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Abstract

Test case prioritization is a common approach to improve the rate of fault
detection. In this scenario, we only have access to very limited data in terms
of quantity and quality. The development of an useable method in such a
limited environment was the focus of this thesis. For this purpose, we made
use of log output and requirement information to create a cluster-based
prioritization method. For evaluation, we applied the method to regressions
of a device currently in development. The results indicate no impactful
improvement, based on the simple and limited metrics used. To show the
importance of fault knowledge, we generated a simplified dataset and
applied the same prioritization method. With the now existing awareness
of faults we were able to evaluate the method using a well established
fault-based metric. The results of the generated dataset indicate a great
improvement in the rate of fault detection. Despite the restrictions of this
limited environment the implemented method is a solid foundation for
future exploration.
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1 Introduction

In software development, integration testing is an important step between
unit testing and system testing. It deals with verifying that multiple sepa-
rately developed modules work together. In the scope of this thesis, inte-
gration testing describes the integration of a device under test (dut) into a
simplified test system.

A common integration test cycle very often involves a regression test, which
validates the integrity of non-modified parts of a dut. Depending on the
project size, the test suite and the degree of automation, this may lead to a
test time from hours up to days or even weeks. To minimize the duration
of regression tests, different solutions have been proposed. Of particular
interest in this thesis are test case prioritization (tcp) techniques.

By scheduling the execution of test cases in an order defined by a spe-
cific criterion the detection of faults may be maximized in a limited but
reasonable time span. However, the effectiveness and the correctness of
prioritization techniques depends on the information taken into account.
Usually, it is not known whether a test case detects a fault or not before it is
executed. Of course, a test engineer can order the execution manually, based
on previous experiences. This is a very simple, but not automated form
of tcp. Otherwise, only already known information can help establish a
ranking. Very often this involves a test coverage report, a requirement-based
weight or some similar characteristic.

Machine learning methods, have the potential to lead to promising results,
which leads to the purpose of this thesis. It is part of an internal Siemens
innovation project to evaluate the application of artificial intelligence in
the integration test of safety firmware modules. The development of such
safety relevant modules is subject to strict standards, which involve a very
throughout testing procedure. To guarantee the safety properties of the
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1 Introduction

developed modules, every test case has to be executed and documented.
This procedure, while mostly automated, is time-consuming. However, for
internal evaluation a short test cycle is of advantage.

Most prioritization methods need extensive data about each test case. In
the scope of this project we are only aware of the log output of a test case
and the validated requirements. Additionally, the existing test framework is
currently limited in its ability to extract more data easily.

Therefore, the focus of this thesis lies in the development of a test case prior-
itization method in an exising and rather limited execution environment.
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2 Related Work

This chapter introduces the background of this thesis and shows the most
important concepts used. Afterwards, the most relevant solutions are pre-
sented.

2.1 Background

Siemens is an international company founded in 1847 and is by now one
of the leading businesses in industrial solutions. Industrial automation
and digitalization are the areas of expertise of the Digital Industries (di)
subdivision of Siemens. For this purpose a highly sophisticated automation
framework has been created. The development house (dh) Graz plays an
important part in the development and innovation in the di. Many hardware
and software solutions are developed and tested at this location.

The development of safety-based solutions is subject to strict standards.
Therefore, the testing process is used not only to validate the functionality
of a product but all defined safety requirements as well. As Figure 2.1 shows,
the integration test is one stage in this process and evaluates a dut in an
integrated environment.

Strict standards require a very meticulous testing phase, which can be very
time consuming. Especially sicnce all requirements have to be reviewed, a
short test cycle is of advantage during active development. One possible
solution to this problem is tcp.

While the test infrastructure is always in development, extensive modi-
fication is not always feasible. Therefore, the problem lies in finding an
appropriate method which can be used in an already established testing

3



2 Related Work

Figure 2.1: A typical development cycle. Every testing step validates requirements and
functionality on a different scope. In the integration test some device under test
is integrated into a small system, e.g. a test station. A test system is complete
together with a test controller, a connected computer in most cases. While
specific test cases can be executed solely, usually a regression is preformed.
A regression executed a test suit, where each test case verifies one or more
requirements and functionality.

environment. There are a few applicable techniques, which are introduced
in Section 2.2, but most of them require specific data, like code metrics. At
the integration test in the dh Graz there are efforts to measure code metrics,
but for now such an approach is not possible.

The focus of this thesis lies in finding an applicable tcp within this con-
stricted environment for practical use in development.

2.1.1 Integration Testing

Integration testing describes a common phase in the software development
cycle. This type of testing, evaluates the compliance of requirements on

4
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a module-to-module basis. Usually, it is performed after unit testing but
before system testing.

A test cycle often involves regression testing. It is used to validate the
functionality of already developed and tested modules after changes. A
regression describes the failure of such a validation. A common problem
is the size of regression test suits, which tend to grow rather fast over
time. Retesting all test cases may be very time-consuming. Therefore, the
execution order of a test suit has to be optimized. This problem can be
further classified into three sub-problems [1].

1. Test suit minimization aims to remove redundant test cases and
minimize the size and therefore, the execution time of the test suit.

2. Test case selection seeks to do the same as test suit minimization, with
the distinct difference of most such techniques being able to identify
modified parts of the module under test. Therefore, test cases which
have been modified are more relevant than others and are more likely
to be selected.

3. Test case prioritization does not search for a subset of relevant test
cases to execute, but schedules all test cases depending on different
properties. The aim is to find an optimal sequence of test cases, which
maximizes the probability of detecting faults.

2.1.2 Test Case Prioritization

Rothermel, Untch, Chengyun Chu, et al. [2] defined the problem of test case
prioritization as follows:

Definition 1 Given T, PT and f, where T is a test suit, PT the set of all possible
permutations of and f a mapping from PT to real numbers. Find T′ ∈ PT|∀T′′ ∈
PT ∧ T′′ 6= T′ : f (T′) ≥ f (T′′).

The idea is to find at least one permutation for the test suit T, which
maximizes a function f . The result of applying f to a reordered test suit is
also called award value and describes the worth of a ordering. While there
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are a few possible goals for a prioritization, we focus on increasing the rate
of fault detection.

The simplest method of test case prioritization is a reordering based on
the knowledge and experience of a test engineer. The idea behind any
automated prioritization technique is to emulate this using available data.

2.1.3 Text Representation

To make full use of all available data, in particular log output, some form of
representation for text data has to be created. A common method for word
vectorization is the use of word embedding. It describes various techniques
in natural language processing, which map the input to an appropriate
vector space. The success and effectiveness of these methods, depends very
often on the size of the dataset used for training. While already trained
models can be found for many common domain languages, this is not the
case for this project. Furthermore, building an embedding model requires a
very large dataset. Therefore, another approach is necessary.

Term Frequency — Inverse Document Frequency (tf-idf)

This method builds upon the idea of weighting the importance of a word to
a document in the scope of a collection of documents, also called corpus.
As shown in Equation 2.1, the tf-idf is defined as the product of the term
frequency and the inverse document frequency.

t f id f (t, d, D) = t f (t, d) · id f (t, D) (2.1)

The simplest way to define term frequency t f (t, d) is to count the raw
occurrences of a term t in a document d. Other variants include a boolean
mapping, the term frequency over document length, logarithmic normaliza-
tion or augmented normalized term frequency.

id f (t, D) = log
N

|d ∈ D : t ∈ d| (2.2)
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The inverse document frequency provides a measure of how common
a term is over the complete corpus. Equation 2.2 shows how the id f is
obtained by taking the logarithm of the document count N over the count of
documents D which contain a term t. Again, the id f weight can be calculated
using different weighting schemes to account for different situations.

2.1.4 Clustering

Clustering or cluster analysis describes the grouping of data related to
each other. This technique has shown wide use in many areas of data
analysis. Figure 2.2 shows a common application of the Centroid-based
k-means algorithm. This algorithm does well on clearly separated datasets
with an even cluster size.

Figure 2.2: Example clustering of randomly generated dataset using the k-means clustering
algorithm. The clusters are of similar size and are able to be separated by the
algorithm easily.

Within the scope of this project a more irregular dataset can be expected.
The following algorithms have shown to be more capable of separating the
data.

7
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Density-based Spatial Clustering of Applications with Noise (DBSCAN)

DBSCAN is a very common clustering algorithm, created by Ester, Kriegel,
Sander, et al. [3]. The algorithm groups together points in a dense neighbor-
hood, depending on the defined radius of neighborhood (ε) and minimum
number of points in a cluster (minPts). Any distance metric can be used
for this purpose, but usually the euclidean distance is applied. Points in a
low-density region, without nearby neighbors, are classified as outliers. The
parameter mpts can usually be derived from a visual analysis or even from
the problem statement. ε can be chosen with the help of a sorted k-distance
graph, as shown in Figure 2.3. A good value can be shown where the plot
shows a change in distance, also described as “elbow” or “knee” [3].

Figure 2.4 shows the difference between k-means and DBSCAN. Especially
arbitrarily shaped clusters can be classified properly, without the need to
specify the expected number of clusters. The main disadvantage is the bad
handling of clusters with varying density.

Figure 2.3: Example of a k-distance graph, where k is 4. The elbow shows that the threshold
point is around 0.10. This means that any points with a lower value are con-
sidered noise and all other points are part of a cluster. This approach does not
always guarantee a usable plot, which gives clear indications. Furthermore, de-
tection of this threshold automatically is rather difficult. An interactive approach
with the user is recommended.
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Figure 2.4: Clustering of the randomly generated dataset using k-means (left) and DB-
SCAN (right). With this dataset we expect two clusters. DBSCAN has been able
to handle the unusual shape very well, compared to k-means.

Hierarchical Density-based Clustering (HDBSCAN)

HDBSCAN is rather new and improves upon the previously mentioned
DBSCAN algorithm. It was proposed by Campello, Moulavi, and Sander
[4] in 2013 and has been shown to provide a very stable, efficient and correct
clustering. The main improvement, compared to DBSCAN, is found in the
handling of data with varying density clusters. An example of this case, can
be observed in Figure 2.5. The algorithm employs a new parameter mclSize.
It defines the minimum cluster size and allows for the condensation of
points which would be split into another cluster otherwise. This simplifies
the hierarchy and allows exerting more control over the resulting clustering
together with the already established parameter mpts. It is even possible to
specify a ε threshold to combine HDBSCAN and DBSCAN.
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Figure 2.5: Clustering of random generated dataset using DBSCAN (left) and HDB-
SCAN (right). While this dataset is rather simple, its shows the advantage
of HDBSCAN in its result. In this example DBSCAN was not able to separate
the two interleaving half circles and had problems in finding the small sub-
cluster of “Cluster 2”. Better results may be found using a different ε parameter.
However, HDBSCAN had no such problems and the parameterization was
trivial as well.

2.1.5 Dimensionality Reduction

High-dimensional datasets are hard to interpret. Due to the “Curse of
Dimensionality” clustering is not always effective as well. Therefore, the
dimensionality of the data can be reduced, either for visualization purposes
or for further analysis. A common technique is Principal component analysis,
which is a linear mapping of the data to a low-dimensional space. The aim
is to maximize the variance in a few principal components, which represent
the original data.

Uniform Manifold Approximation and Projection (UMAP) In this project
the application of UMAP has resulted in a better clustering and therefore, a
better prioritization in general. The principle behind this algorithm is the
construction of a weighted graph. Using this graph we want to find a low

10
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dimensional representation with a similar topological structure. Parameter-
wise we can define n components, n neighbours and min dist, the target
dimension, the maximum size of a local neighborhood and the minimal
distance between points respectively. We can also use different metrics to
further control the resulting reduction.

2.2 State of the Art

For the problem of test case prioritization a number of approaches have
been developed and evaluated. Rothermel, Untch, Chengyun Chu, et al. [2]
formally defined the problem of tcp and introduced several methods. Each
prioritization method is based on different test execution information. Most
future works are based on the finding of this paper.

Rothermel, Untch, Chu, et al. [5] evaluate the application of test case priori-
tization in terms of maximizing the fault detection rate. For this purpose
they introduce a metric called “Average Percentage of Faults Detected”
(apfd) and evaluate several techniques with it. Their results show that the
presented methods can improve the fault detection of test suits. To further
evaluate the problem of test case prioritization Elbaum, Malishevsky, and
Rothermel [6] evaluated 18 different techniques with three research ques-
tions in mind. After extensive experimentation and evaluation their results
show that each technique can improve the rate of fault detection.

Walcott, Soffa, Kapfhammer, et al. [7] reduced the problem of the prioriti-
zation of a test suit within a time constraint to the NP-complete zero/one
knapsack problem. This problem can usually be efficiently approximated
using a genetic algorithm. Using such an algorithm, has proven to deliver
an effective prioritization.

Another possible approach is shown by Tonella, Avesani, and Susi [8].
They have evaluated the incorporation of user knowledge through a ma-
chine learning algorithm, called case-based ranking (cbr). Metrics like code
coverage can be used in cbr to approximate a ranking and specific user
knowledge can be applied if either not enough data is available or if there
are any contradictions.

11
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Yoo, Harman, Tonella, et al. [9] proposed the usage of clustering in their
method. The purpose is to ease the actual prioritization process, by grouping
similar test cases in terms of runtime behavior together. Therefore, min-
imizing the workload of a test engineer. Additionally, they have shown
that clustering alone, in an automated process, might yield a considerable
improvement.

Carlson, Do, and Denton [10] presented a similar method. They have demon-
strated, through the usage of clustering, based on the similarity of common
properties, an effective prioritization. In their study, they have made use of
information like code coverage, code complexity, historic fault information
and a combination of these.

Opposed to the previously mentioned techniques, Arafeen and Do [11]
incorporated requirement-based information into the testing process. Their
method includes the clustering of requirements, the prioritization of test
cases for each requirement cluster and a final reordering, based on require-
ment priority. The results of their evaluation demonstrate the impact of
requirements-based clustering in test prioritization.

12
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This project is based on the idea of applying test case prioritization in a
very limited environment. One of these limitations is insufficient data. Most
machine learning methods require a large amount of data during training
to produce stable and reliable results. Furthermore, we are only aware of
the test case output and the names of covered requirements. The lack of
code metrics impedes the usage of many established solutions shown in
Section 2.2. Besides, the modification of an established test system is not
always feasible, due to its size and complexity. Therefore, the focus lies on
the development of a prioritization method applied in the scope of a very
limited environment.

3.1 Concept

The input data for a prioritization consists of a past regression, where each
test case has an output log and a list of requirements. When a module is
tested, each test case is executed separately on the module. The module
resets its state after the execution of any test case with either result.

Three assumptions follow:

Assumption 1 Test cases are independent of each other.
Assumption 2 Test cases may validate the same requirements.
Assumption 3 The result of a test case is reflected in its output.

Figure 3.1 shows the general workflow of the method. The preprocessing
step can be executed once during the first iterations or even beforehand. It
involves

• date-time handling,

13
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• text aggregation,
• text transformations like

– conversation to lowercase,
– number handling,
– white space handling and
– stop word and special character removal.

Figure 3.1: This is the general workflow of the presented prioritization method. The input
consists of a list of test cases and the output is composed of the prioritized order
of test cases. The preprocessing step involves common text processing methods
to prepare for the usage in automated processes. The prioritization step in this
graph is where we perform the prioritization using different input models.

Based on above assumptions, we can define the problem statement for a
cluster-based approach:

Definition 2 Given a set of test cases T, we want to find a partition of n ∈N test
case subsets T1 to Tn such that every test case t1 to ti with i ∈ N is exactly once
in one of these n clusters. Each cluster Tn contains test cases more simiar to each
other.

Given a clustered test suite, we can assign each cluster a priority based on
different cluster-wise metrics. Depending on this priority, we can reorder
the execution of the test suite to maximize or minimize the given metric.

The use of mainly text as input, requires the application of text vectorization.
We use tf-idf to create a text representation.

Depending on the number of features per test case output, very large
and often sparse matrices are the result. To visualize high-dimensional
data, the application of dimensionality reduction techniques is necessary.
Furthermore, the use of distance metrics for clustering of high-dimensional

14
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data may lead to problems because of the “Curse of dimensionality”. The
application of UMAP has shown the best results out of the tested methods.

In our tests we tried k-means, DBSCAN and HDBSCAN for clustering,
where the last has shown to acquire the best results in terms of viability and
consistency.

3.1.1 Process

In this section we present the main workflow of cluster-based prioritization.
Afterwards follow the three input models and their specifics.

Figure 3.2 shows the prioritization workflow, which can be split into follow-
ing steps:

1. Vectorize input data.
2. Reduce dimensionality.
3. Apply clustering.
4. Prioritize test cases within clusters.
5. Prioritize clusters.
6. Select test cases.

Each model uses a different type of input data. This input is vectorized in
step 1 using tf-idf. Step 2 describes the reduction of the high-dimensional
tf-idf matrix using UMAP. These steps are in general the same, except for
the difference in data used.

In step 3 we apply HDBSCAN to cluster the input data. To improve the
resulting clustering we employ an interactive approach for fine-tuning the
parametrization. The result is plotted and the user may accept or decline the
result. If declined, the parameters can be specified again until an acceptable
result is reached.

In step 4 and 5 we optimize the order of test cases and the order of clusters.
This reordering assigns a priority to test cases and clusters and ranks them
descending. Which step is performed first has no actual impact, but in the
scope of this implementation the above specified order applies.

15
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In the last step we select the test cases from the prioritized clusters with
following Assumption.

Assumption 4 The top ranked test cases within high-priority clusters are more
likely to find faults.

We compare two methods. In the first, which we call SingleSample, we simply
take the best test case from each cluster in a round-robin fashion. In the
second, called PercentageSample, we pick the best test cases of each cluster by
percentage. We take the most from the first cluster and reduce the amount
for each following cluster. This step is again repeated in a round-robin
movement. The idea behind both is based on the test case selection in the
method created by Arafeen and Do [11].

Figure 3.2: The workflow of a cluster-based prioritization. First the input is vectorized using
tf-idf and then the dimensionality is reduced using UMAP. Afterwards the data
is clustered using HDBSCAN. The clustering requires an interactive approach
to define the parameters of the HDBSCAN algorithm. To make this easier for
the user, the resulting clustering is shows afterwards in a plot. If acceptable the
user confirms and continues with the chosen prioritization model. Afterwards
the clusters and the test cases within are prioritized. The last step is the selection
of test cases from each cluster until there are none left.

3.1.2 Input Models

In the scope of this project we differ between two types of inputs, which
define following models.

16
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Data Model: MD

Assumption 5 Test cases with similar output, are more likely to find the same
errors.

Due to Assumption 3.1, the use of output data is constricted in its appli-
cation. Since the result is reflected in the output, a prioritization might
be biased to a specific result, as can be seen in Figure 3.3. To handle this
potential problem, the prioritization has to be created with a “normalized”
regression. Therefore, we will create a prioritization based on a completely
successful regression.

Figure 3.3: Comparison of vectorized log output of a regression without errors (left) and
with errors (right). The right plot shows how the failed test cases are grouped
together better than on the left. While this may be the desired result in some
cases, here it is not. We want to cluster the test case outputs based on the
similarity of their structure not their result, because it might lead to bias.

Requirement Model: MR

Assumption 6 Test cases with similar requirements, are more likely to find the
same errors.

17
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We make use of the requirement data by assigning each test cases its list
of requirements in text form. Then by clustering this data, we can find test
cases with similar requirements. This assumption is based on Assumption
3.1. Since this prioritization is independent of the output, we even are able
to apply it beforehand.

3.2 Implementation

As most data science application we use Python1 together with following
libraries:

• Numpy2

• Pandas3

• Sklearn4 [12]
• Umap5 [13]
• Hdbscan6 [14]
• Matplotlib7

• Seaborn8

3.2.1 Architecture

The extension of an established test framework is not easy. Including com-
pletely new subsystems and fitting them into the execution pipeline even
more so. Therefore, we will develop an external framework which can be
automated easily using existing solutions. In this approach, we can take
advantage of Python’s flexibility and ease of use, to create an effective test
case prioritization.

1Python 3.8.3
2numpy 1.18.4
3pandas 1.1.0
4scikit-learn 0.23.1
5umap-learn 0.4.6
6hdbscan 0.8.26

7matplotlib 3.2.1
8seaborn 0.10.1
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Name Description Remarks

Testcase Name of a test case.
Result Result of a test case. Either 0 (failure) or 1 (suc-

cess); used for evaluation.
Duration Duration of a test case. In minutes.
Coverage Percentage of requirements

covered.
Derived from requirements
list.

Data Output log from test case
execution.

Needs text preprocessing.

Requirements List of covered require-
ments of a test case.

Needs text preprocessing.

Table 3.1: A dataset consists of above defined attributes in form of columns. The Result
and Duration are extracted from Data. In this project everything except for the
requirement data is queried from a database. The requirements are extracted
using a different method and are added to each regression of this test suit
afterwards. In the same step the requirement coverage is calculated.

The input data consists of a past regression saved in form of a csv file,
pulled from a database.

Table 3.1 shows the data required in an input file. The pre-processing step
can be performed here during the creation of the dataset using a Python
script. This separate script queries the data from the database and aggregates
it after applying the methods shown in Section 3.1.

We create a class called ClusterTCP which is based on the Sklearn uni-
form api. To conform to this api we inherit from BaseEstimator and Trans-
formerMixin. Appendix A.1 contains the bare-bones class structure, without
implementation.

We differ between the fitting, which involves the vectorization, dimensional-
ity reduction and clustering step, and the transformation. In the transfor-
mation we apply a user defined function, which reorders the fitted data.
While an interactive fitting is recommended to find the best clustering for
any input, the parameters can be requested and saved by the user for direct
initialization afterwards. These parameters can be defined in the construc-
tor, or with a method. Since we inherited from BaseEstimator, methods for
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getting and setting parameters are already implemented. If the interactive
flag is set, any clustering parameters are ignored and the user is required
to enter them in the console when requested. The resulting clustering is
plotted then, as shown in Figure 3.5, and the user may accept or decline in
the console again. If declined, the cluster step is repeated until acceptance.

For evaluation purposes we define a score function as well which returns
metrics further discussed in Chapter 4 and implement a plotting method
for visual inspection. For visual evaluation of the prioritization ClusterTCP
offers a show method, were we display the reordered test cases in an event
plot with their results as shown in Figure 3.4.

Figure 3.4: Example of the event plot shown by the show method. This kind of plot allows
the user to immediately realize the effectiveness of the constructed test case
prioritization. Additionally, comparison between different results is very easy
as well.
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Figure 3.5: Example of the created clustering in the fit method using the data model MD.
This plot allows the user to fine-tune the parameters for effective test case
prioritization. The plot itself is interactive as well and can be rotated, which
allows a better analysis.
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4 Evaluation

The focus of this thesis lies in the application of tcp in a limited environment.
In this statement included is the lack of meaningful data usually used in
other prioritization techniques presented in Section 2.2. But the amount of
data is not the largest problem here, because the data itself is rather limited
in its application.

In this evaluation we make use of the four datasets shown in Figure 4.1,
which have been generated during the test phase of a module currently in
development. All four datasets have been generated using the same test
suit, therefore every regression was executed in the same order. The only
difference is the hardware version used. Each version induced different
faults, which led to the failure of different test cases.

Datasets Test cases Errors Duration

successful 163 0 39010

failed 01 163 33 40141

failed 02 163 28 44847

failed 03 163 21 45861

Table 4.1: This table shows the datasets used for the method evaluation, where each dataset
is a regression of the same test suit. Therefore, the number of test cases is the
same in each case. Since in each regression another version has been used the
number of errors is different and with that the regression duration (in minutes)
as well.

Furthermore, a traceability matrix, mapping each test case to its covered
requirements, is available as well and can be found in Appendix A.2.

For comparison, we will evaluate the completely same tcp with a simplified
and generated datasets, shown in Table 4.2. This dataset is modeled after the
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real data and its structure. The main difference are the randomly assigned
faults, to show the impact this knowledge can have during evaluation.
Appendix A.5 shows a sample of the dataset for reference.

Datasets Test cases Errors Faults Duration

successful 1000 0 0 59669

failed generated 1000 207 5 69662

Table 4.2: These datasets have been generated by choosing randomly from a pool of values.
While the data is kept very simple, the structure is based on the real datasets
above. Furthermore, we assigned to each failed test case a fault. To simulate a
common order of execution, where test cases with similar validation are executed
nearby each other, we assigned the faults in uniform blocks over the whole
regression.

4.1 Metrics

A very common measure for the evaluation of tcp methods is the Average
Percentage of Faults Detected (apfd) introduced by Rothermel, Untch,
Chu, et al. [5]. This measure gives a score between 0 and 100, where a
higher number shows a higher fault detection rate. But it is based on the
relationship between faults and test cases. In our environment we are not
aware of any faults, only the test case results. To show the advantages of
fault knowledge in this evaluation we will apply the apfd to the generated
dataset.

To evaluate the applied tcp on the real datasets, we use following simplified
metrics and compare with the scores of the original execution order shown
in Table 4.3 and Table 4.4. For the generated dataset we do the same with
the addition of using the apfd as well.

• Accuracy: A score to show the correctness of the tcp, compared to
a “perfect” prioritization, in terms of executing any failed test cases
first. Equation 4.1 defines the score, where T is a list of prioritized test
cases, T̂ is a list of perfectly prioritized test cases and N is the number
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of test cases, which has to be the same for both inputs.

accuracy(T, T̂) =
1
N

N−1

∑
i=0

1(T̂i = Ti) (4.1)

• Coverage: The fraction of test cases which cover all existing errors of
a execution order. Equation 4.2 shows the calculation of this score,
where T is a list of prioritized test cases, i is the index of the last failed
test case and N is the number of test cases.

coverage(T) =
Ti

N
(4.2)

• apfd: The average percentage of faults detected, requires knowledge
about the existing faults. It is defined in Equation 4.3, where n is the
number of test cases, m the number of faults and TFmi is the index of
the test case which found a fault m first.

APFD = 1− TF1i + TF2i + . . . + TFmi

n ·m +
1

2n
(4.3)

Datasets Coverage Accuracy

failed 01 0.88 0.68

failed 02 0.96 0.68

failed 03 0.83 0.80

Table 4.3: Scores of the originally executed, real regressions.

Datasets Coverage Accuracy APFD

failed generated 0.99 0.67 0.60

Table 4.4: Scores of the originally executed, generated regressions.

4.2 Results

This section shows the results of the developed test case prioritization
method applied to the above defined datasets. Table 4.5 and Table 4.7 show
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the results of the data model MD and Table 4.6 and Table 4.8 show the
results of the requirement model MR.

For both models we applied different reorder combinations, where the left
letter describes the data used to prioritize the clusters and the right letter the
test cases within each cluster. D stands for Duration and R for Requirement
coverage. Furthermore, we applied the two selection methods SingleSample
and PercentageSample defined in Section 3.1.1. For each result we observe the
two metrics coverage and accuracy. Additionally, the results of the generated
dataset are evaluated using the apfd.

Appendix A.4 contains the plotted results of each dataset for both models.

SingleSample PercentageSample

Dataset coverage accuracy coverage accuracy

f ailed 01
D/D 0.99 0.69 0.99 0.68

D/R 0.99 0.69 0.99 0.68

R/D 0.99 0.69 0.81 0.73

R/R 0.99 0.69 0.81 0.73

f ailed 02
D/D 0.96 0.73 0.96 0.69

D/R 0.96 0.73 0.96 0.69

R/D 0.96 0.74 0.97 0.72

R/R 0.96 0.74 0.97 0.72

f ailed 03
D/D 0.94 0.82 0.66 0.75

D/R 0.94 0.82 0.66 0.75

R/D 0.94 0.82 0.71 0.75

R/R 0.94 0.82 0.71 0.75

Table 4.5: Results of MD. We used three regressions and applied four reorder combina-
tions. D stands for Duration and R for Requirement coverage. In terms of cluster
parameterization, we applied mpts = 7 and mclSize = 10.
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SingleSample PercentageSample

Dataset coverage accuracy coverage accuracy

f ailed 01
D/D 0.90 0.75 0.98 0.79

D/R 0.90 0.75 0.98 0.79

R/D 0.90 0.75 0.99 0.79

R/R 0.90 0.75 0.99 0.79

f ailed 02
D/D 0.96 0.71 0.98 0.71

D/R 0.96 0.71 0.98 0.71

R/D 0.96 0.71 0.99 0.72

R/R 0.96 0.71 0.99 0.72

f ailed 03
D/D 0.90 0.78 0.97 0.79

D/R 0.90 0.78 0.97 0.79

R/D 0.90 0.78 0.93 0.80

R/R 0.90 0.78 0.93 0.80

Table 4.6: Results of MR. We used three regressions and applied four reorder combinations.
D stands for Duration and R for Requirement coverage. Here we applied a cluster
parameterization of mpts = 2 and mclSize = 2. The requirements data can be
clustered rather well and is clearly separable.

SingleSample PercentageSample

Dataset coverage accuracy apfd coverage accuracy apfd

f ailed generated
D/D 1.00 0.67 0.77 1.00 0.67 0.89

D/R 1.00 0.67 0.77 1.00 0.67 0.89

R/D 1.00 0.67 0.78 0.99 0.68 0.92

R/R 1.00 0.67 0.78 0.99 0.68 0.92

Table 4.7: Results of MD using the generated dataset. D stands for Duration and R for
Requirement coverage. The parameterization was performed with mpts = 2 and
mclSize = 2.
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SingleSample PercentageSample

Dataset coverage accuracy apfd coverage accuracy apfd

f ailed generated
D/D 0.42 0.79 0.83 0.98 0.75 0.77

D/R 0.42 0.79 0.83 0.98 0.75 0.77

R/D 0.42 0.79 0.83 1.00 0.59 0.42

R/R 0.42 0.79 0.83 1.00 0.59 0.42

Table 4.8: Results of MR using the generated dataset. D stands for Duration and R for
Requirement coverage. The parameterization was performed with mpts = 2 and
mclSize = 2.

Datasets Coverage Accuracy

f ailed01
Original 0.88 0.68

Best MD 0.81 0.73

Best MR 0.90 0.75

f ailed02
Original 0.96 0.68

Best MD 0.96 0.74

Best MR 0.96 0.71

f ailed03
Original 0.83 0.80

Best MD 0.66 0.75

Best MR 0.90 0.78

Table 4.9: Here we compare the best results of the real datasets with the original execution
order. The results are approximately around the original scores.
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Datasets Coverage Accuracy APFD

f ailedgenerated
Original 0.99 0.67 0.60

Best MD 0.99 0.68 0.92

Best MR 0.42 0.79 0.83

Table 4.10: This table shows the scores of the best results compared to the original. For
both models the apfd shows a great improvement. MR even improved the
Coverage and Accuracy by a large margin.

Figure 4.1: The curve of this figure represents the cumulative percentage of faults detected
over the life of a test suit. The area under this curve depicts the apfd. This graph
shows how we have found all faults after the execution of roughly 20% of the
test suit.

4.3 Discussion

Overall, the results do not show a great improvement using the real dataset.
Furthermore, Table 4.5 and Table 4.6 show that the choice of reorder combi-
nation does not seem to make a large difference in most cases.
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MD performed better on the dataset with the least errors using the Percent-
ageSample method in the last step. Compared to that, MR performed better
on the same dataset using the SingleSample method.

While we could conclude that above observations follow a pattern, there is
simply not enough data in this stage of development. What we do know
is that a tcp is certainly possible, even in this kind of limited environment,
but with limited results. There is still room for improvement in terms of
data acquisition. With more data better results may follow, and with more
diverse data more methods may be applied.

But as shown in Appendix A.4, if the tcp is time-limited better results may
be achieved than using the original execution order. Furthermore, since we
are not aware of any faults, we may already have found all of them due to
the tcp without being aware of it. This disadvantage has a large impact in
the evaluation of this method.

Especially, when comparing the results in Appendix A.4 with the original
execution order in Appendix A.3, we can see how the errors are distributed.
A test suit usually consists of groups of related test cases. With such an
execution order, we will always find faults in these groups in the same
sequence. Using a dedicated tcp we should be able to find multiple faults
earlier.

The usage of the generated dataset with knowledge of faults, confirms this
assumption. In Table 4.7 and Table 4.8 we see similar results in terms of
Coverage and Accuracy, but the apfd shows a great improvement in general.
Table 4.10 shows how MR even improves upon the Coverage and Accuracy
by a great margin.
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5 Conclusion

There exist quite a few test case prioritization techniques. Most of them
depend on different code metrics, which are not available in the scope of
this project. To deal with such a limited environment, we applied a few
common machine learning methods.

First, we made use of the log output of each test case, assuming that test
cases with similar output find similar faults. The application of this method
is quite limited, since we need to use an unbiased regression as input. The
second approach is based on the relation between test case and covered
requirements.

While the results do not show a great improvement based on the simpli-
fied metrics used, we can observe an improved distribution of failed test
cases. Especially using the requirement model, we can assume an increased
likelihood of finding faults. We verified this assumption using a simplified
test suit with incorporated fault knowledge we generated. By using the
well established apfd metric, we were able to show a large improvement
in terms of fault detection after the application of the developed test case
prioritization.

To allow for easy usage and further experimentation, we made full use
of Python and its flexibility, by implementing a Sklearn-based API. This
approach not only makes future modification, but the incorporation into
the existing test system rather easy.

In conclusion, a good foundation for further exploration has been created
by providing the basic know-how and a simple api. Building upon this
groundwork, it should be possible to improve the developed prioritization
in future works.
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5 Conclusion

5.1 Future Work

The first and essential step is improving the data used for the prioritization.
By making use of code metrics, we would be able to make use of already
established test case prioritization methods. Furthermore, using the gener-
ated dataset we were able to show the importance of fault knowledge. The
incorporation of fault data, allows for easy and comparable evaluation of
further developed methods.

Another problem is the parametrization of any applied machine learning
method. While an interactive workflow is a valid approach, automation
is always the next step in any test system. With an automated system the
optimization of specific metrics is possible as well.
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A.1 ClusterTCP Class

c l a s s ClusterTCP ( BaseEstimator , TransformerMixin ) :
def i n i t ( s e l f , t a r g e t f e a t u r e = ’ Requirements ’ ,

r e o r d e r f =None , target components =3 , minPts=None
, minClusterSize=None , i n t e r a c t i v e =Fa l se ) :

# I n i t i a l i z e p a r a m e t e r s

def f i t ( s e l f , X , y=None ) :
# Input and p a r a m e t e r v a l i d a t i o n

# Apply v e c t o r i z a t i o n

# Apply d i m e n s i o n a l i t y r e d u c t i o n

# I f i n t e r a c t i v e f l a g i s s e t
# Per form c l u s t e r i n g and r e t u r n

# e l s e
# Per form i n t e r a c t i v e p a r a m e t e r e s t i m a t i o n

and c l u s t e r i n g
# I f a c c e p t e d

# r e t u r n
# e l s e r e p e a t

def transform ( s e l f , X , y=None ) :
# Check i f f i t t e d

# Input and p a r a m e t e r v a l i d a t i o n

# Apply r e o r d e r f u n c t i o n d e f i n e d by u s e r

# Return t r a n s f o r m e d d a t a

def f i t t r a n s f o r m ( s e l f , X , y ) :
# F i r s t c a l l f i t and then t r a n s f o r m X and
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r e t u r n

def p l o t c l u s t e r s ( s e l f , X , t i t l e = ’ Clus ter p l o t ’ , ax
=None ) :

# P l o t X i f f i t t e d

def show ( s e l f , t i t l e ) :
# P r i n t and d i s p l a y r e s u l t i n g p r i o r i t i z a t i o n

def score ( s e l f ) :
# Return s c o r e
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A.2 Traceability Matrix

Figure A.1: This traceability matrix describes the relationship between test cases and re-
quirements, where each test case covers a number of requirements. A test case
covers a requirement if the cell dark blue (1). The opposite is the case if a cell is
light blue (0). This matrix applies to all datasets used in Chapter 4. The names
of test cases and requirements have anonymized.
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A.3 Original

Figure A.2: The original execution order with results for f ailed 01 (left), f ailed 02 (middle),
f ailed 3 (right).

Figure A.3: The original execution order with results for f ailed generated.
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A.4 Results

Figure A.4: Results of tcp applied to Model MD using dataset f ailed 01.

Figure A.5: Results of tcp applied to Model MD using dataset f ailed 02.
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Figure A.6: Results of tcp applied to Model MD using dataset f ailed 03.

Figure A.7: Results of tcp applied to Model MR using dataset f ailed 01.
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Figure A.8: Results of tcp applied to Model MR using dataset f ailed 02.

Figure A.9: Results of tcp applied to Model MR using dataset f ailed 03.

39



Figure A.10: Results of tcp applied to Model MD using dataset f ailed generated.

Figure A.11: Results of tcp applied to Model MR using dataset f ailed generated.

40



A.5 Generated Dataset

A sample of the generated and preprocessed dataset. Represents a failed
test case. The data is based on the real data created during the execution of
a regression.

Name: TC8

Result: False
Duration: 92

Data:

i n i t setparam wirebreakcheck true checkQuali ty t rue
checkQuali ty t rue checkQuali ty t rue checkStatus t rue

checkQuali ty t rue checkQuali ty t rue checkStatus
t rue checkQuali ty t rue checkQuali ty t rue checkStatus

t rue checkStatus t rue checkQuali ty t rue checkStatus
t rue checkQuali ty t rue checkStatus t rue

checkQuali ty t rue checkQuali ty t rue checkQuali ty
t rue checkQuali ty t rue checkStatus t rue checkStatus
t rue checkQuali ty t rue checkStatus t rue checkQuali ty

t rue checkQuali ty t rue checkQuali ty t rue
checkQuali ty f a l s e r e s u l t f a l s e

Requirements:

pfunct ion V pfunct ion V INT psafe ty B INT psafe ty V
INT psystem B psystem V INT puser V INT puser B
psystem V pfunct ion B psafe ty B psafe ty V puser
B INT puser V psystem B INT pfunct ion B INT

Requirement coverage: 0.053

Fault: 0
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