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Abstract

Anomaly detection on sequential time series data is a research topic of great relev-
ance with a long standing history of publications. In the context of time series data,
anomalies are subsequences of data that di�er from the general pa�ern. Frequently,
these speci�c areas represent the most interesting regions in the data, as they o�en
correspond to the in�uence of external factors.
Problems which conventional anomaly detection frameworks face are the limita-
tion to highly domain speci�c applications and the requirement for pre-processing
steps in order to function as intended. �rough the use of the Recurrence Plot, the
algorithm proposed in this thesis, initially seeks to capture the pa�ern of recurrence
found in sequential time series data. An ensuing step for vector quantization by
Growing Neural Gas ensures more e�cient computation of collective anomalies.
Furthermore, the usual preprocessing steps for noise removal are bypassed by the
topology preservation aspects the Growing Neural Gas provides. Recurrence Plot
construction is done according to a sliding window approach.
�e results indicate that both the noise removal by Growing Neural Gas and the
pa�ern preservation by the Recurrence Plot, lead to highly accurate results, with
the proposed Anomaly Detector �nding all anomalies in a real world data set of
Austria’s Power Consumption in the year 2017.
Having demonstrated the applicability and potential of combining the Growing
Neural Gas with the Recurrence Plot, it seems likely that these concepts could also
be adapted to detect further anomalies such as contextual ones.
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1 Introduction

Anomaly Detection in data has experienced ongoing research since the 19th century
[2], and judging by the amount of recent papers, holds great relevance to this day.

�is paper seeks to further explore anomaly detection for time series data, while
utilizing the Recurrence Plot (RP) by Eckmann et al. [5] in combination with the
Growing Neural Gas (GNG) algorithm presented by Fritzke [8].

�e use of the RP aims to reduce the time series from distinct points in time to
distinct state recurrences. �e GNG algorithm is then applied on the resulting RP
for vector quantization, upon which my approach employs a method to identify
anomalous regions in the resulting network. �e identi�cation process is based on
a sliding window approach, commonly found in the �eld of computer vision, where
it is utilized for object recognition [13]. �e goal of this thesis lies in demonstrating
the implications the inclusion of the RP and GNG have on the ensuing anomaly
detection by sliding window.

�e main purpose of the GNG in the proposed approach is vector quantization,
allowing for more e�cient computation of similarity measures between the sliding
windows. Additionally, the algorithm’s topology preserving aspects are expected to
remove any associated noisy measurements from the data through its Competitive
Hebbian Learning (CHL) approach. In contrast to other topology preserving vector
quantization methods and variations of the Kohonnen’s Self Organizing Map (SOM)
[9], the choice of the GNG algorithm lies in its dynamic number of centroids as
well as its unsupervised characteristic. �is aspect is of utmost importance to
my research as the algorithm I wish to develop, must work in an unsupervised
environment, so as to grant the anomaly detector (AD) the capability of dealing
with unlabelled data. �is choice is largely based on the fact that labelled data is
generally a scarce resource and tedious to generate.

A further aspect I wish the AD to exhibit is generality. Since anomaly detection of
time series data is generally speaking highly domain speci�c, it is non-trivial to
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1 Introduction

successfully apply the same AD developed for a certain domain to another �eld
[2]. However through speci�c selection of my RP parameters, I aim to alleviate this
issue and develop an algorithm that can circumvent this problem. �e AD’s scope
would therefore be widened greatly, extending its applicability from a sole domain
to multiple domains and with no requirement for domain speci�c knowledge. I
expect my approach and the use of the RP will meet the requirements necessary
for it to be considered a general purpose AD.

Under the assumption, that a greater number of recurring states in the time series
display normal behaviour opposed to a fewer number of anomalous samples, I
suspect this approach could outperform conventional AD systems, such as discord
discovery algorithms [4, 10], that seek to identify the most anomalous subsequence
within a given sequential data set.
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2 Related Work

2.1 Background

Before proceeding with the AD algorithm, I will present de�nitions of the ensu-
ing tools and methods used. More speci�cally this chapter will explain the basic
concepts of both the RP and the GNG.

Recurrence Plot:
�e RP, as developed by Eckmann et al. [5], can be viewed as a way of visualizing
the recurrence of states over the course of time 1. One can express the RP as a
mathematical equation as follows:

Ri,j = θ(εi − ‖~xi − ~xj‖), ~xi, ~xj ∈ R, i, j = 1, ..., N (2.1)

�e de�nition presented in Equation 2.1 is provided by Recurrence Plots and Cross
Recurrence Plots 1. However it has been adapted slightly to be�er �t the approach
proposed in this thesis. Essentially, the formula above describes the necessary steps
involved in the creation of the RP. In this context i and j both refer to the locations
in the sequential time series data. �ese markers are used to identify ~xi and ~xj ,
which describe the measurements occurring at the ith or respectively jth location
in the sequential data set.
In order to create a RP, one must iterate through all possible values for both i and
j. �e value N in Equation 2.1 indicates the number of measurements contained in
the data.
�e parameter εi, known as the threshold distance, serves to de�ne the granularity
of what quali�es as a state recurrence, by increasing the chance of the normalized

1http://www.recurrence-plot.tk/glance.php (Accessed on: 2020-07-13)
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2 Related Work

di�erence of two measurements being greater or equal to zero. For the scope of this
thesis, the same ε value is assumed for all i data points. �e result is then inserted
into a heaviside function θ, resulting in all positive values equating to 1, whilst
anything else is set to zero. �e Heaviside function is a step function, which is
de�ned as shown below in Equation 2.2.

θ(x) =

{
1, x ≥ 0

0, else
(2.2)

When the binary output of the Heaviside function θ is 1, this signi�es a state
recurrence and a dot is placed in the corresponding location of the plot.

Figure 2.1 shows a simple arti�cially created sinusoidal time series with its cor-
responding RP for ε = 1. �e yellow highlights added to the plots, are of width ε
and illustrate a state recurrence. �erefore, one can clearly see the origin for the
variations in sizes of dots marked on the RP.

Figure 2.1: A time series and it’s corresponding RP.
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2.1 Background

Growing Neural Gas
�e GNG, as developed by Fritzke [8], serves the purpose of vector quantization and
topology preservation. GNG achieves its topology representation, through the use
of CHL, which classi�es it as a Competitive Neural Network. For CHL to be applied,
vector quantization must �rst be carried out. �e algorithm uses an error counter
for each neuron, which is highest for frequently adapted ones. �is allows GNG
to determine where more neurons must be inserted to be�er represent the topology.

�e Network consist of two main components, nodes and edges, which have the
following a�ributes:

1. Node - c
• wc
• errorc

2. Edge - e
• node referencese
• agee

As listed above, every node is assigned a weight wc, which can be seen as the node’s
positional argument in 2-dimensional space, as the AD is provided 2-dimensional
input in the scope of this paper. Each node is also given an errorc counter, which as
described above, helps the network determine the areas which require more detail.
Edges have the node referencese a�ribute, which contains the information re-
garding the two nodes it connects. Additionally edges have an agee, helping to
distinguish edges that can be removed.

A GNG implementation receives a number of parameters, which are listed below.
�eir use will be explained in the ensuing pseudo code for the algorithm.

GNG Parameters:

• X = {x1, x2, ..., xN} input data
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2 Related Work

• εb scales the movement of the winning node
• εn scales the movement of its neighbours
• agemax maximum age of edges
• λ iterations before node insertion
• d error reduction constant
• α scales error a�er new node insertion

GNG Pseudo Code:

1. Start with two nodes a and b, with random positions wa and wb.

2. Draw a sample x from the input data X .

3. Find the closest node s1 and the second closest node s2.

4. Increment the age of all of s1’s outgoing edges.

5. Add the squared distance from s1 to the sample x to its error counter errors1

6. Move s1 towards sample x by fraction εb. Move all direct topological neigh-
bours of s1 towards x by fraction εn.

7. Create a new edge between s1 and s2 or in the case of an edge already con-
necting them, set that edge’s age to 0.

8. Remove all edges that have an age above agemax. Additionally any nodes
that now have no outgoing edges will be removed.

9. If the number of iterations is a multiple of λ, a new node is inserted. �e loc-
ation of this node is chosen so as to minimize the error accumulated through
frequent movement. �erefore the node with the highest error counter is
chosen.

a) Find node q with maximum accumulated error counter errorq.
b) Insert a new node r between q and its topological neighbour f with the

highest accumulated error counter errorf .
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c) Remove the edge connecting q and f. Insert two new edges connecting
the new node r to q as well as to f.

d) Multiply errorq and errorf by λ, so as to descrease the error. �en
assign the resulting value of errorq to errorr.

10. Decrease all error variables by multiplying them with d.

11. If a stopping criterion is not yet ful�lled, continue with step 2.

�e proposed AD utilizes an implementation of the above GNG algorithm provided
by Neupy2. �is implementation introduces min dist for update as a stopping
criteria for step 11. Additionally it provides the network with a growth stunting
mechanism, which caps the number of nodes the network may contain. �is para-
meter is of utmost importance, reducing the probability of over��ing the input
data, keeping the number of nodes at the bare minimum necessary for representing
the topology. Neupy also provides the option of increasing the number of starting
nodes presented in step 1 in the above pseudo code. My AD however did not make
use of this extension.

Essentially, the GNG algorithm learns the topology by evaluating the areas that
require more node insertions to model, as these are frequently moved, leading to
higher error counters, due to many data samples causing signals in that area. �e
goal is to minimize the cumulative error of all nodes in the network.

2.2 State of the Art

Neural Networks such as Neural Gas (NG) by Martinetz et al. have been shown to
aid time series analysis, through successful applications in time series predictions
[11]. Since GNG can be viewed as an extension of NG by CHL, one can assume
to �nd similar successes in GNG’s topology representations and capabilities on
sequential data such as those found in RP’s and time series.

NG is an unsupervised learning algorithm designed for vector quantization and
clustering of data. �e algorithm is based on Kohonen’s Self-Organizing Feature

2http://neupy.com/pages/home.html (Accessed on: 2020-05-02)
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Map (SOM) [9], extending it by removing the constraint of requiring a grid of
�xed neurons [6]. Furthermore, NG allows its neurons to move freely and create
edges to neurons in their neighbourhoods. GNG expands upon this by using CHL
rules to generate topology incrementally, whilst utilizing edge aging schemes to
remove invalid edges resulting from the movement of neurons [8]. �is removal in
particular allows for the successful combination of NG with CHL.

RP, as shown by Eckmann et al., serve as a visualization technique for identifying
underlying pa�erns [5]. �ese plots are characterized by se�ing a point in the
grid only when a recurrence of a speci�c state in the state space of the time series
occurs. An additional parameter allows speci�cation of the degree of similarity
the two distinct states must have, in order for the second state to be classi�ed as a
recurrence of the �rst.

Although the focus of this paper lies in the identi�cation of anomalies in such
RP, it is also important to highlight more conventional uses of GNG for outlier
identi�cation in time series.

Chandola et al. in their survey on anomaly detection, list a multitude of anomaly
detection techniques, of which many can be deemed unsuitable for this paper’s
goal, which is the pursuit of an unsupervised learning approach, applicable to
�nding anomlies in sequential time series data [2]. Considering that cluster-based
techniques have proven successful, a vector quantization method such as the GNG
is likely to perform well. Although this paper’s goal is the identi�cation of collective
anomalies in a RP, there exist a vast number of papers concerning point anomaly
and contextual anomaly detection that successfully utilize GNG, which I would like
to highlight. One such solution can be seen in the utilization of Merge Growing
Neural Gas (MGNG), which has been shown to successfully identify noise in time
series data [15]. MGNG is an extension of GNG that incorporates context as a
weighted vector for deciding on the winner neuron [6]. �is inclusion of context
makes this an ideal technique for sequential data [1].

Further research has been conducted on GNG’s capabilities in outlier detection in
the �eld of computer vision. As shown by Waniek et al., the GNG’s performance
in vector quantization yields good results [17]. In their work, they demonstrated
GNG’s use by embedding it into their event processing pipeline for real time
anomaly detection. �e reduced number of points to compare per frame through
GNG vector quantization improved overall e�ciency. Similar results a�esting to
GNG’s success in identifying outliers can be seen in detections of abnormalities in
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changing surveillance scenes [14]. Here Qianru et al. speci�cally show the bene�ts
GNG has over SOM approaches, most notably being the lack of null neurons, arising
due to SOM’s use of grids. Qianru et al. explained the related dangers these null
neurons could potentially in�ict, describing that identi�cation would be harder if
they were to perfectly align with anomalies. In my work, knowing this is an added
bene�t, yet the deciding factor in the choice of GNG was its ability to dynamically
choose the number of clusters as opposed to NG and thereby SOM grid [6].

A problem which arises when trying to apply the approaches presented in computer
vision to a time series, is the lack of ground truth data. In the above experiments,
the anomalies were identi�ed through comparison of the current frame to its
previous one. In this thesis’ problem speci�cation, this would essentially translate
to a comparison of time series where one is non-anomalous.

A potential solution to bypass the need for additional data is provided by Paisner
et al. in their paper on symbolic anomaly detection and assessment using GNG
[12]. �e paper presents a GNG AD technique, that utilizes A-distance for symbolic
AD on a time series. A-distance corresponds to a sliding window technique, which
provided with a baseline window, compares its values to that of a sliding window,
to identify deviations. �is baseline for time series AD corresponds to the initial n
measurements of the series and not a separate data set. �e AD method developed
in this thesis draws great inspiration from this approach.
Since most of the previously mentioned approaches however do not directly target
the detection of collective anomalies, which will be the focus of this thesis, a few
notable ADs for collective anomaly detection within recurrent time sequences must
therefore be mentioned. �e problem of �nding collective anomalies in sequential
data is closely related to another research topic. �is research area’s focus is on
�nding the solution to the problem of identifying the subsequence within a time
series that is least similar to all other subsequences [10]. �e process of �nding these
so called discords is known as discord discovery. According to Lin et al. the trivial
approach, known as brute force discord discovery, is both easy to implement and
provides exact results. It does however have poor runtime performance. �erefore
Mooi Choo Chuah et al. have extended the BFDD to achieve higher accuracy in
discerning anomalous regions from normal ones [4]. �eir algorithm is known as
adaptive window-based discord discovery (AWDD).

Window-based approaches are of great relevance to time series anomaly detection.
What sets my method apart, however, is the use of the RP and therefore the reduction
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to state space for conventional time series. �rough the application of the GNG
to the RP and the ensuing noise removal and vector quantization, a novel concept
to anomaly detection on a time series, which has not been explored in previous
research, is presented. �is paper is one of the �rst to utilize the information
contained within the RP for anomaly detection on a time series. �rough the
combination of the noise removal and vector quantization aspects, GNG o�ers, and
the accuracy provided by window based discord discovery algorithms, the proposed
algorithm has the potential to combine all the previously mentioned approaches’
bene�ts.

Since beginnning the development of the proposed AD, further signi�cant research
regarding the application of the RP in an anomaly detection context has been
published. Utilizing a Convolutional Neural Network (CNN) to analyze the hidden
pa�erns presented in RPs, has been shown to be e�ective in distinguishing abnormal
behaviours in time series data [3]. In this work, Chen et al. extracted RPs from data
collected from sensors monitoring electrical current and electrode-position pro�les
in a �ash welding process. �e RPs are then used to train the CNNs, leading to very
accurate results in anomaly detection of welding quality variations.

While the success of their approach a�ests to the applicability of the RP in anomaly
detection pipelines, there are multiple drawbacks pertaining to the use of CNN in
this context, the greatest being the reliance on labelled data. While not explicitly
mentioned in their paper, CNN’s are predominantly trained in a supervised manner.
�is ties in closely with the limitations in cross domain usage their algorithm
presents. �e AD is limited to the detection of anomalies in a certain time series
domain and the trained network cannot easily be extended to provide detection on
slightly di�erent data sets. �is can present a signi�cant problem considering how
scarce a resource labelled data is.
My proposed approach to anomaly detection circumvents this issue by relying
on unsupervised learning, making the AD applicable in a greater number of scen-
arios.

10
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�is chapter will describe the thesis’ approach to anomaly detection and explain
the concepts surrounding it. Firstly, de�nitions and assumptions taken throughout
the algorithm’s development are given. Following this a highly detailed look at the
ensuing AD and its concepts is undertaken.

Anomalies in the context of this thesis can be seen as follows:

given a time series T containing K subsequences C as de�ned below …

Time series T = {t1, t2, ..., tm}, where ti is the measurement at
location i in the data set [10]

Subsequence C = {tp, tp+1, ..., tp+n−1}, for 1 ≤ p ≤ m− n+ 1

and n ≤ m [10]

(3.1)

… the goal is to �nd the subsequences that maximize the cummulative di�erence
to all other non-intersecting subsequences of the time series T, in other words
anomalies in the context of this thesis constitute to:

Anomalies = argmax
Ci,∀1≤i≤K

K∑
k=1

diff(Ci, Ck), (3.2)

where K is the number of non-intersecting subsequences of length n contained in
time series T of length m.

Within this paper’s scope, anomalies abide by the de�nition given by Chandola et
al., where: ”Anomalies are pa�erns in data that do not conform to a well de�ned
notion of normal behaviour” [2].

11
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On the topic of normal behaviour, there are various approaches to identify normal
behaviour in anomaly detection. A trivial approach is to de�ne a region of data
as normal behaviour and search for anything that deviates from it [2]. However,
for non-labelled time series data and therefore this thesis, this approach is of li�le
use, as no prior knowledge on normality of the data is assumed. �e de�nition of
normal behaviour in sequential data used in this thesis, is based on the assumption
that more normal data is present opposed to the amount of anomalous samples.

Out of the three main classes of anomalies - point anomalies, contextual anom-
alies and collective anomalies - presented in Chandola et al.’s survey ”Anomaly
Detection: A Survey”, [2], the focus of this paper lies in the detection of collective
anomalies. Such anomalies in periodic time sequences would correspond to distinct
periods which display deviations from the behaviour of a greater number of similar
periods. Based on the previous de�nition of normal behaviour, one can therefore
label the fewer periods of the time series data, that display deviating pa�erns, as
anomalous.

For the identi�cation of the above mentioned period of recurrence in time series
data, I assume the period’s length is known. �e process of �nding the period,
season length estimation, is a large research topic in itself and does not lie within
the scope of this paper. In this thesis it is therefore assumed, that the period length
has been previously extracted from the data and that it’s length does not change.

As de�ned by Lin et al. the subsequence of a time series that is least similar to all
other subsequences is known as a discord [10]. �is de�nition closely relates to
this paper’s goal, which is the identi�cation of periods in time series data, which
di�er most from a larger number of periods.

Since labelled data is a scarce resource, algorithms that function in unsupervised
learning environments were chosen. �e underlying assumption is, that no prior
knowledge on the data is known.

Furthermore, my paper’s AD utilizes a sliding window procedure, commonly used
for object detection in the domain of computer vision [13], in order to identify
anomalous behaviour. �is technique has been shown to perform quite well in its
respective �eld, which is why I have chosen it to be a part of the anomaly detection
pipeline.

12



�e AD should consist of the following steps:

1. Construction of RP

2. Application of GNG

3. Calculation of Similarity

4. Identi�cation of Anomalous Windows

Step 1 and 2 of the above mentioned AD approach o�er multiple ways in which one
can apply the sliding window procedure. In this paper, three of these approaches
were studied more closely.

�e �rst is the application of the sliding window procedure to the result obtained
by applying GNG to a RP of the entire data set. �e advantage of constructing the
RP for the entire data set is the preservance of all possible states. In other words, if
one were to construct a RP based solely on a section of the time series, only states
occurring in that speci�c section would be known. An example of how this could
cause a problem is shown below in Figure 3.1, where an anomalous period, marked
in blue resembles the pa�ern of a valid state sequence in the corresponding RP.

�is issue can lead to false anomaly detection under certain conditions and is best
avoided by constructing a RP of the entire time series.
A downside to this approach, however, is the slow runtime resulting from large
input data for the GNG. As one certainly requires more nodes to model a more
complex topology, this also leads to much greater runtimes. �e original GNG
algorithm is known for its poor runtime performance on larger data sets, with 48%
of the algorithm’s runtime being allocated to the search of the nearest neighbour,
and 51% to the search for the node of largest error [7]. As Fišer et al. have shown this
can be improved greatly through more e�cient GNG design. However, since this
thesis’ choice was to evaluate the implications, which the original GNG algorithm
has in an anomaly detection context, an algorithm that can bypass this issue without
the need for refactoring procedures was developed.

13
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Figure 3.1: Two distinctly di�erent data sequences can have the same RP.

�e second approach studied, utilizes the sliding window technique prior to ap-
plying the GNG. In this approach, initially, the creation of a RP containing all data
samples takes place, from which windows are extracted to provide the GNG with
input features. However this resulted in slow runtime performance due to ine�cient
window construction. �e trivial application of the sliding window can lead to a
grid approach, spli�ing a RP intoR2 RPs, whereR is the number of windows which
�t into the time series. A more sophisticated is the use of symmetry, which allows
us to limit the comparison of either the right of le� of the RP’s diagonal (symmetry
is given since ε value is the same for each sample). However this algorithm cannot
deal with is a non-stationary time series such as the one provided in Figure 3.2. �is
is a common pitfall in time series anomaly detection and is o�en alleviated through
pre-processing steps. To avoid the reliance on further pre-processing steps, an
approach was devised, which can bypass this issue without the need for additional
tools.

14



Figure 3.2: A non-stationary Time Series1

�is leads to the third and best performing method, which is to apply the sliding
window technique directly to the time series data, thereby obtaining a partitioning
of the data set. �e GNG is then applied to the RPs extracted from the window
partitions. �is approach abuses the missing state information shown in Figure 3.1,
while using a low enough step size, such as the value 1, when sliding the window,
to avoid the erroneous window remaining undetected. Essentially, this method
allows the examination of the relationship between the states within a period and
then compares this to other periods’ behaviours.

In order to assess the similarity between windows, the average pairwise minimum
distance between the nodes of two di�erent windows was chosen as the repres-
entative value of the similarity. �is was done in both direction, as false similarity
can arise if few nodes are compared to many. In this case it is likely that the few
nodes will have a short distance to the many nodes, while the overall networks are
clearly dissimilar

1https://towardsdatascience.com/predict-electricity-
consumption-using-time-series-analysis-4650284e40aa
(Accessed on: 2020-07-11).
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�e corresponding pseudo code, Algorithm 1, is listed below, providing more
detailed insight into the implementation of the four previously mentioned steps.

An example of the �nal sliding window technique, the ensuing RP creations and
vector quantizations by GNG are shown in Figure 3.3. During the creation of RPs,
unless a speci�c parameter is passed, an automated epsilon choice is taken, in order
to allow for 50% state recurrence to be plot. �is is done by taking the median of
the amplitudes as epsilon. �e algorithm’s steps are illustrated in the following
�ow chart. Furthermore a short summary of the main characteristics the proposed
AD posseses and the assumptions taken throughout this chapter, is provided in
Table 3.1.

Key Assumptions of the proposed AD

A greater number of normal data must exist opposed to anomalous samples
Period length must be known
Period length must remain constant

Table 3.1: Summary of the key assumptions for successful anomaly detection.

16
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Generate GNG Networks

Calculate Similarity and Threshold for Anomalies
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(a) Grid-based window partitioning.

(b) RP of Window 1 (c) RP of Window 2 (d) RP of Window 3 (e) RP of Window 4

(f) GNG of Window 1’s RP (g) GNG of Window 2’s RP (h) GNG of Window 3’s RP (i) GNG of Window 4’s RP

Figure 3.3: RPs and GNG nodes for the �rst 4 partitions created by the sliding window approach on
the data set.
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Algorithm 1: Topology-Based Anomaly Detector
Input: time series data, period, window size, step size,

similarity threshold
Output: Anomalous windows within the data

all RPs = empty list

Step 1: Construct RPs:
window start← 0
while window �ts in time series do

Construct RP from data in range window start to window start +
window size

Save RP to all RPs
Increment window start by step size

end while

Step 2: Apply GNG:
foreach rp in all RPs do

apply Neupy’s a GNG implementation with the following parameters
to rp:
max nodes← 500, step← 0.2, n start nodes← 2,
max edge age← 50, neighbour step← 0.005, n inputs← 2,
n iter before neuron added← 100,
after split error decay rate← 0.5,
error decay rate← 0.995,min distance for update← 0.01,
shuffe data← True, verbose← False

end foreach

Step 3: Calculate Similarities:
foreach nodes1 in every GNG network constructed in Step 2 do

foreach nodes2 in every GNG network constructed in Step 2 do
similarity ← 0
foreach node in nodes1 do

similarity ← similarity + distance from node to closest node
in nodes2

end foreach
end foreach

ahttp://neupy.com/pages/home.html Version: 0.8.2 (Accessed on: 2020-05-02)
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foreach node in nodes2 do
similarity ← similarity + distance from node to closest node in
nodes1

end foreach
similarity ← similarity/(length(nodes1) + length(nodes2))
save similarity for both windows

end foreach

Step 4: Find Anomalous Windows:
foreach win1 in GNG window do

similarity counter ← 0
foreach win2 in GNG window do

if euclidean distance(win1, win2) is period then
if similarity(win1, win2) ≤ similarity threshold then

increment similarity counter
else

decrement similarity counter
end if

end if
end foreach
if similarity counter < 0 then

add win1 to anomalous regions to return
end if

end foreach
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To evaluate the performance of the proposed AD described in chapter 3, two
distinct baseline algorithms were chosen, the results of which will be compared to
the AD’s output. �e time series data sets used to extract the results consist of both
synthetic and real measurements. �e synthetic data sets are used to be�er target
the shortcomings and bene�ts of the algorithms, while the real data set is used to
showcase the ability of my algorithm to function in real world scenarios.

�e chosen baseline algorithms for evaluation are (1) a Median Average Deviation
(MAD) based approach as the lower end baseline method and (2) the Brute Force
Discord Discovery (BFDD), which is a state-of-the-art discord detection algorithm.
�e second algorithm was chosen in order to develop a be�er understanding of
true applicability in the �eld.

Lin et al. present in their paper ”Approximations to magic: �nding unusual medical
time series”, a method which outperforms BFDD in runtime while the anomaly
detection results remain the same [10]. However for the purpose of this thesis
BFDD was chosen due to its simplicity in implementation.

In the algorithm proposed in this thesis, the chosen window size parameter has a
large in�uence on runtime. �is can be seen in Figure 4.1, where multiple di�erent
values for window size have been chosen and the runtime for the algorithm to
�nish computing anomalies on the same data is plo�ed.
Although the exact runtime is of li�le importance for this thesis, the general trend
must be evaluated, in order to identify the applicability of the proposed AD to
larger data sets.

Clearly, one can see that keeping thewindow size to a minimum is bene�cial to im-
proving the algorithm’s runtime. Additionally, the result will be more �ne grained,
as a smaller window encompasses less valid data points surrounding the anomalous
ones. As mentioned previously, the lower bound for window size should be the
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period, as anything below could result in inaccuracies.

Figure 4.1: Runtime for AD with varying window size and constant step size.

It can be argued that the above results are skewed as parts of the data will be
evaluated multiple times, due to the step size being lower than the window size.
By se�ing them equal however, the runtime depicts a �uctuating pa�ern. Figure 4.2,
shows these slight �uctuations. �e general trend has not changed, although the
runtime is greatly reduced. A possible explanation for the frequent drops shown in
runtime is as follows: when windows do not �t exactly into the time series, this
results in non-computation of portions of the data.
Clearly increasing the step size leads to faster results. One must however keep
in mind that, as mentioned in chapter 3, smaller step sizes are safer for �nding
anomalous regions.
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Figure 4.2: Runtime for AD with varying window size and equal step size.

Chapter 3 mentioned the ine�ciency of the original GNG’s runtime. �is the-
ory is further supported by Figure 4.3a, where one can see the rapid growth in
runtime with increasing input feature sizes. As the behaviour closely resembles that
of my algorithm’s runtime, a logical conclusion is that the runtime performance
is greatly dependent on the execution time of the GNG algorithm. �e maximum
node count is uncapped in the following plot.
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(a) Uncapped number of nodes. (b) Growth stunting through max nodes parameter.

Figure 4.3: E�ect of growth stunting mechanisms on GNG.

�e proposed AD method however has an upper bound for node count, which is set
to 500. Figure 4.3b shows a near linear relation between runtime and input feature
lengths for GNG. For all GNG experiments, 20 epochs of training were used.

�e result supports my choice for introducing growth stunting within the anomaly
detction pipeline. A problem that could arise and would require intervention,
however would be a scenario where the topology is highly complex and requires a
greater number of nodes to model. Under the assumption that a larger RP is more
complex in nature and therefore requires more nodes to model, the conclusion is
that keeping the window size to a minimum is vital for the AD’s success.

As previously mentioned, the runtime on big data sets is of relevance to the topology-
based AD. Figure 4.4, shows how the algorithm behaves for increased time series
lengths. �e steep increase in runtime likely stems from the nature of the original
GNG as a window size of 24 results in a RP of approximately 288 state recurrences.
Applying the GNG for 20 epochs and adding nodes a�er every 100th iteration,
results in 59 representative nodes. �erefore, in this speci�c scenario, the bene�ts
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of equating the max nodes = 500 cannot be accrewed and the steep increase in
GNG runtime depicted in Figure 4.3a occurs.

A possible further explanation for signi�cant runtime incurred could be the sim-
ilarity measure, which is is trivially implemented leading to O(n2) runtime. �is
could be improved greatly by the introduction of geometry based algorithms for
�nding the closest pair in a data set, such as minpair in the Minimum Pairwise
Average Distance. Optimally, a more suitable algorithm could be chosen to evaluate
the similarity between windows, such as computer vision’s SIFT or similar feature
detection methods. �ese algorithms traditionally extract important features and
describe patches of data in images with great success. Since the scenarios are sim-
ilar, one can assume that the methods could be applied with reasonable success in
�nding similarities between windows.

Figure 4.4: Runtime for AD with varying input time series lengths.

Further potential pitfalls of the algorithm to be highlighted are the following.

Firstly, the AD requires an exact period to function properly. If this is not provided,
the detection fails to identify anomalies. While this can be alleviated to some extent
using pre-processing steps to identify the period of the data, it is not a trivial task
and deviations can cause failure of the algorithm.
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Secondly, relating back to the choice of window size, whilst having identi�ed that
keeping it as low as possible is a necessity, it must still be large enough to extract a
reasonable RP from it. As mentioned in chapter 3, the period can be considered to
be the optimal choice, due to the fact that the unfolding of entire state sequences
within a given period can be modelled.
Essentially, the window size must encompass enough measurements to de�ne the
topology. For example, a window size of 2 coupled with the 50 percent heuristic
epsilon choice, may have no more than 2 dots in the RP, which lie in the diagonal.
�is would lead to identical behaviour within all windows. Additionally applying
GNG would cause no vector quantization or noise removal. Taking this issue into
account, the choice of window size clearly has a lower bound. �e best and safest
choice for this lower bound is the period itself, as the goal is to compare the periods
and anything below that does not represent all states contained within them. On
the other hand, some values below the period have been shown to perform reas-
onably well, see Figure 4.5. �e areas marked in red correspond to the anomalous
windows detected by the algorithm. A suitable upper bound would certainly be
largely dependent on the number of anomalous periods as more normal ones must
exist. Essentially, one cannot pick window sizes that cause partitions of the data in
ways that contradict the previous assumption of normal behaviour.

Figure 4.5: Anomaly detection for window size below period, shows only a part of the collective
anomaly being detected and marked red.
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Figure 4.5 does however miss the anomaly found between the two marked re-
gions, due to the nature of the recurrence plot and its epsilon value. �e plot
indicates that values hovering around amplitude 0 are considered the same and
lead to similarities lying below the chosen threshold.

�e choice of similarity thresholds leading to good results can be seen as an-
other shortcoming. On the surface, one can solve this through passing a range of
thresholds to the AD and manually narrowing down the choice based on the results.
�is however, becomes more di�cult as the period and its window size increases,
leading to the averaging performed in Minimum Average Pairwise Distance be-
coming less distinctive. As previously mentioned, a potential solution would be a
more re�ned similarity measure.

Concerning detection performance, the topology-based AD performed very well on
all synthetic data sets, outperforming the baseline algorithm utilizing MAD, while
producing identical results to the BFDD.

In Figure 4.6 one can observe successful identi�cation of the discord in a simple
time series. �e plots illustrate that all three methods can achieve desired results
on easy to identify anomalies.
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(a) Median Average Deviation (b) Brute Force Discord Discovery

(c) Topology-Based Anomaly Detection

Figure 4.6: �e baseline methods and proposed algorithm identify simple anomalies successfully.
Anomalous windows are marked red.

�e MAD detector however fails on the data set found in Figure 4.7. �e underly-
ing reason for this failure is the detector’s simple thresholding, where anything
deviating from the expectation by more than the MAD value of the data set is
considered an anomaly. Clearly, the regions found by the BFDD and topology-based
AD methods are anomalous, however not anomalous enough for the MAD-detector
to identify.
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(a) Median Average Deviation (b) Brute Force Discord Discovery

(c) Topology-Based Anomaly Detection

Figure 4.7: Topology-Based AD outperforms MAD approach. Anomalous windows are marked red.

A�er establishing the applicability of both the Topology AD and BFDD for dis-
cord discovery, one must still evaluate their ability to deal with false and noisy
measurements. Figure 4.8 shows BFDD’s inability to deal with a potentially high
false measurement. �is lies in the algorithms nature of simply computing the sum
of di�erences between values of two windows, leading to outliers having a large
in�uence on the results.
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(a) Median Average Deviation (b) Brute Force Discord Discovery

(c) Topology-Based Anomaly Detection

Figure 4.8: Topology-Based AD outperforms the baseline. Anomalous windows are marked red.

Mooi Choo Chuah et al. have, during their exploration of a more advanced method,
mentioned the execution of a normalization step prior to BFDD’s application to
the data set. Figure 4.9 shows the e�ect of normalization of the data within each
window on pa�ern preservation through the reduction of outlier in�uence.
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(a) Median Average Deviation (b) Brute Force Discord Discovery

(c) Topology Anomaly Detection

Figure 4.9: Topology-Based AD matches normalized BFDD approach. Anomalous windows are
marked red.

�e regions highlighted above di�er slightly, due to the fact that the proposed
AD method �nds more collective anomalies, opposed to BFDD’s discord focused
approach. �e reason for choosing a discord approach over a conventional AD for
evaluation, lies in the similarity of problem speci�cation. Since a discord is the
most anomalous collective anomaly in a time series, discord discovery is one of the
closest approaches to collective anomaly detection of periods in a time series.

To prove the algorithm’s applicability in real world scenarios, a data set was chosen
containing hourly measurements of the power consumption in Austria for the year
2017. �e data set was extracted from data provided by Open Power Supply 1. A
power consumption time series was chosen due to the ease of prediction of the
period of recurrence as well as in the ease of explaining anomalies. �e period

1https://open-power-system-data.org/data-sources
(Accessed on: 2020-07-11)
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chosen for the experiments, was 168, as this corresponds to the hours in a week. In
order to achieve more reasonable runtimes, the step size parameter was set equal
to the chosen period. �e underlying assumption regarding the period’s length is
that every normal week behaves the same in regards to power consumption. Being
unlabelled, the expectation is that weeks containing bank holidays have di�ering
power consumption pa�erns and must therefore be identi�ed as anomalous.
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4.1 Results

As the real world data set has no labels, the expectation is that anomalies will
correspond to bank holidays in Austria for the year 2017. Intuitively, the energy
consumption pa�ern should di�er from regular working days if workers, were to
stay at home and large factories, �rms and o�ces remain closed.

Similarity thresholds above 2.8 failed to detect any anomalous windows, therefore
the lowest detected values lie in the regions below. Tables presenting the results
obtained through thresholding with various values are listed below.

Results for Austrian Power Consumption in 2017,
for sim threshold = 2.7 - 2.8, period = step size = window size = 168

Detected Week Bank Holiday Bank Holiday Contained in Detection

- 6.1.2017 False
- 17.4.2017 False
- 1.5.2017 False
- 25.5.2017 False
- 5.6.2017 False
- 15.6.2017 False
- 15.8.2017 False
- 26.10.2017 False
- 1.11.2017 False
- 8.12.2017 False
24.12 - 30.12 25.12.2017 True
24.12 - 30.12 26.12.2017 True

Table 4.1: For thresholds 2.7 & 2.8 1 out of the 11 weeks have been identi�ed.
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Results for Austrian Power Consumption in 2017,
for sim threshold = 2.6, period = step size = window size = 168

Detected Week Bank Holiday Bank Holiday Contained in Detection

- 6.1.2017 False
16.4 - 22.4 17.4.2017 True
30.4 - 6.5 1.5.2017 True
- 25.5.2017 False
- 5.6.2017 False
- 15.6.2017 False
- 15.8.2017 False
- 26.10.2017 False
- 1.11.2017 False
- 8.12.2017 False
24.12 - 30.12 25.12.2017 True
24.12 - 30.12 26.12.2017 True

Table 4.2: For threshold 2.6 4 out of the 11 weeks have been identi�ed.

Results for Austrian Power Consumption in 2017,
for sim threshold = 2.5, period = step size = window size = 168

Detected Week Bank Holiday Bank Holiday Contained in Detection

- 6.1.2017 False
16.4 - 22.4 17.4.2017 True
30.4 - 6.5 1.5.2017 True
21.5 - 27.5 25.5.2017 True
- 5.6.2017 False
- 15.6.2017 False
13.8 - 19.8 15.8.2017 True
22.10 - 28.10 26.10.2017 True
29.10 - 4.11 1.11.2017 True
- 8.12.2017 False
24.12 - 30.12 25.12.2017 True
24.12 - 30.12 26.12.2017 True

Table 4.3: For threshold 2.5 all but 4 weeks have been successfully found.
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Results for Austrian Power Consumption in 2017,
for sim threshold = 2.4, period = step size = window size = 168

Detected Week Bank Holiday Bank Holiday Contained in Detection

1.1 - 7.1 6.1.2017 True
16.4 - 22.4 17.4.2017 True
30.4 - 6.5 1.5.2017 True
21.5 - 27.5 25.5.2017 True
4.6 - 10.6 5.6.2017 True
11.6 - 17.6 15.6.2017 True
13.8 - 19.8 15.8.2017 True
22.10 - 28.10 26.10.2017 True
29.10 - 4.11 1.11.2017 True
- 8.12.2017 False
24.12 - 30.12 25.12.2017 True
24.12 - 30.12 26.12.2017 True

Table 4.4: For threshold 2.4 all but one week has been successfully found.

Results for Austrian Power Consumption in 2017,
for sim threshold = 2.2 - 2.3, period = step size = window size = 168

Detected Week Bank Holiday Bank Holiday Contained in Detection

1.1 - 7.1 6.1.2017 True
16.4 - 22.4 17.4.2017 True
30.4 - 6.5 1.5.2017 True
21.5 - 27.5 25.5.2017 True
4.6 - 10.6 5.6.2017 True
11.6 - 17.6 15.6.2017 True
13.8 - 19.8 15.8.2017 True
22.10 - 28.10 26.10.2017 True
29.10 - 4.11 1.11.2017 True
3.12 - 9.12 8.12.2017 True
24.12 - 30.12 25.12.2017 True
24.12 - 30.12 26.12.2017 True

Table 4.5: For thresholds 2.2 & 2.3 all 11 anomalous regions have successfully been identi�ed.
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A visual representation of the results obtained in Table 4.5 can be seen in Figure
4.10a and can be compared to the true bank holidays marked in Figure 4.10b. All
anomalous regions are identi�ed correctly for thresholds 2.2 and 2.3 and no false
positives were returned. Any threshold values below 2.2 result in false positive
detections, since all weeks containing bank holidays have already been identi�ed.

(a) Detected Anomalous Weeks are marked in red.

(b) Weeks containing Austrian Bank Holidays are marked in green.

Figure 4.10: Detected anomalies versus true anomalies.

36



4.2 Discussion

4.2 Discussion

�e results show, that the algorithm clearly has the capability to perform excep-
tionally well on real world data sets such as the power consumption in Austria for
the year 2017. �e results indicate that both the GNG and the RP can be utilized in
an anomaly detection pipeline.

�e results on synthetic data sets have further demonstrated the method’s ability to
match state-of-the-art discord discovery algorithms in identifying discords, while
clearly beating the lower baseline algorithm, a MAD based AD.

Furthermore, one can deduce that the GNG has positively in�uenced the detection
procedure through the removal of noise and outliers. �is, coupled with the RP’s
capabilities, shows that in tandem the two methods can successfully preserve data
pa�erns, ignoring the negative in�uences of outliers and bypassing pre-processing
steps such as rolling the mean and frequency of data.

�e results on this speci�c data set show the precision the proposed algorithm
presents, through the detection of every bank holiday in the year 2017, whilst
demonstrating no false detections.

�e results further indicate that the RP with vector quantization can be made
applicable to time series anomaly detection. Furthermore, the use of RP introduces
generality aspects, made apparent as the detector was not tweaked in any way
prior to computing results on the data set. Clearly, pa�ern preservation is aided
through transformation of the data to state space, removing the reliance on the
amplitudes of the time series.

Se�ing the window size equal to the period of the data has also been shown to
provide reliable results, if speci�c conditions such as shown in Figure 3.1 are not
ful�lled.

Taking the above into consideration as well as the success the algorithm shows in
matching state-of-the-art discord discovery methods results, it can be concluded
that both the GNG as well as the RP can be incorporated into time series anomaly
detection pipelines, and extended to detection of more anomaly classes such as the
contextual ones. As for extensions that seek to identify point anomalies, the GNG
could potentially cause problems, as the topology preservation has been found to
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remove point anomalies, with the assumption of them being faulty measurements
or noise.
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�e algorithm presented in this thesis has been shown to achieve state-of-the-art
anomaly detection on sequential time series data, by utilizing a sliding window
approach to partitioning the data, allowing for the extraction of reasonably sized
RPs from the data set. Vector quantization through GNG is therea�er performed on
the resulting RPs. �e individual GNG networks are then compared to each other,
using a similarity measure such as the Pairwise Average Minimum Distance, in
order to evaluate the anomalous regions.

�e proposed algorithm incorporating the GNG and RP methods was tested on
various synthetic data sets and also applied to a real world data set of Austria’s
power consumption for the year 2017.

�e algorithm matched the state-of-the-art discord discovery method BFDD and
surpassed a MAD approach to anomaly detection on all synthetic data sets.

Furthermore, when applied to the real world data set of power consumption in
Austria for the year 2017, the method successfully identi�ed all weeks containing a
bank holiday as anomalous. �e results contained all expected anomalies and no
false detections were made.

To conclude, having demonstrated very accurate results with no pre-processing
steps required, it has been shown that the algorithm can successfully extract the
data pa�ern contained within sequential time series data. �e GNG has proven to
not only perform vector quantization, but also to rid the data of noise and outliers,
as these speci�c point anomalies are not within the scope of the collective anomalies
to be detected.

�e RP has demonstrated great potential in transferring data to state space, making
the AD invariant to speci�c amplitudes, instead capturing only the relationship
between the measurements. �is aids the AD’s generality component and allows
for anomaly detection in various domains without the need for domain speci�c
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knowledge related to amplitude �uctuations. �is aspect was achieved by a 50
percent recurrence heuristic for the choice of the RP’s epsilon parameter value.

�rough the use of GNG’s vector quantization, the RP has been shown to be
applicable to anomaly detection of time series data of reasonable sizes. �e AD was
however not developed with the intention of optimizing the runtime performance
and can therefore likely still be improved upon, as very large data sets would results
in very lengthy runtimes.

A�er the evaluation of the importance of both the GNG and RP and demonstration
of their success in a collective anomaly detection pipeline, a similar approach could
likely be derived for the remaining anomaly class of contextual anomalies.

5.1 Future Work

�e proposed algorithm’s assumption in requiring prior-knowledge of the period,
could in future work be replaced by a dedicated season length estimation method,
such as SAZED [16]. �is step could potentially increase the ease of applying the
algorithm with even less prior knowledge requirements.

Another related research topic could be the extension of the algorithm to contextual
anomalies. �e use of GNG for noise removal has already been explored, the use of
RP for state space transformations however has not.

Lastly, an open problem is presented in the proposed algorithm’s runtime per-
formance. Since this paper sought to evaluate the performance of the results and
disregard the runtime to a large extent, a runtime optimized approach could be
developed. Especially, for larger data sets this could be of great importance.

In the event that the algorithm is not capable of functioning in reasonable time on
larger data, an interesting approach would be to develop an online method based
on the RP and GNG. Since small window sizes have been shown to bene�t the
proposed approach, the slower input stream provided to online method’s could
present opportunities for GNG and RP approaches to shine. Clearly the GNG would
have to compute much smaller portions of data within a given time period.

�e potential shown by the GNG and the RP in an anomaly detection environment
is vast, and further research must be conducted in order to �nd applications within

40



5.1 Future Work

other anomaly classes’ domains such as contextual anomalies. Variations of the RP
and more e�cient GNG implementations must be tested and evaluated in future
works in order to provide a broader understanding of their joint capabilities.
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