Using IMRaD Structure Features in Information Retrieval Ranking Functions

Thomas Mauerhofer

November 26, 2020

Institute of Interactive Systems and Data Science

Introduction

Motivation

Science

- growing fast
- number of paper submissions increases
- finding relevant information is getting more time-consuming

Example: Top-Tier Computer Vision Conferences

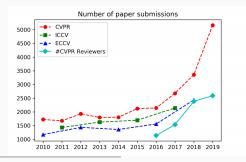


Figure Source: Deep Paper Gestalt

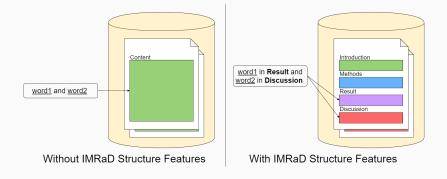
Search Engine

- filter data
- reduce time that is required to search thought different information sources
- \cdot usage of explicit and implicit information

Motivation

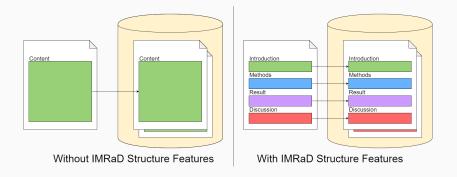
Improve Literature Search Process

- \cdot reduce the amount of non relevant scientific articles
- scientific articles share a common structure (IMRaD)


Example¹

Section Name	IMRaD Type
Introduction	Introduction
Related work	Methods
Extracting contiguous text blocks	Methods
Evaluation	Results
Discussion	Discussion

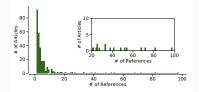
¹Section Titles of Klampfl et al. [3] are used


Is it possible to improve the search result quality by using IMRaD structure features?

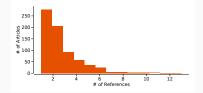
1. Does the quality improve for explicit search using queries?

Research Question

- 2. Does the quality improve for implicit search using scientific articles?
- 3. Does the quality improve if only a single section is used for searching?



Materials and Method


Dataset

Scientific Article Dataset

- consists of 821 articles
- generated citation network
 - References (Links): 1,716

In-degree Distribution - Mean 5.9

Out-degree Distribution - Mean 2.4

Dataset

Added IMRaD Structure Information

- classify the IMRaD types with keyword detection in section titles
- Related Work as additional IMRaD type called Background
- Methods have less common keywords

IMRaD Type	Section Title Term	# Paper	Percent
Introduction	Introduction	822	100%
Background	Related Work	465	56.57%
Methods	Method, Model, Approach	312	37.96%
Result	Experience, Result, Evaluation	687	83.58%
Discussion	Conclusion, Discussion, Future Work	773	94.04%

Desgin Goals

- \cdot various common ranking algorithms should be comparable
- $\cdot\,$ works with unstructured as well as structured data

Technologies

- Backend Implementation: Python
- Database: MongoDB
- Web-Framework: Flask
- Frontend Implementation: Bootstrap/jQuery

Defined as Quadruple $[\mathbf{D}, \mathbf{Q}, \mathcal{F}, \mathcal{R}(q_i, d_j)]$ [5]

- $\cdot \,\, D$...representation of the documents in a collection
- $\cdot \,\, {\rm Q}$...representation of the user information needs (i.e., queries)
- $\mathcal{R}(q_i, d_j)$...raking function
- $\cdot \ \mathcal{F}$...framework

Example

- $\cdot\,$ documents D are represented as Bags of Words
- $\cdot\,$ queries Q are represented as sets
- $\mathcal{R}(q_i, d_j) = \sum_{t \in q_i} TF(d_j, t)$

Model Design

- $\cdot\,$ each document consists of 6 Bag of Words
 - $\cdot\,$ one for unstructured retrieval, and one for each IMRaD type
- each query consists of 6 sets
- structured retrieval ranking formula:

$$sim(d_j, q) = \frac{1}{|\mathsf{IMRaD-TYPES}|} \times \sum_{k \in \mathsf{IMRaD-TYPES}} sim(d_{j,k}, q_k)$$

Search with User Query

Search Engine Search	h Upload	
Use Query - Unstructured	Use Query - Structured Use Article - All Sections Use Article - Single Sections	
Intro	oduction	
En	ter a query	
Bac	kground	
En	ter a query	
Met	hods	
En	ter a query	
Res	ults	
	ter a query	
	cussion	
En	ter a query	
Ran	iking Algorithm r	
	Submit	

Search with Scientific Article

Search Engine	Search U	pload
Use Query - Unstru	tured Use	Query - Structured Use Article - All Sections Use Article - Single Sections
	Scientific /	Article
	Settings	
	Ranking Al	gorithm Using IMRaD Structure Features from Randomness v) [Yes v]
		Submit

Admin Panel - Overview of all Articles

Manage Database Home	Papers Users	Logout
0105.pdf		Mew
0164906df04fe4cca950fc1ebce7767	'f3768.pdf	View
0589.pdf		Wew
0590.pdf		Wew
059c7c20d075a8066b344f47beab9a	x6724fb7cb3.pdf	View
07964674.pdf		View
08010278.pdf		View
08010802.pdf		View
08081732.pdf		Wew
08314667.pdf		View
08320373.pdf		View
08449912.pdf		View
08452891.pdf		View
08580549.pdf		View
08598708.pdf		View

Admin Panel - Article Details

ID 50-608004851452855667786 Title Integr textbackbas semant evid enhanc retriev effect clinic decis support Authors Chenhao Yang 1 and Ben He 2 Jungang Xu 3	
Authors	
Firstname Middlename Lastname Email Affiliation	
	Academy of Sciences, Beijing, China, halls.ucas.ac.cn, (benhe 2 , xujg 3)@ucat
Ben He	
Jungang Xu	

Results and Discussion

1. Experiment - Evaluate based on User Queries

Experimental setup

- generated Word N-Gramms with citations in the articles
- IMRaD type is defined by the section the citation occurs
- query length from 2 to 14

Results

Using IMRaD Structure Features		Term Frequency	TF-IDF	Ranked Boolean Retrieval	BM25	Divergence from Randomness
No	Best Accuracy	0.1966	0.2199	0.1921	0.1207	0.0498
	Query Length	11	11	11	14	2
Yes	Best Accuracy	0.1293	0.1642	0.1015	0.1058	0.0379
	Query Length	12	12	9	13	2

 \rightarrow IMRaD Structure Features does not improve search results based on our assumptions

Experimental Setup

relevant documents based on referenced articles

Results

Using IMRaD Structure Features		Term Frequency	TF-IDF	Ranked Boolean Retrieval	BM25	Divergence from Randomness
No	Accuracy	0.1186	0.1163	0.0466	0.0554	0.0137
Yes	Accuracy	0.1463	0.1613	0.0506	0.0882	0.0137

 \rightarrow IMRaD Structure Features improve search results when scientific articles are used

3. Experiment - Evaluate based on single Sections

Experimental setup

- $\cdot\,$ only structured with usage of scientific articles
- one IMRaD type is used in query (Input Area) and in documents (Search Area)

Results (represented using TF-IDF)

		Search Area								
	Section	Introduction	Background	Methods	Results	Discussion				
	Introduction	0.1242	0.1226	0.1095	0.1092	0.1049				
rea	Background	0.1454	0.1249	0.1331	0.1255	0.1106				
t∃	Methods	0.0947	0.0857	0.1017	0.0897	0.0668				
Input	Results	0.0877	0.0783	0.0815	0.0783	0.0631				
-	Discussion	0.1188	0.1078	0.0957	0.0914	0.084				

 \rightarrow Introduction and Background tend to contain more relevant information

Summary

Results Overview

	Term Frequency	TF-IDF	Ranked Boolean Retrieval	BM25	Divergence from Randomness
Accuracies of 1. Experiment without IMRaD Structure Features	0.1966	0.2199	0.1921	0.1207	0.0498
Accuracies of 2. Experiment with IMRaD Structure Features	0.1463	0.1613	0.0506	0.0882	0.0137
Accuracies of 3. Experiment with IMRaD Structure Features	-	0.1454	-	-	-

\rightarrow first two experiments cover different requirements of a user

- 1. breadth-first search and covers the initial search process
- 2. depth-first search and covers the specific search of literature

Summary

Results Overview

	Term Frequency	TF-IDF	Ranked Boolean Retrieval	BM25	Divergence from Randomness
Accuracies of 1. Experiment without IMRaD Structure Features	0.1966	0.2199	0.1921	0.1207	0.0498
Accuracies of 2. Experiment with IMRaD Structure Features	0.1463	0.1613	0.0506	0.0882	0.0137
Accuracies of 3. Experiment with IMRaD Structure Features	-	0.1454	-	-	-

- \rightarrow first two experiments cover different requirements of a user
 - 1. breadth-first search and covers the initial search process
 - 2. depth-first search and covers the specific search of literature

 \rightarrow for the 3. experiment queries and documents with similar performance significant smaller compared to the 2. experiment

References i

- Gianni Amati and C. J. van Rijsbergen. "Probabilistic models of information retrieval based on measuring the divergence from randomness.". In: *ACM Trans. Inf. Syst.* 20.4 (2002), pp. 357–389.
- Karen Spärck Jones. "A statistical interpretation of term specificity and its application in retrieval". In: *Journal of Documentation* 28.1 (1972).
- Stefan Klampfl et al. "Unsupervised document structure analysis of digital scientific articles". In: *Int. J. on Digital Libraries* 14.3-4 (2014), pp. 83–99.
- Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to Information Retrieval. Cambridge University Press, 2008.

References ii

- Berthier Ribeiro-Neto and Ricardo Baeza-Yates. Modern Information Retrieval. ACM Press / Addison-Wesley, 1999.
- Stephen E. Robertson et al. "Okapi at TREC-2.". In: *TREC*. Ed. by Donna K. Harman. Vol. 500-215. NIST Special Publication. National Institute of Standards and Technology (NIST), 1993, pp. 21–34.
- Stephen E. Robertson et al. "Okapi at TREC-3.". In: *TREC*. Ed. by Donna K. Harman. Vol. 500-225. NIST Special Publication. National Institute of Standards and Technology (NIST), 1994, pp. 109–126.
- Stephen E. Robertson et al. "Okapi at TREC.". In: *TREC*. Ed. by Donna K. Harman. Vol. 500-207. NIST Special Publication. National Institute of Standards and Technology (NIST), 1992, pp. 21–30.

G. Salton and C. S. Yang. "On the specification of term values in automatic indexing.". In: *Journal of Documentation*. 29.4 (1973), pp. 351–372.

Term Frequency - Inverted Document Frequency (TF-IDF) [2, 9]

$$sim(d_j, q) = f_{i,j} \times \log \frac{N}{n_i}$$

- includes the importance of a term with respect to the whole document collection
- multiple variants of TF-IDF

BM25

$$\mathcal{B}_{i,j} = \frac{(K_1 + 1)f_{i,j}}{K_1 \left[(1 - b) + b \frac{len(d_i)}{avg_doclen} \right] + f_{i,j}}$$
$$sim_{\text{BM25}}(d_j, q) \sim \sum_{k_i \in q \land k_i \in d_j} \mathcal{B}_{i,j} \times \log\left(\frac{N - n_i + 0.5}{n_i + 0.5}\right)$$

- result of several experiments by Robertson et al. [6, 7, 8]
- combination of BM15 and BM11
 - BM11 additionally uses document length normalization
 - parameter to define the influence of the 2 terms

Ranking Functions

Divergence from Randomness [1]

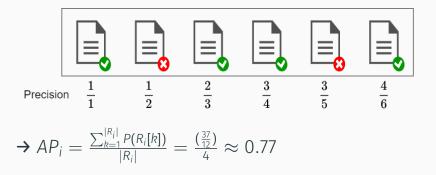
$$w_{i,j} = (-\log P(k_i|C)) \times (1 - P(k_i|d_j))$$
$$R(d_j, q) = \sum_{k_i \in q} f_{i,q} \times w_{i,j}$$

- based on 2 assumptions:
 - 1. amount of information for a term over the whole document collection: $-\log P(k_i|C)$
 - 2. amount of information for a term being in a complementary term distribution: $1 P(k_i|d_j)$

$$-\log P(k_i|C) \approx f_{i,j} \log\left(\frac{f_{i,j}}{\lambda_i}\right) + \left(\lambda_i + \frac{1}{12f_{i,j}+1} - f_{i,j}\right) \log e + \frac{1}{2} \log(2\pi f_{i,j})$$
$$1 - P(k_i|d_j) = \frac{1}{f_{i,j}+1}$$

Ranked Boolean Retrieval [4]

 $\sum g_i s_i$


- · documents are divided into zones
- based on zone scores
- \cdot apply zone score to result when a term occurs in zone

Evaluation of Ranking Algorithms

Mean Average Precision

- evaluate search result (ordered ranked lists)
- calculate average precision based on a set with relevant documents

Example - Average Precision of a single query

Generate Test Queries

- Assumption: citations describe the content of referenced articles
- used Word N-Gramm
- added additional information about referenced article and IMRaD type of the section

Example: N = 6

"Information Retrieval Systems are important to reduce research time [1]"

→ "Information Retrieval Systems important reduce research" "Retrieval Systems important reduce research time"

- · calculate similarities based on article clusters
- reevaluate the first experiment with different assumption about the occurrence of the query terms