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Introduction



Science

- growing fast
- number of paper submissions increases
- finding relevant information is getting more time-consuming

Example: Top-Tier Computer Vision Conferences
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Search Engine

- filter data

- reduce time that is required to search thought different
information sources

- usage of explicit and implicit information



Improve Literature Search Process

- reduce the amount of non relevant scientific articles

- scientific articles share a common structure (IMRaD)

Example’
Section Name IMRaD Type
Introduction Introduction
Related work Methods
Extracting contiguous text blocks Methods
Evaluation Results

Discussion Discussion

TSection Titles of Klampfl et al. [3] are used



Research Question

Is it possible to improve the search result quality by using IMRaD

structure features?

1. Does the quality improve for explicit search using queries?
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Research Question

2. Does the quality improve for implicit search using scientific

articles?
3. Does the quality improve if only a single section is used for
searching?
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Materials and Method



Scientific Article Dataset

- consists of 821 articles
- generated citation network
- References (Links): 1,716
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Added IMRaD Structure Information

- classify the IMRaD types with keyword detection in section titles
- Related Work as additional IMRaD type called Background

- Methods have less common keywords

IMRaD Type Section Title Term # Paper Percent
Introduction Introduction 822 100%
Background Related Work 465 56.57%
Methods Method, Model, Approach 312 37.96%
Result Experience, Result, Evaluation 687 83.58%

Discussion  Conclusion, Discussion, Future Work 773 94.04%




Implementation

Desgin Goals

- various common ranking algorithms should be comparable
- works with unstructured as well as structured data

Technologies

- Backend Implementation: Python

- Database: MongoDB

- Web-Framework: Flask

- Frontend Implementation: Bootstrap/jQuery



Information Retrieval Model

Defined as Quadruple [D,Q, 7, R(q;, d;)] [5]

- D ..representation of the documents in a collection

- Q..representation of the user information needs (i.e., queries)
* R(q;, d;) ..raking function

- F ..framework

Example

- documents D are represented as Bags of Words

- queries Q are represented as sets
* R(Gi,dj) = 3 _ieq, TR}, 1)



Information Retrieval Model

Model Design
- each document consists of 6 Bag of Words
- one for unstructured retrieval, and one for each IMRaD type
- each query consists of 6 sets

- structured retrieval ranking formula:

. 1 .
sim(d; = sim(d; p,
( ]aQ) ||MRaD‘TYPES‘ X hem'?a%TYPES ( hk/Qfé)



User Interface

Search with User Query
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User Interface

Search with Scientific Article
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User Interface

Admin Panel - Overview of all Articles

Manage Database ~ Home  Papers  Users Logout
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User Interface

Admin Panel - Article Details
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Results and Discussion




1. Experiment - Evaluate based on User Queries

Experimental setup

- generated Word N-Gramms with citations in the articles
- IMRaD type is defined by the section the citation occurs
- query length from 2 to 14

Results
Using .
Ranked Divergence
S‘::?JF:?Lll)re FreTel:annc TF-IDF Boolean  BM25 from
q Y Retrieval Randomness

Features

Best Accuracy 0.1966 02199  0.1921  0.1207 0.0498

N
° Query Length 11 11 11 14 2
Yes Best Accuracy 0.1293 0.1642  0.1015  0.1058 0.0379
Query Length 12 12 9 13 2

- IMRaD Structure Features does not improve search results based
on our assumptions



2. Experiment - Evaluate based on Scientific

Experimental Setup

- relevant documents based on referenced articles

Results
II:ASFLZi Term Ranked Divergence
TF-IDF  Boolean  BM25 from
Structure Frequency .
Retrieval Randomness
Features

No Accuracy 0.1186 0.1163  0.0466  0.0554 0.0137
Yes Accuracy 0.1463 0.1613  0.0506  0.0882 0.0137

- IMRaD Structure Features improve search results when scientific
articles are used
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3. Experiment - Evaluate based on single Sections

Experimental setup

- only structured with usage of scientific articles
- one IMRaD type is used in query (Input Area) and in documents
(Search Area)

Results (represented using TF-IDF)

Search Area

Section Introduction Background Methods Results Discussion
Introduction 0.1242 0.1226 0.1095 0.1092 0.1049
g Background 0.1454 0.1249 0.1331 0.1255 0.1106
< Methods 0.0947 0.0857 0.1017  0.0897 0.0668
§ Results 0.0877 0.0783 0.0815  0.0783 0.0631
~ Discussion 0.1188 0.1078 0.0957  0.0914 0.084

- Introduction and Background tend to contain more relevant
information



Results Overview

Ranked Divergence
Term
Frequenc TF-IDF Boolean  BM25 from
q Y Retrieval Randomness

Accuracies of 1. Experiment
without IMRaD Structure Features
Accuracies of 2. Experiment
with IMRaD Structure Features
Accuracies of 3. Experiment
with IMRaD Structure Features

0.1966 02199  0.1921  0.1207 0.0498

0.1463 0.1613  0.0506  0.0882 0.0137

0.1454

- first two experiments cover different requirements of a user
1. breadth-first search and covers the initial search process

2. depth-first search and covers the specific search of literature



Results Overview

Ranked Divergence
Term
Frequenc TF-IDF Boolean  BM25 from
q Y Retrieval Randomness

Accuracies of 1. Experiment
without IMRaD Structure Features
Accuracies of 2. Experiment
with IMRaD Structure Features
Accuracies of 3. Experiment
with IMRaD Structure Features

0.1966 02199  0.1921  0.1207 0.0498

0.1463 0.1613  0.0506  0.0882 0.0137

0.1454

- first two experiments cover different requirements of a user
1. breadth-first search and covers the initial search process

2. depth-first search and covers the specific search of literature

- for the 3. experiment queries and documents with similar
performance significant smaller compared to the 2. experiment
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Ranking Functions

Term Frequency - Inverted Document Frequency (TF-IDF) [2, 9]

) N
sim(d;,q) = fij x log o
i

- includes the importance of a term with respect to the whole
document collection

- multiple variants of TF-IDF

22



Ranking Functions

BM25
B — (K +1)fi
W len(d;
Ks [(1 —b)+ ba\/g docl en} +fw
. —hj+ 0.5
Simemzs(d;, q) ~ Z B x log < m 305 )

Ri€qAR;ed;

- result of several experiments by Robertson et al. [6,7, 8]
- combination of BM15 and BM11

- BM11 additionally uses document length normalization
- parameter to define the influence of the 2 terms
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Ranking Functions

Divergence from Randomness [1]
wij = (—log P(Ri|C)) x (1 — P(ki|d)))
dp C] Zf) q X Wi

ki€q

- based on 2 assumptions:
1. amount of information for a term over the whole document
collection: — log P(ki|C)
2. amount of information for a term being in a complementary term
distribution: 1 — P(k;|d})

| fij _ ! s ! g
~log P(1[C) ~ ;log () + (3 + e ~ fiy) loge + 5 log(2r,)

1

~PlKld) = =
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Ranking Functions

Ranked Boolean Retrieval [4]

!
Z gisi
i=1

- documents are divided into zones
- based on zone scores

- apply zone score to result when a term occurs in zone
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Evaluation of Ranking Algorithms

Mean Average Precision

- evaluate search result (ordered ranked lists)
- calculate average precision based on a set with relevant
documents

Example - Average Precision of a single query
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Word N-Gramm

Generate Test Queries

- Assumption: citations describe the content of referenced
articles
- used Word N-Gramm

- added additional information about referenced article and
IMRaD type of the section

Example: N=6
"Information Retrieval Systems are important to reduce research

time [1]"

- "Information Retrieval Systems important reduce research”
"Retrieval Systems important reduce research time”
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Future Work

- calculate similarities based on article clusters

- reevaluate the first experiment with different assumption about
the occurrence of the query terms
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