise
the temporal context of the results. Additionally, each of the results of the second
query is labelled using a tra�c light colour scheme, where green means very shortly
after or before, respectively, and orange indicates a longer timespan between saving
two bookmarks. The calculation of each result’s colour is shown in Listing 3.10,
employing the hsl colour model since the saturation and brightness should be the
same for all results, but the hue needs to be changed according to the respective
timespan. As we hypothesise that the results which are closest with respect to their
saving or updating date are the ones the user aims for, the colouring is calculated
using a logarithmic scale in order to highlight these closest timestamps.

Listing 3.10: Colouring of temporal search results using a logarithmic scale on the hsl colour model.
for(var i in tempSearchResultBlocks) {

var val = tempSearchResultBlocks[i].dataset
if(val) {

val = val.tempsearchTimediff

//logarithmically scale between 0 and 1
var norm = normalize(val, maxDiff, minDiff)

//use HSL colour model, since we just want to change the hue
var hslGreen = 140 //degree
var hslOrange = 30
var diff = hslGreen - hslOrange

//calculate amount to go from green into the orange direction
var normDiff = norm * diff
var h = Math.floor(hslGreen - normDiff).toString()
tempSearchResultBlocks[i].setAttribute("style",

"border-color: hsl(" + h + ", 100%, 50%);")
}

32

3.2 Implementation

Figure 3.6: A gradient given in the hsl colour model with a hue of 20 and full saturation. The
brightness runs linearly from 13 to 161 from left to right. A speci�c brightness value
where brown ends and orange begins, or vice versa, can hardly be de�ned.

}

Search by Colour

The present work tries to allow for querying bookmarked web pages by colour.
The colour codes are extracted by the content extraction server as described in
Section 3.2.2 and sent to the browser extension which then processes the colour
codes. The decision was made to extract colour terms in natural language from
a given web page’s colour scheme, in order to be able to add these terms to the
index. This allows for querying in natural language and calculating a score based
on term frequency instead of having the user have to input colours using some kind
of colour picker and searching for similar colours, resulting in a simpler and more
natural search experience for the user. However, as already stated in Section 1.2.1,
this does not pose an easy task at all. For example, Figure 3.6 illustrates the di�culty
of precisely assigning natural language terms to colour codes expressed in the hsl
colour model, by showing that it is hardly possible to exactly separate the colours
orange and brown by de�ning a certain point on the brightness scale.

A simple approach to this problem would be to let natural language terms overlap,
that is assigning multiple terms like, for example, “brown, orange, red” to one
colour that lies in an area of uncertainty. However, this approach requires to pay
caution as overlapping areas that overlap too much are not optimal with respect
to precision, since many of these colour terms would have high inverse document
frequency as a result. On the other hand, naming one colour code “orange” while
some user interprets the colour to be “red”, this user will not be able to �nd the
demanded web page, thus leading to low recall.

33

3 Method

Another example of divergent perception of colour is grey. Grey usually is a colour
of any hue or brightness (except no brightness and full brightness, which is black
and white, respectively) but with no saturation. Or expressed in the rgb colour
model, a colour where each R, G and B channel has equal values. However, there
are people who will perceive a slightly saturated colour as grey as well. This e�ect
is even stronger especially for rather dark as well as rather light colours. In general,
a certain value of saturation that leads to the hue not being able to be perceived can
not be de�ned, though. Again, the assignment of the tag “grey” should be kept to a
minimum so that only those colours are de�ned to be “grey” that have a realistic
chance of being perceived as such.

Therefore, a trade-o� has to be made between precision and recall. Listings 3.12
and 3.11 states how this trade-o� was implemented in the present work. The stated
values are intended to serve as a starting point and are subject to further evaluation.
It is also worth noting that colour perception is not only an issue of cognition and
perception on the user’s side, but instead also depends heavily on the hardware
con�guration, like the computer monitor and its calibration, a colour is viewed
with.

Another issue that is being adressed in Listing 3.11 is di�erent terms even in the
very theoretical case that two distinct users could perceive the same colour. For
example, one user might name some colours red, blue and green, but another user
di�erentiates between barn red, carmine, �re brick and scarlet.
Listing 3.11: A starting point for de�ning hue value ranges. It can be easily seen that some ranges

overlap.
function ColorManager() {

this._hues = [
{’color’: [’red’],
’range’: [345, 360]

},
{’color’: [’red’],
’range’: [0, 10]

},
{’color’: [’orange’, ’gold’, ’brown’, ’beige’, ’ivory’],
’range’: [0, 40]

},
{’color’: [’yellow’, ’gold’, ’beige’, ’ivory’],
’range’: [35, 70]

},
{’color’: [’green’, ’lime’],

34

3.2 Implementation

’range’: [65, 160]
},
{’color’: [’cyan’, ’aqua’, ’turquois’, ’mint’, ’green’],
’range’: [140, 200]

},
{’color’: [’blue’, ’navy’, ’indigo’, ’teal’],
’range’: [175, 240]

},
{’color’: [’purple’, ’plum’, ’indigo’, ’pink’],
’range’: [230, 290]

},
{’color’: [’pink’, ’magenta’, ’rose’, ’purple’],
’range’: [270, 355]

}
]

}

Listing 3.12: A function to match hsl colour codes to natural language terms, using margins to
adress divergent colour perception. For example, black is de�ned not only when there
is absolutely no brightness, but instead also for brightness values up to 3 out of 100,
for a user usually can not perceive any hue for such values.

matchHSLtoString: function (hsl) {
var h = hsl[0]
var s = hsl[1]
var l = hsl[2]

var colorStrings = []

if(l < 3) colorStrings.push(’black’)
else if(l > 95) colorStrings.push(’white’)
else if(s < 1) colorStrings.push(’grey’, ’gray’)
else {

colorStrings.push((l < 50) ? ’dark’ : ’light’)

/* rather dark or light colours oftentimes do
** not allow for perceiving a specific hue.
*/
if(s < 30 && (l < 20 || l > 80))

colorStrings.push(’grey’, ’gray’)

/* however, the hue is saved in any case, so that
** both ’kinds of perception’ are being adressed
*/
for(i in this._hues){

35

3 Method

Figure 3.7: On user input, the extension tries to suggest queries by expanding and fuzzy matching
the user’s term.

let hue = this._hues[i]
let hueStart = hue.range[0], hueEnd = hue.range[1]
if(h >= hueStart && h <= hueEnd){

hue.color.forEach(function(color) {
colorStrings.push(color)

})
}

}
}

return colorStrings
}

Spelling Correction

A spelling correction or “Did you mean” functionality is well known from search
engines, where user input gets checked and, for example, typos can be recognised.

36

3.2 Implementation

Figure 3.8: On user input, the extension tries to suggest queries by expanding and fuzzy matching
the user’s term.

But this function is not only limited to typos, instead search terms with similar
meanings can also be suggested to the user. In our rather simple implementation, a
fuzzy match query is being started upon every user input. This query searches for
results with an edit distance of two to the user’s input, as shown in Listing 3.13
taken from our implementation’s controller. An edit distance of two means, that
terms that di�er from the search term by up to two characters still match the search
term. For example, with an edit distance of two, the term “java” would match the
term “jvm”, since they only di�er by two characters, that is “jvm” misses one “a”
and has the other “a” replaced by an “m”.

The metadata �eld is then extracted from the fuzzy matched search results’ match-
Data �eld. This metadata �eld contains the token which matched the query. The
original query token is then �ltered out of the fuzzy matched tokens and four of
the resulting suggestions are then returned. After saving these four suggestions in
the model, the view presents these suggestions to the user as shown in Figures 3.7
and 3.8.

37

3 Method

Listing 3.13: Search for terms with an edit distance of two. The function extracts the metadata �eld
from each search result’s matchData �eld and �lters out the token of the original query,
then returns four suggestions.

function didyoumeanSearch(searchTerm, idx) {
var didyoumean = []

try {
var results = idx.search(searchTerm + "~2")

} catch(e) {
console.warn("CONTROLLER> invalid Query?! (" + query + ")")
return

}

if (results.length) {
didyoumean = didyoumean.concat(

results.map(function(v, i, a) { // extract
return Object.keys(v.matchData.metadata);

}).reduce(function(a, b) { // flatten
return a.concat(b);

}).filter(function(v, i, a) { // uniq
return a.indexOf(v) === i;

}).filter(function(value){ return value !== searchTerm})
.slice(0, 4)

)
}

return didyoumean
}

Autocomplete �eries with the Help of a Web Worker

An autocomplete function for the query interface can enhance the search experience
for the user by suggesting search terms. For example, by providing terms based
on expanding or fuzzy matching the current term entered by the user. In order
to implement such a function, in this present work, a web worker as described in
Section 3.1.4 has been made use of. Finding search terms that can be suggested to the
user, that is, querying the index with additional term expanding and fuzzy matching,
can be a time-consuming task. This is due to the fact that the autocomplete function
should suggest terms as the user types, as shown in Figure 3.9. This means, on every
keyboard event a query is started to search for autocompleted suggestions. For

38

3.2 Implementation

Figure 3.9: On user input, the extension tries to suggest queries by expanding and fuzzy matching
the user’s term.

example, when a user searches for “�ower”, the autocomplete function is triggered
six times, querying for “f”, then for “�”, “�o” and so on. Since this is not necessarily
helpful in the case when the user quickly enters a word and only leads to even
more overhead and therefore more blocking potential, a timeout threshold of 300ms
has been de�ned as shown in Listing 3.14. If the query gets updated again within
the timeout, the clearTimeout() function removes the worker’s job from the event
loop. Then a new instruction with the now updated query is added. In the above
mentioned example, the autocomplete function is invoked only once for the term
“�ower”, if the user quickly types the whole term at once.

39

3 Method

Listing 3.14: The controller’s udpateQuery function: On every query update, instruct the worker
with searching for suggestions after a 300ms timeout. If the query gets updated again
within the timeout, the clearTimeout() function removes the worker’s job from the
event loop. Then a new instruction with the now updated query is added.

updateQuery : function (query, triggerAC) {
var _this = this
_this._model.setQuery(query)

clearTimeout(_this._acDelay)
if(triggerAC) {

_this._acDelay = setTimeout(function() {
if(query !== "") {

_this._acWorker.postMessage({"query": query})
}

}, 300)
}

}

However, this timeout technique solves the issue only to a certain degree and is still
insu�cient for large indices, hence longer query times. Therefore, without the help
of a web worker the gui still would potentially block due to the single-threaded
architecture of JavaScript described in Section 3.1.4.

The web worker is loaded when the controller of the popup is initialised and then
communicates with the controller. The index needs to be sent to the web worker
via its postMessage interface since the chrome api object is not available in the
web worker and therefore the web worker can not load the index from the chrome
local storage itself. The sequence diagram shown in Figure 3.10 illustrates how the
mvc architecture and the web worker are tied together. For reasons of clearness,
the diagram only shows the case when the index has already been created. In the
opposite case, additionally the background script would have been needed to be
invoked to create and return the index before starting the web worker.

3.2.2 The Content Extraction Server

The fundamental architecture of Node.js has already been described brie�y in
Section 2.1.1. The following sections describe how various Node.js modules are tied
together to extract textual content as well as the primary colours used by a website
from a given url.

40

3.2 Implementation

Figure 3.10: The sequence diagram illustrates the architecture of the autocomplete/autosuggest
functionality. The web worker provides the controller with query results in a non-
blocking manner. Note that solid arow heads represent synchronous, open arrow heads
represent asynchronous method calls.

41

3 Method

The HTTP Module

The http module is compiled directly into the Node.js binary and as such is part of
the default Node.js runtime. It can be used to easily create a simple http webserver
as shown in Listing 3.15. The created server object listens on the speci�ed port and
manages all connections. Incoming requests are handled by interacting with the Tika
module to parse the contents of the url-encoded url transmitted using an “url” GET
parameter. The content extracted by the parseWithTika(url, date, callback)
function is then sent back to the requesting client by using a callback function.

Listing 3.15: An http server object created by the http Node.js module manages client connections
on port 8080 and interacts with the content extraction function. The content extraction
function parseWithTika() then responds to the client with the extracted content by
using a callback function.

http.createServer(function (req, res) {
var q = url_mod.parse(req.url, true).query;
var source = q.url,

date = q.date
parseWithTika(source, date, function(text){

try{
res.end(text)

}
catch(err){ console.log(err.message) }

})

}).listen(8080)

The Node-tika, Webshot and Colorthief Modules

Node-tika, the Node.js port of Apache Tika, has already been presented brie�y in Sec-
tion 2.1.2. In the previous section, the calling of the function parseWithTika(url, date, callback)
has been shown. An essential part of this function is to execute Tika’s extract(uri, options, callback)
function as shown in Listing 3.16. Basically, the extraction function just has to be
provided with a uri. Before the actual content extraction, the Tika module then
manages locating, retrieving and parsing of the resource. Tika is able to automat-
ically recognise a variety of supported �letypes, ranging from simple html web
pages to pdf �les or even image �les, which can be processed using optical character
recognition (ocr) software.

42

3.2 Implementation

Additionally to Tika’s content extraction, the anonymous callback function provided
to the extract() function makes use of two other Node.js modules, namely color
thief node10 and webshot11, which work together to render a screenshot of a given
resource and then extract the most dominant colours out of the image.

Listing 3.16: Upon �nishing the processing of a provided uri by Tika, further processing and colour
extraction is being done by making use of the webshot and color thief modules and
various nested callback functions.

function parseWithTika(url, date, callback){
tika.extract(url, tikaOptions, function(err, text, meta) {

var content = }
if(typeof text !== ’undefined’){

//using regex to clean all blank lines and tabs
text = text.replace(/^\s*[\r\n]/gm, "")
text = text.replace(/\t/g, ’ ’);
var textlines = text.split("\n")

for(line in textlines) //trim lines
content = content.concat(textlines[line].trim().concat(" "))

}

var metaString = undefined
if(typeof meta !== ’undefined’ && meta) {

metaString = }
if(meta.keywords)

metaString = metaString.concat(meta.keywords[0])
...

}
...
webshot(url, img, options, function(err) {

try{
var colorThief = new ColorThief()
var dominant = colorThief.getColor(img)
var palette = colorThief.getPalette(img, 3)

//merge dominant into palette colours
palette.push(dominant)

try{ //delete webshot
fs.unlink(img, function(err) {...})

} catch(err) { ... }

10https://www.npmjs.com/package/color-thief-node
11https://www.npmjs.com/package/node-webshot

43

https://www.npmjs.com/package/color-thief-node
https://www.npmjs.com/package/node-webshot

3 Method

} catch(e) {
...

} finally {
var parsed = {

"content": content,
"meta": metaString,
"colors": palette //in RGB

}
//use callback function on extracted content
callback(JSON.stringify(parsed))

}
})

}
}

44

4 Evaluation

The main purpose of this qualitative evaluation was to determine if our browser
extension proves to be bene�cial to a user’s revisitation experience. However, since
there are already tools that are similar to our work, a special focus was placed
on investigating the functionality that is speci�c to this present work, that is,
mainly the colour and temporal search functions. Of course the participants of the
evaluation have been asked to evaluate the traditional search functions like the
date �lter as well, though, in order to be able to compare those functions to the
more advanced search functionalities.

In order to be able to provide for a better understanding of the results, hereinafter
the term “traditional search functionality” refers to date �lter, autocomplete and “did
you mean” functions, not including trivial text search, whereas the term “advanced
search functionality” refers to the temporal search and colour search functions.

This goal led to the following narrowed down research questions: a) Does the usage
of the more advanced search functions improve the �ndability of bookmarks that
have content that is similar to lots of other results, b) Does the usage of the more
advanced search functions help to increase the subjective certainty of having found
the right bookmark, c) Does the usage of the more advanced search functions help
to reduce the number of queries needed to �nd the desired bookmark, d) Do users
memorise dominant colours of a web page, e) Do users think in temporal episodes,
f) Does a bookmark search browser extension have potential to increase the overall
extent of the usage of the bookmark feature, that is, make a browser’s bookmark
function more practical, and g) What type of search interface proves to be the
subjectively most helpful.

45

4 Evaluation

4.1 Method

4.1.1 Participants

Ten test users, of whom 50% were female, completed the qualitative evaluation.
The participants, with a mean age of 28.5 years (standard deviation = 10.6, median
= 24.0), had a mean of 16.5 years of experience with computers (SD = 7.4) at the
time of completing the study. All participants stated to use the web on a regular
basis, with a mean of 14.6 hours per week (SD = 8.0), and predominantly use the
Google Chrome browser, either as the one and only browser they use or besides
some other browser, with only one participant not using Google Chrome at all.

Out of the ten participants, three stated to have a bookmark collection of less than
30 bookmarks, the largest share, namely �ve users, stated to have a bookmark
collection of more than 30 but less than 100 bookmarks and one user explained to
have a rather large bookmark collection of more than 500 bookmarks. Only one
user did not use bookmarks at all.

4.1.2 Preparations

Two bookmark collections containing 53 and 42 bookmarks, respectively, have
been arti�cially generated and used for the evaluation. Both bookmark collections
have been designed by using a persona for each collection. The goal of this method
is to make the bookmark collection that has to be evaluated, though being created
arti�cially, feel like it has been generated organically by some real person. Each of
the two personas were given some background parameters like age, occupation
and hobbies, as well as a bookmark collection corresponding to these attributes,
to make the bookmark collections to be evaluated relatable and plausible to the
participants. In addition, the bookmark collections have been designed to allow for
creating use cases that can not be solved easily by using traditional full-text search,
but instead demand search functionality implemented in this present work, like
colour search or temporal search. However, it has been paid particular attention to
make the use cases realistic and plausible, though.

Furthermore, the timestamps of the bookmarks have been manipulated in such a
way as to make the temporal contexts between individual bookmarks feels as natural

46

4.1 Method

as possible. This manipulation was possible by exporting the created bookmark
collection as an xml �le, adapting the timestamp tags within this �le and then
reimporting that �le to the Google Chrome browser.

After the two bookmark collections have been created, a bookmark “catalogue” in
the form of a pdf �le was compiled out of each bookmark collection. The pages of
the two catalogues have been sorted chronologically within each catalogue, starting
with the oldest bookmark of the regarding bookmark collection. Each page of these
two pdf �les showed a screenshot of the corresponding bookmarked web page, the
domain part of the url and the (manipulated) time of the creation of the bookmark.
Additionally, the timestamp was also displayed in a more human-readable format
in the form of, for example, “19 months ago - Friday noon”. An example of such a
page of the bookmark catalogue is shown in Figure 4.1 The aim of reorganising
and presenting the bookmark collections in this way, was to help the participants
get a better overview of the rather large bookmark collections.

Google Chrome allows for setting up multiple user pro�les, so it su�ced to create
each persona only once in form of a browser pro�le, including the corresponding
bookmark collection, and then swap between these pro�les as needed. After setting
up the pro�les, the participants of the evaluation were presented with the browser
already opened with the desired user pro�le and our browser extension already
preinstalled. It is worth noting that the indexing was already completely done
upfront, before the participants were asked to use the extension.

Personas

The two personas each consisted of a short description of their personality, occupa-
tion and hobbies or interests, as well as four use cases that were to be tested. In
order to avoid problems understanding the personas and their tasks, the original
persona descriptions were formulated in the participants �rst language, German.
However, an English translation is given below:

Harald, 45, Manager

You are a 45-year old manager interested in sports and wine. Recently you are
especially into American football, furthermore you have a particular interest in
sports cars - could it be that you are in the middle of a midlife crisis?

47

4 Evaluation

Figure 4.1: The bookmark collections used in the evaluation have been compiled into a pdf �le each
for a better overview. The �gure shows one page of such a catalogue �le. Each page
shows one bookmark, including the domain part of the bookmark’s url, a timestamp, a
more human-readable format of the timestamp and a screenshot of the bookmarked web
page.

48

4.1 Method

The corresponding use cases, translated into English, were as follows:

1. You want to order wine online, but you can not remember the name of the
winery in the city of Horitschon.

2. Find the price of the vinyl record you have bookmarked last.
3. Search for the American football team located in Graz.
4. After you searched for used sports cars, you found a 1991 model Ferrari. Find

the bookmark.

Sally, 21, University student

You are a 21-year old university student of English and American studies and play
in a punk rock band. Naturally, you are interested in (live) music and always looking
for chances for studying or doing internships abroad.

The corresponding use cases, translated into English, were as follows:

1. Find the record label of Ed Sheeran.
2. You have bookmarked the website of your favourite band, The Flatliners,

shortly before going to a show of theirs in a music club. After the show, you
also bookmarked the club’s website. Find the website of the club.

3. Find your latest bookmark related to the topic “Uni Graz”.
4. Search for information about eu student exchange programmes at your

university.

4.1.3 Procedure

The participants were invited separately to carry out the following procedure. First
of all, each participant was asked to �ll out a short form in order to assess if they
were familiar with using computers and the world wide web in general, as well
as using bookmark functionality in particular. After that, each participant was
shown the description of one randomly selected persona, as well as the assigned
persona’s “bookmark catalogue”. The participants were told that they did not have
to study the catalogue by heart, but instead should take their time to get a feeling
for the bookmark collection and keep an eye on the timestamps and try to get a
rough sense of the intervals and temporal contexts between the bookmarks. Before
heading on to the use cases, the participants were allowed to try out the browser
extension and explore its functionality for a few minutes.

49

4 Evaluation

After the participants got familiar with the browser extension’s functions, they
were asked to carry out the four tasks corresponding to their assigned persona.
However, there was one single restriction, to that e�ect that each participant was
asked to carry out some speci�c tasks only with traditional search functionality or
simple full-text search, whereas the remaining tasks should, if possible, explicitly be
approached by using more advanced functions, namely temporal or colour search.
In order to compare the results depending on the used functionality, the tasks had
been shu�ed for each particpant. Furthermore, the method that should be used to
carry out a speci�c task, that is, either using the traditional functions, also including
trivial text search, or the more advanced functions, was chosen randomly. However,
it was tried to aim for a distribution of approximately 50% between traditional
and advanced functions. For the 40 tasks, resulting from 10 participants solving 4
tasks each, the actual share of tasks where the participant was encouraged to use
advanced functionality was 22 tasks (55%). For the remaining 18 tasks, participants
were asked to solve the task by using traditional methods or trivial full-text search.
Additionally, where possible, it was tried to arrange the tasks in order of their
di�culty, starting with the easier ones.

After completing each task, the participants were asked to rate their certainty about
having found the demanded bookmark on a 7-point Likert scale.

Furthermore, upon completion of all four tasks, each participant was asked to
answer a feedback questionnaire, consisting of questions concerning the respective
user’s overall search experience using the tool. The questionnaire contained open
questions asking about things that struck the participant as particularly good or
bad as well as a multiple choice question if the participant could imagine a function
to generally have potential to be useful or not. A single choice question asked about
which search function was actually the most helpful to the respective participant.
Additionally, participants were asked to rate their overall satisfaction about getting
to the bookmark they searched for, the speed of the plugin, how likely they are to
use such a browser plugin in the future and how likely they are to pay for using
such a plugin if it was sold in the browser store, each on a 7-point Likert scale.

50

4.2 Results

4.2 Results

In order to approach the total of 40 tasks, participants used temporal search and
colour search functions 9 times each. The date �lter option was used 4 times whereas
the autocomplete function was used only once. The “Did you mean” suggestions
were never used by any participant. For the remaining 17 tasks, no speci�c function
besides the simple text search was used.

Deriving from the participants’ own ratings of their certainty about having found
the desired bookmark, traditional functions were indicated to provide the highest
possible certainty, having a mean rating of 3.0 on a 7-point Likert scale with values
ranging from -3 to 3. Taking into account trivial full-text search as well, when
looking at traditional functions including full-text search, a mean certainty rating
of 2.44 was given. On the same scale, advanced functions scored a mean certainty
rating of 2.0.

The number of queries needed to �nd the desired bookmark is another metric
that was investigated. When using traditional functions, including trivial full-text
search, an average of 1.42 queries were needed. In contrast, when using advanced
functions an average of 1.61 queries were necessary to obtain a satisfying result.
However, three times a participant could not obtain the desired result, or at least
did not recognise the desired bookmark amongst a given set of search results, when
asked to only use traditional search functions or trivial full-text search.

The previously stated values are given in more detail in Table 4.1, including standard
deviations and each function’s individual values. Additionally, Figure 4.2 shows
a scatter plot of mean certainty and mean number of queries needed for each
function.

When asked whether something was particularly good, participants stated that
they especially liked the date �lter (3 times), temporal search (2 times) and colour
search (2 times) features.

Regarding the question if something was perceived as bad, two participants ex-
plained that the “help” tooltip explaining the usage of certain search paradigms,
like temporal search, could be better, or at least be displayed in a more promi-
nent manner, for example by being reminded of the available options or functions.
Furthermore, one participant expressed the wish for a search history. Another
participant presented the idea of introducing a keyboard shortcut for activating

51

4 Evaluation

Table 4.1: Comparison of search functions in terms of number of needed queries and user-rated
certainty. It has to be considered, though, that no result could be obtained for 3 of the
tasks where participants were asked to only use traditional search functions or full-text
search. This fact was taken into account for computing certainty values by assigning the
lowest possible certainty value of -3, but could obviously not be adressed for the number
of queries needed.

Certainty Queries needed Times used
Mean SD Mean SD

Date �lter 3.00 0.00 1.50 0.58 4
Autocomplete 3.00 - 1.00 - 1
“Did you mean” - - - - 0
Trivial full-text search 1.88 2.34 1.59 0.94 17
Temporal search 1.89 1.27 1.11 0.33 9
Colour search 2.11 2.03 2.11 1.27 9
Colour & Temporal search 2.00 1.64 1.61 1.04 18
Date �lter, Autocomplete, “Did you mean” & trivial full-text search 2.44 2.10 1.42 0.86 22
Date �lter, Autocomplete, “Did you mean” without full-text search 3.00 0.00 1.25 0.55 5

Figure 4.2: Scatter plot showing the user rated mean certainty and the mean number of queries
needed for 40 tasks, by function. The goal is higher certainty and lower number of queries
needed, thus, the functions farthest in the upper left corner are the best performing ones.

52

4.2 Results

Figure 4.3: Bar chart showing the number of times a function was classi�ed as potentially useful
(multiple choice) and actually be the most helpful for completing four tasks (single
choice), respectively, by ten participants.

the browser extension popup, which is actually possible to implement in Google
Chrome1.

After completing all four tasks, each participant was asked about the general
usefulness of each function and which of the functions was the most helpful. The
answers given to this questions are shown in Figure 4.3.

Finally, participants were asked to rate certain general attributes of the overall
extension on a 7-point Likert scale with values ranging from -3 to 3. On average,
participants rated the easiness of getting to the right bookmark with 2.3 (SD = 1.3),
the overall speed of the browser extension with 2.7 (SD = 0.7) and the likeliness
of using this or another similar tool in the future with 1.5 (SD = 1.3). When asked
about the likeliness of paying for this or a similar browser extension, participants
rated the likeliness with a mean of -0.3 (SD = 2.1). Furthermore, participants, on
average, estimated the probability that such a browser extension would increase
their usage of a browser’s bookmark functionality to be 2.0 on the given Likert
scale (SD = 0.8).

1https://developer.chrome.com/extensions/commands

53

https://developer.chrome.com/extensions/commands

4 Evaluation

4.3 Discussion

First of all, it should be mentioned that participants occasionally used more than
one method, but only the method leading to the desired bookmark was considered
for deriving results.

The reason that “Did you mean” suggestions were never used may be that these
suggestions were being displayed beneath the search results and therefore were
not brought to the participants’ attention so well. Another reason may be that
“Did you mean” suggestions are generated by fuzzy matching terms with a certain
lexical distance, which, in combination with the Porter stemmer used in the present
work, sometimes provides just meaningless arrangements of characters instead of
actual words. Suggesting semantically more meaningful terms may present a better
solution.

As can be seen in Figures 4.2 and 4.3, particpants’ ratings of usefulness of a certain
search function do not always correlate to certainty of a speci�c task when using
the same function. This might be due to being used to traditional functions and
therefore being biased towards new functions. However, another valid reason
might be that advanced search functionality simply provides for a subjectively
more pleasant search experience, which results in appearing more helpful to the
user.

Looking at Figure 4.2, it looks like traditional search functions outperformed ad-
vanced search functions with respect to number of queries needed and a partic-
ipant’s certainty of having found the desired bookmark. However, it has to be
considered, though, that no result could be obtained for 3 of the tasks where partic-
ipants were asked to only use traditional search functions or full-text search. This
fact was taken into account for computing certainty values by assigning the lowest
possible certainty value of -3 on the Likert scale, but could obviously not be adressed
for the number of queries needed. This leads to the suggestion that advanced search
functions might perform better, or even �nd results where traditional functions can
not provide any results at all, in certain special cases. Such cases might especially be
use cases where some context, for example, temporal context, is needed to evaluate
the results provided by the browser extension. Temporal search being rated by
participants as the actually most helpful functionality, as can be seen in Figure 4.3,
might reenforce this hypothesis further. On the other hand, some of the use cases
were designed to require some context in order to �nd the bookmark in question.

54

4.3 Discussion

That is, the concerning tasks were borderline cases, speci�cally designed to be
hard to �nd without advanced functionality, though such use cases do exist in real
everyday use.

4.3.1 Lessons learnt

Designing Use Cases

It sometimes is quite di�cult to make up use cases that can be evaluated. First of
all, the goal of this present work was to take advantage of a user’s hypothetical
ability to memorise temporal episodes or certain colours. Such knowledge is usually
being held in a user’s long-term memory. The evaluation methodology used in this
present work’s evaluation does not employ long-term memory, since this would
lead to a signi�cant increase of evaluation e�ort. Instead, test users are presented
with an arti�cial bookmark collection shortly before the evaluation. This way, the
bookmark information can only be held in and retrieved from short-term memory,
which makes it hard to design use cases that yield reliable conclusions for the real
world.

On the other hand, real users have some personal association with their saved
bookmarks. Such a connection does not exist for an arti�cially generated bookmark
collection which the test users were asked to memorise. Both problems have been
approached by using a persona. Connecting an arti�cial bookmark collection with a
persona, that is, generating a bookmark collection that feels like it has been created
by a real user with certain features or interests, can help a test user to identify and
empathise with the bookmarks, and thus, helping a test user to memorise a given
bookmark collection.

However, it is certainly still easier for users to memorise their own bookmarks. The
reason for needing to generate arti�cial bookmark collections is that performing
an evaluation that uses a test user’s own personal bookmark collection would have
required to design use cases or tasks speci�c to that given bookmark collection. This
method would have been impractical to evaluate as the results for such bookmark
collection speci�c tasks would not have been comparable with each other.

Therefore, the di�culty in designing personas was to make up corresponding use
cases that allow for being used in two scenarios, the �rst one being some kind

55

4 Evaluation

of baseline task that is intended to evaluate if a certain bookmark can be found
with traditional search queries. The second scenario’s purpose is to test if the
performance can be improved further by incorporating advanced search queries
like temporal search or colour search.

Concluding, it turned out to be quite a di�cult task to �nd use cases that can be
tested in both scenarios in order to have comparable results while ensuring that
the use case is still relatable and plausible to the test users.

Formulating Research �estions precisely

To be able to do a good evaluation, it helps to formulate research questions as
precisely as possible. That way, the evaluation can be designed appropriately,
ultimately leading to much more interesting results.

Using Gu�man Scales for Feedback �estionnaires

The evaluation quality could potentially bene�t from exchanging questions in a
Likert scale in favour of questions in a Guttman scale, where questions are arranged
in such a way, that they escalate in speci�ty, in order to reduce the chances of
distorted results. Sometimes this escalation is obscured by adding intermediate
questions. The reason for this is that the respondents may tend to give biased
answers, for example because they may tend to give answers biased towards the
neutral or a positive answer.

4.4 Conclusion

In order to improve a browser’s native bookmark functionality, solutions to various
problems that still persist in existing state-of-the-art approaches have been elabo-
rated in this present work. Following the investigation of typical issues, for example,
requiring to give browser extensions access to the dom or problems with revisiting
automatically categorised bookmarks, a browser extension supporting full-text
search was developed for the Google Chrome browser. Besides more traditional
functions like simple date �lters or an autocomplete function, the features of the

56

4.4 Conclusion

proposed browser extension also covers novel functions like colour search and
temporal search. An evaluation with 10 participants was carried out, in order to
investigate the performance and usability of the suggested approach. Participants’
ratings (on average, particpants stated that the probability that such a browser
extension would increase their usage of a browser’s bookmark functionality to
be 2.0 on a Likert scale with values ranging from -3 to 3) and positive comments,
especially regarding temporal search and colour search, support the hypothesis
that the approach suggested in this present work poses an improvement of browser
bookmark revisitation regarding �ndability and usability, while still respecting
the fact that a user’s bookmarks are very personal data by storing a search index
locally and not interfering with the browser’s dom. Furthermore, temporal search
being rated the most helpful function by participants, revealed that allowing for
temporal context within a search query has potential to provide meaningful results
for special cases, where traditional approaches fail.

4.4.1 Limitations

Bookmark Collection Size and Time needed for Indexing

To get a better understanding for the possible size of a real bookmark collection,
one real bookmark collection consisting of 967 bookmarks has been looked at in
terms of the time needed to create an index and the amount of storage needed
to persist the resulting index. Out of those 967 bookmarks that the extension has
processed in 23.1 minutes, 956 have been indexed successfully, while the remaining
bookmarks could not be processed either to the original website being o�ine,
password-protection, et cetera, as described in the previous subsection. However,
the time needed to process such a bookmark collection can only be a very rough
estimate and is subject to �uctuations, obviously, since Tika’s content extraction
performance relies on things like web server response times.

The resulting index holding the contents of the 956 bookmarks had a size of
10,655,401 bytes. To put this number into context, Google Chrome’s storage api
provides a synced as well as a local storage area with a maximum total amount
of 102,400 and 5,242,880 bytes of data that can be stored, respectively. Fortu-
nately, the chrome.storage.local limit can be circumvented by setting the
unlimitedStorage permission in the extension’s manifest �le, as described in

57

4 Evaluation

Section 3.2.1. However, by assuming a mean index size of 10,655,401/956 =
11,145.81 ≈ 11,000 bytes per bookmark, it can be seen that it is not possible to syn-
chronise an index between multiple clients directly by using chrome.storage.sync
for a bookmark collection consisting of more than 102,400/11,145.81 ≈ 9 book-
marks.

Inaccessible bookmarked Web Pages

It is the nature of the world wide web that web pages change or even go o�ine.
Naturally, this also concerns bookmarked web pages, which means that sometimes
it happens that a bookmarked web page becomes unreachable, either temporary
or permanently. The bookmarked url can still be found by the browser extension
with the method proposed in this present work. However, it is not guaranteed
that this url is accessible. One approach to tackle this problem is proposed in
Section 4.4.2.

Password-protected Web Pages

In contrast to web pages that become inaccessible over time, there are bookmarked
web pages that can not be accessed by the browser extension, or the Node.js server
used in this present work, respectively, in the �rst place, for example, due to being
password-protected. It is important to understand that a distinction has to be made
between these two scenarios when approaching this issues. One possible solution
to dealing with web pages that are inaccessible in the �rst place is proposed in
Section 4.4.2.

4.4.2 Future Work

As of now, the present work is clearly not in a state that is able to be released to
the public. Before a public release, above all, there has work to be put into security,
load balancing, et cetera of the backend server, currently implemented as a Node.js
server. Alternatively, we suggest to �nd a way to incorporate the backend server
into the browser plugin directly. It has to be evaluated if this would constitute a
realisable approach.

58

4.4 Conclusion

In the following some further improvement suggestions are outlined.

Override Pages and Injections

Google Chrome extensions o�er a range of features to change the default behaviour
of or interact with the browser. One such feature is to override certain pages with
a custom html page2, including style sheets and scripts. A good use case for the
present work could be to override the bookmarks web page with a custom page
that provides, for example, a search interface.

Using so-called content script injections3 poses another way an extension can
interact with the browser. Using this feature, a script can be triggered whenever,
for example, a Google search is done by the user. Said script could then display
relevant results from a user’s bookmark collection in addition to the results that
are found by Google, to provide for personal results where applicable even though
the user did not explicitly use the browser extension.

A�aching Thumbnails to Search Results

Attaching a thumbnail, that is, a low resolution preview image of a web page, to a
search result and displaying it, for example, when hovering the mouse over the result
could potentially help to increase certainty about whether a given result contains
the desired information. However, it should be noted that storing thumbnails may
use relatively large amounts of resources. This is particularly the case for rather
large bookmark collections obviously. As this issue tends to depend on subjective
preferences of a given user, this could also be implemented as an optional opt-in
feature.

Colour Search User Interface

In order to avoid problems regarding varying perception of colour and subsequent
ambiguous colour term assignments as mentioned in Section 1.2.1, the text-based
approach used in the present work may be replaced in favour of a “colour picker” ui

2https://developer.chrome.com/extensions/user_interface#additional_features
3https://developer.chrome.com/extensions/content_scripts#declaratively

59

https://developer.chrome.com/extensions/user_interface#additional_features
https://developer.chrome.com/extensions/content_scripts#declaratively

4 Evaluation

as shown in Figure 4.4. Upon a user choosing a colour to search for using the colour
picker, one possible approach may be to let the browser extension search for the
“nearest neighbours” of the queried colour. It has to be determined which colour
model and other settings should be used to determine these nearest neighbours.
It also has to be investigated if this approach would pose a practical solution in
terms of usability. However, the approach would allow for obtaining results within
a continuous scale, without being restricted to search only within given colour
terms. It has to be evaluated if this method results in a better performance for
colour search.

Typing colour terms into the search query text box just as regular search terms
is an obvious advantage of the approach used in the present work, in terms of
usability. However, it also has disadvantages when there is a need to di�erentiate
between colour terms referring to a perceived colour of the website and colour
terms that actually are textual content of a web page. For example, when a user
searches for the company “Red Bull”, web pages that visually appear to be “red” are
not necessarily wanted. Fortunately, having Lunr.js store colour terms in a separate
�eld of the index allows for solving this problem, for example, by requiring a pre�x
like “c:” in order to start searching for colour. Lunr.js then allows for �ltering the
�elds to search in. This way, by querying for example “c:red”, after parsing the
pre�x, searching for results can be narrowed down to just search within the index’s
colour �eld.

Caching bookmarked Web Pages

As described previously in Section 4.4.1, it can happen that a bookmarked web page
becomes inaccessible. Caching the contents of a web page upon indexing could
possibly present one valid way to deal with this issue. In view of large bookmark
collections and available disk space, it has to be assessed though, to what extent web
pages should be cached. For example, a distinction between plain text, html and
further assets like styles, scripts and images would be reasonable. However, caching
only parts of a website typically is a trade-o� between resource consumption and
user-friendliness. As said earlier, besides the question as to how much disk space is
available in the �rst place, the extent to which a computer’s disk space should be
used depends heavily on the preferences of a given user. Providing di�erent caching
levels on the extension’s settings page could present a reasonable approach.

60

4.4 Conclusion

Figure 4.4: A screenshot of the GIMP 2.8.22 colour picker interface. This is a typical colour picker,
comprising sliders, buttons, text �elds and direct manipulation. The shown ui supports
various colour models and representations.

61

4 Evaluation

Adding to Index manually

As described in Section 4.4.1, a limitation of the current method is that content
can not be extracted of web pages that are not publicly accessible, for example,
because they are password-protected, due to the browser extension not extracting
contents from the dom, but rather requesting the bookmarked url autonomously.
The reasons for the decision in favour of this behaviour have been explained in
detail in Section 2.2.

However, providing the possibility to manually index (password-protected) web
pages could pose a reasonable approach. With respect to data protection issues,
such an opt-in solution should be preferred over opt-out alternatives. One possible
approach to provide such an option is to keep record of the bookmarked web pages
that already have been indexed and those that failed. The browser extension then,
whenever the user visits some web page, has to check if the given web page is in
the set of bookmarked urls that failed indexing. If so, the user can be informed
about their options regarding allowing the browser extension to add the currently
viewed contents to the index.

Multilingual Bookmark Collections

With respect to multilingual use, the current work leaves room to improve. As
described in Section 2.1.6, exchanging the currently used Porter stemmer in favour
of an n-gram stemming algorithm could prove bene�cial to relevance of retrieved
documents. Incorporating language detection combined with language speci�c
stemming algorithms poses another potential solution to said question. It has to be
evaluated which approach proves to be more practicable.

While aforementioned suggestions regarding multilingual bookmark collections try
to tackle general performance issues for situations where the user knows which lan-
guage a certain query should be formulated in, there are situations where the choice
of language is not that clear. For example, a user’s bookmark collection consists
of German as well as English websites. An index built with an n-gram stemming
algorithm could potentially deliver pleasing results if queries are expressed in the
“right” language. But the user probably is not sure what language the bookmarked
website was in and therefore has a chance of missing results because of formulating
the query in the “wrong” language. As a result, the user could try to formulate

62

4.4 Conclusion

the search query in both regularly used languages. Alternatively, so-called cross-
language information retrieval (clir) holds potential to pose a more user-friendly
search experience. The main idea of clir is to be able to retrieve results in a certain
language by formulating queries in another language. One way to tackle this issue
is a dictionary-based approach, as explored, for example, by (Qin et al. 2006) for
the English–Chinese case.

Long-term Studies

Furthermore, in contrast to the evaluation methodology used in the present work,
long-term studies incorporating test users’ long-term memory promise to provide
a better understanding of how users memorise bookmarks. Extending the method
to evaluating users’ own bookmarks holds potential to give an even better image
of how users’ tend to memorise bookmarks and formulate queries for such a long-
term memory study. The proposed procedure is to have study participants install
the browser extension on their own laptops, with the extension logging statistics
about revisitation as well as adding a user interface that asks the participants
questions about their experience and satisfaction with the extension. In order to
avoid investing e�ort upfront into the security, scalability and availability of the
currently used Node.js server running Tika, it should be evaluated how the content
extraction part can be implemented directly in the browser plugin.

63

Appendix

65

Date: Time: User No.:

Background Questionnaire
Thank you for participating in our test. Please answer the following questions:

1. General Information
Sex: [] male [] female

Age: ________________

Occupation: ________________

2. Education
Educational Level Attained:

[] vocational training [] secondary school

[] university degree []doctorate

If you are studying or have studied, please describe your main area of study:

__

3. Use of Computers
How long have you been using a personal computer?

________________ years

How many hours per week do you use a computer?

________________ hours

Which kind of computer do you normally use?

[] Microsoft Windows [] Apple [] Linux [] Other ____________

How many hours per week do you use the World Wide Web?

________________ hours

Which web browser do you usually use?

[] Internet Explorer [] Firefox [] Chrome

[] Safari [] Opera [] Other ____________

How many bookmarks have you saved in your default browser?

[] < 30 [] < 100 [] < 500 [] > 500 [] I don‘t use bookmarks

Date: Time: User No.:

Feedback Questionnaire
Thank you for participating in our test. Please answer the following questions:

1. Did anything strike you as particularly good?

2. Did anything strike you as particularly bad?

3. Functionality
Did you find following search functionality useful? Which one was the most helpful?

Date Filter [] yes [] no []
Temporal Search (X shortly after Y) [] yes [] no []
Search by color of website [] yes [] no []
Autocomplete search queries [] yes [] no []
Did you mean [] yes [] no []

3. Satisfaction
Please rate your satisfaction with these aspects of the plugin you have just finished working with, by circling
the most appropriate number.

1. Getting to the right bookmark you searched for

Bad -3 -2 -1 0 1 2 3 Good

2. Overall speed of the plugin (opening, search, autocomplete)

Slow -3 -2 -1 0 1 2 3 Fast

3. How likely are you to use such a bookmark search plugin in the future?

Not likely -3 -2 -1 0 1 2 3 Very likely

4. How likely are you to buy such a plugin if it was sold in the browser store?

Not likely -3 -2 -1 0 1 2 3 Very likely

5. If you had this browser plugin available, would you use bookmarks more/more frequently?
Not likely -3 -2 -1 0 1 2 3 Very likely

Bibliography

[1] David Abrams, Ron Baecker and Mark Chignell. ‘Information Archiving with
Bookmarks: Personal Web Space Construction and Organization’. In: (Apr.
2002). doi: 10.1145/274644.274651 (cit. on p. 3).

[2] Simone Braun, Valentin Zacharias and Hans-Jörg Happel. ‘Social Seman-
tic Bookmarking’. In: Practical Aspects of Knowledge Management. Ed. by
Takahira Yamaguchi. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 62–73. isbn: 978-3-540-89447-6 (cit. on p. 16).

[3] Andrey Chetverikov and Ivan Ivanchei. ‘Seeing “the Dress” in the Right
Light: Perceived Colors and Inferred Light Sources’. In: Perception 45.8 (2016).
PMID: 27060181, pp. 910–930. doi: 10.1177/0301006616643664. url: https:
//doi.org/10.1177/0301006616643664 (cit. on p. 7).

[4] Andy Cockburn and McKenzie Bruce. ‘What do web users do? An empirical
analysis of web use’. In: International Journal of Human-Computer Studies
54.6 (2001), pp. 903–922. issn: 1071-5819. doi: https : / /doi .org/10 .1006/
ijhc.2001.0459. url: http://www.sciencedirect.com/science/article/pii/
S1071581901904598 (cit. on p. 1).

[5] Marc Damashek. ‘Gauging Similarity with n-Grams: Language-Independent
Categorization of Text’. In: Science 267.5199 (1995), pp. 843–848. issn: 0036-
8075. doi: 10.1126/science.267.5199.843. eprint: https://science.sciencemag.
org/content/267/5199/843.full.pdf. url: https://science.sciencemag.org/
content/267/5199/843 (cit. on p. 11).

[6] TV Do and RA Ruddle. ‘MyWebSteps: Aiding Revisiting with a Visual Web
History’. In: Interacting with Computers 29.4 (July 2017). © The Author 2017.
Published by Oxford University Press on behalf of The British Computer Soci-
ety. This is a pre-copyedited, author-produced PDF of an article accepted for
publication in Interacting with Computers following peer review. The version
of record Trien V. Do, Roy A. Ruddle; MyWebSteps: Aiding Revisiting with a

69

https://doi.org/10.1145/274644.274651
https://doi.org/10.1177/0301006616643664
https://doi.org/10.1177/0301006616643664
https://doi.org/10.1177/0301006616643664
https://doi.org/https://doi.org/10.1006/ijhc.2001.0459
https://doi.org/https://doi.org/10.1006/ijhc.2001.0459
http://www.sciencedirect.com/science/article/pii/S1071581901904598
http://www.sciencedirect.com/science/article/pii/S1071581901904598
https://doi.org/10.1126/science.267.5199.843
https://science.sciencemag.org/content/267/5199/843.full.pdf
https://science.sciencemag.org/content/267/5199/843.full.pdf
https://science.sciencemag.org/content/267/5199/843
https://science.sciencemag.org/content/267/5199/843

Bibliography

Visual Web History. Interact Comput 2017 1-22. doi: 10.1093/iwc/iww038 is
available online at: https://doi.org/10.1093/iwc/iww038., pp. 530–551. url:
http://eprints.whiterose.ac.uk/110716/ (cit. on p. 3).

[7] Eelco Herder. ‘Characterizations of User Web Revisit Behavior.’ In: LWA.
Citeseer. 2005, pp. 32–37 (cit. on p. 1).

[8] Pavlos Kokosis et al. ‘HiBO: A System for Automatically Organizing Book-
marks’. In: Proceedings of the 5th ACM/IEEE-CS Joint Conference on Digital
Libraries. JCDL ’05. Denver, CO, USA: Association for Computing Machinery,
2005, pp. 155–156. isbn: 1581138768. doi: 10.1145/1065385.1065419. url:
https://doi.org/10.1145/1065385.1065419 (cit. on p. 17).

[9] Jean-Éric Pelet and Panagiota Papadopoulou. ‘Investigating the e�ect of color
on memorization and trust in e-learning: The case of KMCMS.net (Knowledge
Management and Content Management System)’. In: Impact of E-Business
Technologies on Public and Private Organizations: Industry Comparisons and
Perspectives (Jan. 2011), pp. 52–78. doi: 10.4018/978-1-60960-501-8.ch004
(cit. on p. 6).

[10] Jean-Éric Pelet and Panagiota Papadopoulou. ‘The e�ect of colors of e-
commerce websites on consumer mood, memorization and buying intention’.
In: European Journal of Information Systems 21.4 (2012), pp. 438–467. doi:
10.1057/ejis.2012.17. url: https://doi.org/10.1057/ejis.2012.17 (cit. on p. 6).

[11] Martin F. Porter. ‘An algorithm for su�x stripping’. In: Program 40 (1980),
pp. 211–218. doi: 10.1108/00330330610681286.url: https://pdfs.semanticscholar.
org/a651/bb7cc7fc68ece0cc66ab921486d163373385.pdf (cit. on p. 11).

[12] Jialun Qin et al. ‘Multilingual Web retrieval: An experiment in English–Chinese
business intelligence’. In: Journal of the American Society for Information
Science and Technology 57.5 (2006), pp. 671–683. doi: 10 .1002/asi . 20329.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/asi.20329. url:
https://onlinelibrary.wiley.com/doi/abs/10.1002/asi.20329 (cit. on p. 63).

[13] Stephen E Robertson et al. ‘Okapi at TREC-3’. In: Nist Special Publication Sp
109 (1995), p. 109. url: http://trec.nist.gov/pubs/trec3/papers/city.ps.gz
(cit. on p. 13).

70

http://eprints.whiterose.ac.uk/110716/
https://doi.org/10.1145/1065385.1065419
https://doi.org/10.1145/1065385.1065419
https://doi.org/10.4018/978-1-60960-501-8.ch004
https://doi.org/10.1057/ejis.2012.17
https://doi.org/10.1057/ejis.2012.17
https://doi.org/10.1108/00330330610681286
https://pdfs.semanticscholar.org/a651/bb7cc7fc68ece0cc66ab921486d163373385.pdf
https://pdfs.semanticscholar.org/a651/bb7cc7fc68ece0cc66ab921486d163373385.pdf
https://doi.org/10.1002/asi.20329
https://onlinelibrary.wiley.com/doi/pdf/10.1002/asi.20329
https://onlinelibrary.wiley.com/doi/abs/10.1002/asi.20329
http://trec.nist.gov/pubs/trec3/papers/city.ps.gz

[14] José Sousa, Marco Pereira and Joaquim Arnaldo Martins. ‘Improving Browser
History using Semantic Information’. In: ICEIS. 2012. url: https : / / pdfs .
semanticscholar.org/f635/d0a2b07079b939f7d93834cd39cc104e43ca.pdf (cit.
on p. 6).

[15] Chris Sta� and Ian Bugeja. ‘Automatic Classi�cation of Web Pages into
Bookmark Categories’. In: Proceedings of the 30th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval. SIGIR
’07. Amsterdam, The Netherlands: Association for Computing Machinery,
2007, pp. 731–732. isbn: 9781595935977. doi: 10.1145/1277741.1277881. url:
https://doi.org/10.1145/1277741.1277881 (cit. on p. 3).

[16] Linda Tauscher and Saul Greenberg. ‘How People Revisit Web Pages: Empir-
ical Findings and Implications for the Design of History Systems’. In: Int. J.
Hum.-Comput. Stud. 47 (July 1997), pp. 97–137. doi: 10.1006/ijhc.1997.0125
(cit. on p. 1).

[17] Hugo Zaragoza et al. ‘Microsoft Cambridge at TREC 13: Web and Hard
Tracks.’ In: Jan. 2004. url: https://trec.nist.gov/pubs/trec13/papers/microsoft-
cambridge.web.hard.pdf (cit. on p. 13).

71

https://pdfs.semanticscholar.org/f635/d0a2b07079b939f7d93834cd39cc104e43ca.pdf
https://pdfs.semanticscholar.org/f635/d0a2b07079b939f7d93834cd39cc104e43ca.pdf
https://doi.org/10.1145/1277741.1277881
https://doi.org/10.1145/1277741.1277881
https://doi.org/10.1006/ijhc.1997.0125
https://trec.nist.gov/pubs/trec13/papers/microsoft-cambridge.web.hard.pdf
https://trec.nist.gov/pubs/trec13/papers/microsoft-cambridge.web.hard.pdf

