
Martin Mayr

Identifying microservice candidates in
service-oriented architectures based on

runtime-data

Bachelor’s Thesis
to achieve the university degree of

Bachelor of Science

Bachelor’s degree programme: So�ware Engineering and Management

submi�ed to

Graz University of Technology

Supervisor

Dipl.-Ing. Dr.techn. Roman Kern

Institute for Interactive Systems and Data Science
Head: Univ.-Prof. Dipl.-Inf. Dr. Stefanie Lindstaedt

Graz, February 2021

A�idavit

I declare that I have authored this thesis independently, that I have not used other
than the declared sources/resources, and that I have explicitly indicated all material
which has been quoted either literally or by content from the sources used. �e text
document uploaded to tugrazonline is identical to the present bachelor‘s thesis.

Date Signature

ii

Acknowledgements

I would �rst like to thank my thesis advisor Dipl. -Ing. Dr. techn. Roman Kern of
the Institute of Interactive Systems and Data Science at the Technical University of
Graz. �e door to Prof. Kern o�ce was always open whenever I ran into a trouble
spot or had a question about my research or writing.

I would also like to thank the people who inspired me to write my thesis about
such an interesting and complex topic, allowed me to do it in cooperation with
their company and were involved in the validation for this research project: Wieser
Dietmar, Schöpf Edmund and �aler Georg at the Rai�aisen Information Service.
Without their participation and input, this thesis would never have been possible.

A special thank goes to my parents for providing me with unfailing support and
continuous encouragement throughout my years of study.

Finally, I want to thank the Erasmus+ Program for supporting this thesis following
the european spirit for development and innovation.

�ank you.

iii

Abstract

When developing enterprise so�ware applications, the goal is to expand the products
life-span which is o�en done by developing a state of the art base to ensure the
future expandability, integration of third-party applications and maintenance. Many
companies started developing their tailored so�ware in the early 2000s, but over
the last 20 years, requirements for so�ware products in terms of SLA, Testing
and Fault Tolerance, to name a few, increased drastically as more and more issues
came to light. As a result of this, a new architectural style emerged: Microservices.
Microservices try to reduce technical challenges when developing applications and
achieve a more structured way to develop so�ware solutions on the organisation
level. Whereas organisational structures can be changed relatively easily, the mi-
gration of an existing legacy system towards microservices requires a lot of human
work.

Algorithmic techniques exist, but they heavily relay on static code analysis and
ignore crucial runtime behaviours of the system. �is thesis tackles that problem by
presenting an algorithmic way to extract microservice candidates in a refactoring
scenario entirely based on run-time data of the system. For this, a large amount
of runtime-data was acquired and modelled as a graph. To represent the runtime
dynamics of the system, a set of weight functions were de�ned. �e extraction
of the microservice candidates was realized by applying graph-based clustering
algorithms on the graph representing the system. In addition to this, a web-based
user-interface was developed to provide architectural insights before and a�er the
extraction process.

To assert and test the correctness of the developed approach the author entered a
cooperation with the Rai�eisen Information Service, which tested and rated the
output of the extraction process. Besides this, the correctness was veri�ed via
custom microservice-speci�c metrics. �e results show that the described approach
works very well for its structural simplicity and can be used to analyze the current
state of the system and automate the extraction process arbitrary well.

v

Contents

Abstract v

1 Introduction 1
1.1 Motivation . 2
1.2 Research �estions . 3
1.3 Structure of the �esis . 4

2 Theoretical Background 5
2.1 Monolithic Application . 5
2.2 Service Oriented Architecture . 6
2.3 Microservices . 7

2.3.1 Bene�ts and Challenges 8

3 State of the art extraction methods 13
3.1 Function-Spli�ing Heuristics for Discovery of Microservices in

Enterprise Systems . 13
3.2 Extraction of Microservices from Monolithic So�ware Architectures 14
3.3 Service Cu�er: A Systematic Approach to Service Decomposition 14
3.4 Microservice Decomposition via Static and Dynamic Analysis of

the Monolith . 15
3.5 A Decomposition Framework based on Process Mining 15
3.6 From Monolith to Microservices: A Data�ow-Driven Approach . 16
3.7 Weaknesses of recent works . 16

4 A data-driven approach for microservice extraction 17
4.1 �e proposed approach . 17

4.1.1 Data acquisition, �ltering & distillation 18
4.1.2 Graph creation . 19
4.1.3 Weight factors . 20

vii

Contents

4.1.4 Weight function . 21
4.1.5 Community Detection . 22

4.2 Visualisation . 25

5 Evaluation 31
5.1 Evaluating the Results using metrics 31

5.1.1 �eoretical Background 31
5.1.2 Evaluation Results . 34

5.2 A domain expert’s view . 45

6 Conclusion 49
6.1 Outcomes . 49
6.2 Limitations & Future Work . 51

7 Appendix 53
7.1 I-MULT . 53
7.2 I-DIV . 55
7.3 L-MULT . 57
7.4 L-DIV . 58

Bibliography 61

viii

1 Introduction

Developments in areas such as cloud computing, Development and Operations
(DevOps) and event-based systems enabled the development of new architectural
styles as an alternative to the widely used monolithic architectural style. In the last
couple of years, we could observe several of the worlds largest companies (such as
eBay, Net�ix and Amazon) implement and use this new architectural style to their
advantage. [4]

In contrast to established so�ware architectures, such as monoliths or service-
oriented systems, the microservice pa�ern aims to split the application into a set of
so-called services, where each service has its responsibility and can be deployed
independently. �is key feature tackles some of the most crucial requirements of
today’s so�ware industry such as scalability, fault tolerance and DevOps. Despite
these bene�ts, many companies fear the migration process. Taibi et. al. describe in
their work that companies consider e�ort overheads, the complexity of decoupling
and lack in return of interests as the main issues when migrating a legacy application.
[21]

In fact, the refactoring of existing systems is and has always been one of the
most complicated and error-prone processes in so�ware engineering [3]. �is
especially holds true when migrating to a new architecture model. As Taibi et.
al. stated, the industry sees di�erent challenges in the migration process. One of
them is the identi�cation of individual so�ware components that can be divided
into single responsible units - namely microservices[21], [15]. While tools for the
structural analysis of the monolith exist [21], there is a lack of tools that can assist
so�ware architects in the migration process by identifying possible microservice
candidates and taking into account complex and crucial runtime aspects of the
system[22],[4].

�is thesis was elaborated in collaboration with the Rai�eisen Information Service,
which provides the IT infrastructure and the so�ware used by over 40 cooperative

1

1 Introduction

banks with nearly 174 subsidiaries (2019).

�eir so�ware product handles most of the banking activities such as online banking,
card payments, ATM machines and EBA-Clearing to name a few. As the current
so�ware solution is used by over 70.000 users a stable, reliable and easily scalable
IT-Infrastructure is key to success. In the past years, e�orts have been made to
disavow the in this sector widespread mainframe architecture. �is was achieved
by spli�ing up the initial monolithic application into a service-oriented architecture
(SOA). �is SOA application is now in charge of most of the business procedures.

In the past couple of years, the users and legal requirements for the banking sector
increased signi�cantly. SOA based architectures have some major downsides in
terms of agility and scalability. To mention two examples: dependencies between
services and components can introduce scaling challenges and the widely used
development pa�ern of sharing dependencies limits management capabilities.

To keep up with the high demands and to facilitate development cycles the Raif-
feisen Information Service decided to refactor and extract parts of the so�ware to
step towards a microservice-based application. To simplify migration processes and
to not fully rely on domain knowledge, this thesis analyzes di�erent migration ap-
proaches and derives an enhanced approach for decomposition of service-oriented
architectures based on execution data. �e described approach and the resulting
tool were developed and validated at Rai�eisen Information Service and will be
part of their so�ware architecture road-map.

1.1 Motivation

In a monolithic architecture, all functions and modules which are needed at runtime
are packed into one application. While this approach of packing everything into
one application might be successful for a small projects, it will be insu�cient for
applications growing in size. Once an application has grown in size, the monolithic
design of the application will become overwhelmingly complex, the incompre-
hensible code base may delay bug �xes and become an obstacle for continuous
deployment. [4] In the last twenty years, applications evolved from tightly-coupled
systems into a large collection of services [18]. �is so-called service-oriented
architecture (SOA) model allowed applications to become more �exible and to draw

2

1.2 Research�estions

sophisticated context boundaries [9]. Due to the market’s high increasing demand
for new application features, fault tolerance, and continuous integration, systems
required to change in how they are structured and built [18].

Microservices are an architectural approach that helps to model distributed, �ne
grade, and independent systems. Each system is modelled around business capabil-
ities and has its responsibility. All services communicate via a lightweight protocol
(o�en HTTP). �ese key properties allow applications to build upon this pa�er
to fully take advantage of features like Cloud Computing, DevOps strategies, and
agile frameworks like Scrum. [15]

Neither academia nor industry agree whether the newly emerged microservice
pa�ern is a new architectural style or an implementation approach to the existing
SOA pa�erns [23],[4]. Despite this, both agree on the advantages of microservices
in comparison to other architecture styles [4]. While providing huge bene�ts,
microservices can not be seen as a silver bullet. In fact, an application build upon
microservice principles brings a lot of complexity in terms of testing, security, and
decomposition[15].

1.2 Research�estions

�is thesis aims to give an overview of existing extraction methods for microservices
and proposes an enhanced method for service decomposition. For this following
research questions will be answered:

• RQ1: Are there existing best practices to decompose an existing monolithic
system into microservices and where are their key di�erences?

• RQ2: To which extend is domain knowledge necessary the in creation of
microservices given an existing system?

• RQ3: How can a complex monolithic legacy system be observed at runtime,
modelled and split into smaller, independent services?

– RQ3.1: In which way have results be presented to So�ware Architects
and Domain Experts so that they can gain insights in their application
and evaluate microservice candidates?

3

1 Introduction

– RQ3.2: Is it possible to extract the di�erent domains of an existing
legacy system to provide a Domain Driven Design alike approach for
extracting microservices based on runtime-data of a legacy system?

– RQ3.3:How much does the result of the developed tool di�er from a
decomposition provided by a domain expert?

– RQ3.4: How can the quality of the created microservices be assessed?

1.3 Structure of the Thesis

�is thesis is structured as follows:

• Chapter 2�eoretical Background: �is chapter provides an overview of
the key features, bene�ts and challenges to overcome the di�erent architec-
tural styles.

• Chapter 3 State of the art Decomposition Approaches: In this chapter
di�erent approaches to identify potential microservice candidates will be
discussed.

• Chapter 4: Proposes an approach for identifying potential microservices
candidates based on runtime-data.

• Chapter 5: Evaluates the approach described.
• Chapter 6: Conclusion summarizes and .discusses the outcome of the thesis

4

2 Theoretical Background

�is chapter provides an introduction to the three main architecture pa�erns used
in enterprise architectures, as well as their bene�ts, associated challenges and
delimitation between them.

2.1 Monolithic Application

Monolithic applications have come a long way and are the traditional method of
developing so�ware. In a monolithic architecture all functions and modules are
encapsulated into one single application - therefore models are tightly coupled and
self-contained. While this type of architecture o�en is used in an early prototyping
phase due to the ease of development, test and deployment, once the application
becomes large and the team size grows signi�cant, drawbacks will be encountered
[19]:

• �e development of the application will slow down as a result of a growing
and ever more complex codebase. [19]

• Continuous Deployment / Continuous Integration becomes di�cult as the
build and deployment time of the monolith grows. [19]

• Scaling can only be achieved by running many instances behind a load-
balancer (horizontal-scaling) [19]

�e literature agrees that it is a good idea to start a project as a monolithic system in
order to explore its complexity and component boundaries.[7] Figure 2.1 illustrates
the basic concepts of a monolithic architecture yielding a model view component
based monolithic application.

5

2 Theoretical Background

Figure 2.1: Example of an Monolithic Architecture scheme

2.2 Service Oriented Architecture

�e Service-Oriented Architecture (SOA) pa�ern was �rst described by Roy W.
Schulte and Ye�m V. Natis in 1996 and was an a�empt to break up existing mono-
lithic applications into smaller subsystems modelled around business processes
as well as easy integration of 3rd party systems[9]. Each business process can
communicate with another or a 3rd party system using standardized messages
(mostly XML) via an Enterprise Service Bus. By using a standardized communica-
tion protocol and well-de�ned interfaces, SOA can provide loosely couplings and
high consistency. [9]

Although de�ned in 1996, SOA gained a lot of a�ention in recent years. Tackling
challenges associated with maintenance and the growing Cloud Computing sector,
it became a silver bullet for the migration of legacy systems. Di�erent industries

6

2.3 Microservices

gained a lot of bene�ts by building their application using a domain-speci�c ad-
option of SOA, but many companies have had a hard time and o�en failed at
implementing and migrating legacy applications. A reason for this, as per Nikne-
jad et. al., has o�en been the lack of technology and domain knowledge as well
as information about critical success factors. [16] Figure 2.2 illustrates the basic
concepts of a SOA architecture.

Figure 2.2: Example of an SOA Architecture scheme

2.3 Microservices

Lewis and Fowler in 2014 described the term microservices as an ”[. . .] approach to
developing a single application as a suite of small services”[12]. �ey stated that at
this point (2014) there is no precise de�nition of this architectural style [12]. As of
now neither academia nor developer movements, pushing the term microservice,

7

2 Theoretical Background

have come up with a formal de�nition of microservices architecture. Developers,
pushing the term microservice claim it is a new architectural style. In contrast
advocates of SOA insist in the fact that microservices are just an implementation
approach to existing SOA. [23]

Even though there is no accurate de�nition of this architectural style, Lewis and
Fowler[12] as well as Zimmerman[23], identi�ed common characteristics and use-
cases such as:

• Single-responsibility units encapsulate data, process logic and form service.
Each service is modelled around business capabilities and communicates with
other services, through a lightweight communication protocol (e.g. HTTP).
[12]

• Services are identi�ed by business-driven development practices such
as domain-driven design.[15]

• Multiple computing paradigms and languages can be used to develop
services. �is allows the developer-team to unleash the full potential of
di�erent computing paradigms and technologies. [23],[12]

• Lightweight container technologies are used to scale and deploy services
on demand.[23]

• DevOps approaches for automated con�guration, performance and fault
management are employed to extend agile practices and include service
monitoring capabilities. [23]

Figure 2.3 illustrates a simpli�ed microservice architecture.

2.3.1 Benefits and Challenges

In 2017 Taibi et. al. conducted a survey among so�ware architects, migration
consultants, project managers, developers and chief executive o�cers (CEOs) who
successfully migrated their application to a set of microservices. �e survey had
the goal to analyze initial motivation, as well as the pros and cons of migrating
from a monolithic architecture to microservice-based architectures in the industry.
Respondents con�rmed the bene�ts mentioned in literature such as [15], [12],[23],
[21] but also stated that the migration process was linked with di�culties which
had to be overcome.

8

2.3 Microservices

Taking into account literature and industry, key bene�ts of a microservice-based
architecture may be summarized as follows:

• Modularity / Separation of So�ware Responsibilities: �e modular ar-
chitecture allows to reduce the complexity of a monolithic system by break-
ing a system into independent and self-deployable services. �is enables
developer teams to test and deploy their so�ware without having to wait
for other teams. �e reduced size of the code furthermore increases the
understandability, and maintainability of the code. [21]

• Scalability: While scaling a monolithic as well as an SOA application can
only be achieved by scaling the entire application(see Fig. 2.1 and Fig 2.2),
microservices allow to scale only required parts, hence saving costs and
con�guration overhead. [12]

• Fault tolerance: �e fault of a microservice might not impact the whole
system, whereas the failure of a component in a monolithic application is
highly likely to break the whole system. [21],[15]

• Delegation of Team Responsibilities: Since a microservice does not have
any external dependencies, each development team can develop independ-
ently, reducing communication and coordination requirements among teams.[21],[12]

• Decentralized Governance / Easy Technology Experimentation: Since
microservices are small by de�nition, they can be rewri�en from scratch
in a short amount of time. �is allows companies to experiment with new
technologies to see if they could �t their needs. In a survey participants
mentioned that their microservice structure allowed them to easily (re-)write
components in di�erent programming languages using di�erent technologies
and integrate them �awlessly into the existing system landscape. A monolithic
application would not have allowed this. [21],[12], [15]

• DevOps: Among the participants of the survey DevOps was considered as a
crucial bene�t allowing each development team to develop, test and deploy
independently.[21]

When it comes to challenges, the literature and the results of the survey diverged.
Whereas the literature stated challenging factors can be found mainly in technical
areas, the survey participants further complained about economical and psycholo-
gical limitations.

9

2 Theoretical Background

• Decomposition: Industry [21], as well as literature [15],[8],[4], mentioned
that the decomposition process is one of the most challenging factors due to
the lack of automated tools, complexity of the legacy system and unavailable
domain knowledge.

• Databases and Data Consistency: In most legacy applications, one data-
base is shared among di�erent business procedures. �e data in this database
is o�en shared and accessed by di�erent components. [15] Microservices
incorporate the principle of decentralized data management. �is requires
to split up existing data-sets and assign the responsibility of each data-set
to the concerned microservice.[12] Industry stated, that data governance
and database migration is one of the biggest challenges when it comes to
migrating existing legacy systems to microservice systems. [21]

• Sizing: �e size of a single microservice is a question that has not been
answered generally yet. According to Newman, trivial approaches like lines
of code can be misleading. �e reason is simple: di�erent technologies require
di�erent implementation approaches. Each approach might be connected
to more or fewer lines of code. Newman states, that in most cases domain
experts do have a pre�y good understanding if big is too big. [15]

• Communication Overhead: Each service needs to communicate with other
services. �is cannot be done via in-memory communication like in monoliths
[12]. Communication in a microservice architecture is done over the network,
adding complexity to each service and the network infrastructure. Among
the participants of the survey conducted by Taibi et. al. , participants stated
that this was a concerning factor but not a limiting one, since their systems
were deployed on high performing cloud infrastructures. [21]

• Service Discovery describes the ability to detect new, destroyed and avail-
able services. �is can become a challenge in an environment, where services
are constantly created and destroyed. [15]

• Migration e�ort estimation & Cost Overhead: the cost estimation of a
microservice-based system is o�en less accurate than that of an enclosed sys-
tem. Among the participants of an industrial study, each respondent reported
an e�ort overhead of nearly 20% more compared to the e�ort required devel-
oping a monolithic system. However, it must be noted that each respondent
reported that the bene�ts of the new architecture such as maintainability and
scalability highly compensate the extra e�ort.[21]

10

2.3 Microservices

• People’s Minds: For several developers changes in existing architectures
are a general issue. Especially more senior developers do not always trust in
recent technologies. �ey identify themselves with the legacy system and see
it as part of their creation. �is makes them reluctant to accept the importance
of changes. [21]

Although only key bene�ts and challenges could be stated, it is easy to see that this
new paradigm or architecture form entails some huge bene�ts in comparison to
monolithic architectures. �e delimitation to SOA is not clear, Zimmerman comes
to the conclusion, that several characteristics of microservices mostly pertain to the
development process, development culture and the process and physical viewpoints
and not to the logical architectural pa�erns used. [23]

Figure 2.3: Example of an Microservice Architecture scheme

11

3 State of the art extraction
methods

When speaking of automated microservice extraction, literature distinguishes
between static and dynamic extraction methods. Static extraction describes the
identi�cation and extraction of microservices entirely based on the underlying
source code. �ese approaches o�en highly rely on metrics and do not consider
the complex runtime behaviour of applications. Dynamic approaches on the other
hand can provide extraction advice by using data representing reality. �ey o�en
use application traces or event logs. In the following state of the art approaches for
microservice candidate identi�cation and extraction are described.

3.1 Function-Spli�ing Heuristics for Discovery of
Microservices in Enterprise Systems

De Alwis et. al. [5] described a heuristic that helps to identify suitable parts of an
enterprise system which could be re-engineered as microservices. �eir approach
assesses the structural and behavioural properties of legacy enterprise systems and
microservices. Analyzing pa�erns of system executions and business operation,
De Alwis et. al. de�ned two heuristics namely the ”subtype” and the ”common
subgraph”, which, they argue, help to identify prominent ”microserviceable” com-
ponents.

13

3 State of the art extraction methods

3.2 Extraction of Microservices from Monolithic
So�ware Architectures

Mazlami et. al. in [14] developed an algorithmic approach to tackle the extraction
problem by presenting three formal coupling strategies and embedding those into
a graph-based clustering algorithm. �e coupling strategies rely on information
gained from the monolithic codebase. �e approach has two phases: First the
codebase is analyzed. �e result of this phase is a weighted graph where each
node represents a class and each edge a connection among classes. �e weight of
the edges depends on the chosen coupling strategy. In the second phase, graph
clustering algorithms extract possible microservice candidates.

3.3 Service Cu�er: A Systematic Approach to
Service Decomposition

Gysel et. al. in [8] propose a service decomposition framework based upon six-
teen di�erent coupling criteria derived from literature and industry. An entity-
relationship model serves as the basis for the decomposition process. �e process
gets enhanced by so-called ”User Representations” where a user provides further
information about the domain model by de�ning use cases, responsible roles and
in a later step nano entities. A nano entity is a generalization of data, operation
and artefact associated with a service. Based on this data an undirected graph is
built, on which, based on coupling criteria, possible microservice candidates are
proposed. To verify the correctness of the approach a tool named Service Cu�er
was developed. �e tool can suggest candidates for service decomposition based
on the above mentioned sixteen criteria.

14

3.4 Microservice Decomposition via Static and Dynamic Analysis of theMonolith

3.4 Microservice Decomposition via Static and
Dynamic Analysis of the Monolith

Krause et. al. present an approach that not only uses a static analysis of the legacy
system but includes system runtime behaviour as well. �eir approach combines
established analysis techniques for microservice decomposition, such as bounded
context. �e migration approach was validated on a real-world example. Krause et.
al. start the decomposition process with a domain analysis. Based on the outcome,
they were able to identify bounded contexts of the monolith. A�er having gained
essential insights into the application, the static so�ware structure is analyzed
and mapped to the previously identi�ed context boundaries. �is allows them to
identify possible domain overlaps. In the last and �nal step service boundaries were
re�ned by analyzing runtime data. [11]

3.5 A Decomposition Framework based on Process
Mining

Taibi et. al. in [22] describe an approach which aims to extract microservice candid-
ates entirely based on runtime behaviours of legacy applications. For this Taibi et.
al. combined process-mining techniques and dependency analyses performed on
log �les collected from the monolith runtime behaviour. �e decomposition process
consists of 5 steps. In the �rst step, most frequently execution paths are identi�ed
by using a proprietary tool. In the second and third step, the frequency of execution
path is analyzed and circular dependencies are removed. In the fourth step, di�erent
decomposition options were provided and evaluated manually. Finally step �ve
ranks the elaborated options based on metrics. Taibi et. al. validated their approach
in an industrial case study.

15

3 State of the art extraction methods

3.6 From Monolith to Microservices: A
Dataflow-Driven Approach

Chen et. al. propose a ”[. . .] puri�ed data�ow-driven mechanism that can guide
rational, objective and easy-to-understand microservice-oriented decomposition.” �e
described approach consists of three steps. In the �rst step a puri�ed data �ow
diagram (DFD) is constructed manually. In the second step the puri�ed DFD is
converted into a decomposable DFD. In the third and �nal step the decomposable
DFD is used to identity microservice candidates. [4]

3.7 Weaknesses of recent works

�e above described methods all come with strength and weaknesses.

Mazlami et. al. [14] only use static code analysis to gain knowledge about the legacy
system. �e approach does not consider the complex runtime aspect of mono-
lithic systems. Moreover, semantic coupling strategies, based on term-frequency
inverse-document-frequency (TF-IDF) method to identify high-level topics or do-
main concepts, can be error-prone when considering the fact that especially in
strongly regulated domains like the �nance sector names for classes, methods and
variables contain domain-speci�c information in domain language. Problems can
occur when the internal coding guidelines of the application are in English but the
domain-speci�c language is de�ned (by management or by law) as i.e. German or
Italian.

Gysel et. al. [8] proposed an extraction method based on sixteen coupling criteria
extracted from literature and industry experience. As [4] stated Gysel et. al. [8]
used an undirected graph to model the system. Where dependencies in undirected
graphs can be displayed, they do not contain any information about the direction
of the dependency. For this reason and the defective determination of the edge
weights, Chen et. al. [4] described the graph as non-objective. Aside from huge
con�guration overhead, Gysel et. al. [8] mention that their approach does not re�ect
any runtime aspects of the application such as throughput or bo�lenecks.

16

4 A data-driven approach for
microservice extraction

4.1 The proposed approach

�e goal of the proposed approach is to model the so�ware-system based on
runtime-data. �e result of this modelling process is a graph, which represents the
so�ware-system and it’s runtime dynamics so that graph-clustering algorithms can
be applied and ultimately microservice candidates can be extracted.

To model the graph some steps are required which are described in more detail in
the following.

1. Data acquisition: In the �rst step runtime data is acquired using the Elastic
Application Performance Monitor (APM) 1. �e Elastic APM can monitor
each request to the system and all method-calls associated with it.

2. Data �ltering & distillation: In the second step the extracted data is dis-
tilled.

3. Graph creation: In this step a weighted graph is build to represent the
system on class level.

4. De�nition of a weight function: �is step applies a weight-function to
the created graph to represent the complex dynamics of the system.

5. Community detection: �e created graph is split up into communities
using graph-clustering algorithms.

1h�ps://www.elastic.co/apm

17

4 A data-driven approach for microservice extraction

4.1.1 Data acquisition, filtering & distillation

To gather insight information on the application during runtime, log �les or similar
data-sources are required. �e problem with relying heavily on log �les while
examining an existing system is that log-�les are by nature not that precise as one
relies on the usage or the implementation of the logging system. To overcome this
problem this approach uses a so called Application Performance Monitor (APM),
more precisely the APM Developed by Elastic. Elastic o�ers di�erent Monitoring
Agents for today’s most used technologies. �ese Monitoring Agents connect to the
application and can collect internal application states such as incoming requests to
the system, function calls and database-queries.

Complex systems o�en have connections to 3rd party systems. �ese systems can
be developed by the same company as well as by other companies and therefore
be hosted in-house or not in-house. Since the to be examined application can not
a�ect the performance of the 3rd party system, outgoing requests to these systems
have been removed from the data-set. A simpli�ed and distilled data-set can be
seen in Table 4.1, where:

• Transactions are the highest level of work within a service (i.e. request to the
application, background job or batch job). �e �eld Transaction ID provides
a unique identi�er per request to the system.

• Spans contain information about the execution of a speci�c code path. �ey
measure from the start to the end of an activity, and they can have a par-
ent/child relationship with other spans. �e Span ID is a unique identi�er
for each Span.

• �e Span Duration, is measured in milliseconds and describes how long the
system needs to complete the Span.

• �e column Span Name provides the class name and the invoked method
name spread by ”#”.

Timestamp[us] Transaction ID Span ID Span Name Span Duration[ms] Parent ID
0 bf2722 RequestHandler#methodName
1 bf2722 988fe4 ClassName#methodName 25 bf2722
2 bf2722 988fee ClassName#methodName 45 988fee
3 bf27228 RequestHandler#methodName

Table 4.1: Simpli�ed distilled raw-data-set

18

4.1 The proposed approach

4.1.2 Graph creation

Although the available dataset o�ers the granularity to construct a graph of how
methods of classes interact with each other, this approach only evaluates the
interactions on class level - which means how classes interact with each other. �is
could be seen as s weakness of the proposed approach but it is not since classes -
driven by object-oriented principles - in each architecture model should encapsulate
distinct and assignable logic.

�e graph creation is done by traversing the �ltered dataset and inserting classes as
nodes and child-parent relationships as edges. �e child-parent relationship is de-
tected by interpreting the Parent ID �eld. Each inserted edge contains information
about the transaction and the time the connection was used.

Figure 4.1: Each edge contains information about the transaction and the time of occurrence in the
form: (transaction id, timestamp)

19

4 A data-driven approach for microservice extraction

4.1.3 Weight factors

To not only model interaction between the di�erent components of the system, but
also the more complex dynamics between those components, a weight function is
used. �e proposed weight function consists of three factors:

• Total calls: Represents how o�en a function in class i is called by a function
in class j.

total calls(i, j) = |calls(i, j)| (4.1)

• Average duration: Represents the average computation time for a function
call from calss i to a function in class j.

average duration(i, j) =
|duration(i, j)|
|calls(i, j)|

, with |calls(i, j)| > 0 (4.2)

• Sample variance : �e sample variance (s2) displays how regularly a func-
tion in class i invokes a function in class j . For this weight-factor the time
frame in which the application has been monitored is divided into chunks
of one minute before the recorded calls between i and j are summed and
assigned to the corresponding chunk. A�er the assignment, the sample vari-
ance is computed by 4.3 . Table 4.2 provides an example on how the variance
is calculated on a given data-set.

s2 =

∑
(X − X̄)2

N − 1
(4.3)

Group Name Timestamp Number of requests
Class 1 - Class 2 2020-11-18T10:42:00+00:00 5

2020-11-18T10:43:00+00:00 12
2020-11-18T10:44:00+00:00 7

Variance : 8,6

Table 4.2: Simpli�ed example of how the set variance is calculated.

20

4.1 The proposed approach

4.1.4 Weight function

Assigning each edge of the graph an appropriate weight given the above-de�ned
weight components is all but complicated as di�erent combinations result in dif-
ferently sized and structured clusters. In the following two weight functions 4.4
and 4.5, which follow a basic intuition, are described. Each function consists of two
parts, the importance and the scale part.

�e importance part of the formula is used to determine how regularly a connection
between two nodes i and j is invoked. To illustrate the problem to be solved, let’s
assume the system has some sort of a backup-function which’s purpose it is to copy
data from one database table to another and that starts every night at 11 pm. �e
implementation is done via two nodes i and j. i only reads a data-set, transmits it
to j and j only writes the data-set. As the amount of data grows the |calls(i, j)|
will grow. �is, besides being problematic from an implementational perspective,
would lead to the false assumption, that the connection between i and j is one of
the most used connections which is wrong. To correct this, the total amount of
calls is multiplied with the set-variance of the corresponding connection between
i,j. �e set variance, normalized using the min-max scaler with a feature range
between 0 and 1, represents, as the name suggests, how variable the connection
is being used. In the above-described example, the variance would be relatively
high due to the fact that the backup procedure starts every night at 11 pm and is
inactive during the day.

�e scale part of the equation follows the simple assumption that long-running
requests should be bundled together to avoid spanning excessive service boundaries
and bene�t from features such as scalability.

w1(i, j) = total calls(i, j) ∗ s2(i, j)︸ ︷︷ ︸
importance

∗ average duration(i, j)︸ ︷︷ ︸
scale

(4.4)

w2(i, j) =

importance︷ ︸︸ ︷
total calls(i, j) ∗ s2(i, j)
average duration(i, j)︸ ︷︷ ︸

scale

(4.5)

21

4 A data-driven approach for microservice extraction

4.1.5 Community Detection

In an ideal microservice architecture the components in each microservice are
highly cohesive while microservices are coupled loosely among each other [15].
In this work, two di�erent community detection algorithms are used to �nd the
optimal clusters. Each algorithm uses the edge weights de�ned by 4.4 and 4.5 to
compute the di�erent clusters.

The Louvain Algorithm for community detection

�e Louvain community detection algorithm was �rst described in 2008 by Bondel
et. al. [1]. �e algorithm aims to achieve a high density of edges within the clusters
and a low density between the clusters which can be achieved by optimizing the
modularity of each cluster.

�e algorithm consists of two phases: In the �rst phase, each node is assigned to
a di�erent community. �en for each node i the neighbours j of i are considered
by evaluating the gain of modularity that would take place by removing i from
its community and by placing it in the community of j. �e gain of modularity
∆Q is de�ned in Equation 4.6. If there is a possible positive gain in modularity for
node i by placing it into the neighbour community, the node gets moved. If there is
more than one possible positive gain in modularities, the node gets moved to the
neighbourhood community which can provide the maximum gain in modularity. If
no positive gain is possible, i stays in its original community. �is process is repeated
for all nodes until no further improvement can be achieved. In the second phase,
a new network where nodes are communities from the previous phase is created.
Any links between nodes of di�erent communities are handled by connecting the
communities via a weighted edge. Once the second phase has ended, the �rst phase
can be re-applied to the network[1].

22

4.1 The proposed approach

∆Q =

[
Σin + 2ki,in

2m
−
(

Σtot + ki
2m

)2]
−
[

Σin

2m
−
(

Σtot

2m

)2

−
(

ki
2m

)2]
(4.6)

with:

• Σin: �e sum of all the weights of the links inside the community i is moving
into

• Σtot: �e sum of all the weights of the links to nodes in the community i is
moving into

• ki: the weighted degree of i
• ki,in: �e sum of the weights of the links between i and other nodes in the

community that iis moving into
• m: �e sum of the weights of all links in the network

The Infomap Algorithm community detection

�e Infomap algorithm was described in 2009 by Rosvall and Bergstrom [20]. In
contrast to Bondel et. al. [1], the ideal communities are calculated using the map-
equation 4.7 and by minimizing description length of motion a random walk [2].
A random walker moves randomly from node to node in the network. �e more
the connection of a node to another node is weighted, the more likely the random
walker will use that connection. �e goal of the algorithm is to form clusters in
which the random walker stays as long as possible and thus assuring that the weight
of the connections within the cluster are greater than the weights between the
clusters [20].

23

4 A data-driven approach for microservice extraction

L(M) = w y log(w y)− 2
K∑
k=1

wk y log(wi y)−
N∑
i=1

wilog(wi) +
K∑
k=1

(wk y +wi)log(wk y +wk)

(4.7)

with:

• M : Network with N objects (i = 1, . . . , N) and K clusters (k = 1, . . . , K).
• wi: �e relative weight of all connections of a node i, that is the sum of the

weights of all connections of a node divided by the sum of the weights of all
connections of the network.

• wk =
∑

i∈k wi: �e sum of the relative weights of all connections of the node
of the cluster k.

• wk y: �e sum of the relative weights of all connections of the node of the
cluster k leaving the cluster.

• w y=
∑K

k=1wk: �e sum of the weights of all connections between node
from di�erent clusters.

24

4.2 Visualisation

4.2 Visualisation

So�ware Architects and Domain Experts are eager to know how the existing ap-
plication performs under runtime conditions and what an eventual microservice
architecture would look like. For this, a web-based user-interface (UI) was de-
veloped.

�e developed user-interface provides an easy and intuitive way for exploring the
current architecture, search for nodes, examine their connections and dependencies
in the system during runtime and allows to visualize and analyze the proposed
microservice architecture of the system based on each decomposition and graph
weighting approach. In the following, each developed feature is brie�y described
and screenshots of the applications are provided. For reasons of data protection,
the names of the nodes are anonymized.

Browse Current Architecture

�e use case of this feature is straight forward: So�ware Architects and Domain
Experts can explore the existing structure of the system by moving freely through
the graph. More information such as in and outgoing connections can be seen by
clicking on the node. To gather information about the relation between two nodes
the user can click on an edge between two nodes. Following information about the
relationships can be given: average duration, total calls and variance. Figure 4.2
provides screenshots of the above discussed UI features.

Explore Nodes

Exploring in and outgoing connections of a speci�c node can be di�cult as the
examined system grows. �erefore the UI provides a way to search for a node
in the graph. If the requested node is found, the node and its descendants 2 will
be visualised. Similar to the Browse Current Architecture functionality, the user
can gather information about the relation between the nodes. Figure 4.3 provides
screenshots of the above discussed UI features.

2A descendant of a node n is any node which is either the child of n or is (recursively) the
descendant of any of the children of n.

25

4 A data-driven approach for microservice extraction

(a) Current architecture in form of interactive graph. (b) incoming or outgoing connections for node ”Node 20”

(c) Connection properties between ”Node 52” and ”Node 53”

Figure 4.2: UI section for exploring the current state of the architecture

Browse Microservice Architecture

�is functionality is designed to visualize the composed microservice candidates
and consists of two views: a view in which the user can move freely across a high-
level representation of the decomposed system and a view in which the user can
explore each microservice individually.

In the high-level representation of the system, each microservice is visualized as a
box. Each box contains the nodes which form the microservice. If two microservices
interact with each other, they are connected by a line with each other. Similar to
the Browse Current Architecture view, the user can gather information about the
relation between the microservices. In Figure 4.4 screenshots of these functionalities
are provided.

26

4.2 Visualisation

(a) Descendants of ”Node 27”
(b) Incoming or outgoing connections for node ”Node 27”

(c) Connection properties between ”Node 17” and ”Node 27”

Figure 4.3: UI section for assessing a speci�c node

If the user wishes to collect deeper insight into a speci�c microservice, he can do
so. �e UI provides a view in which the user can explore a microservice. In this
view, the components of the microservice, the connections inside the microservice,
the incoming and outgoing connections of the microservice, the instability index
as well as the enhanced instability index of the microservice can be seen. Figure 4.5
provides screenshots of the above discussed UI features.

27

4 A data-driven approach for microservice extraction

(a) Overview of the proposed microservice architecture
(b) Relations between the selected microservice and other mi-

croservices

(c) In each microservice the corresponding nodes are visible

Figure 4.4: UI section for exploring the proposed microservice architecture

28

4.2 Visualisation

(a) List of individual microservices
(b) Detailed overview of a microservice. Nodes without a

box, can are displayed as external dependencies which are
provided by an other microservice..

Figure 4.5: UI section for exploring a microservice individually

29

5 Evaluation

�is section aims to evaluate the described approach. �e evaluation is done in
cooperation with a so�ware architect at the paring company. For the evaluation of
this approach, the system has been monitored with the Elastic APM for two weeks.
In these two weeks, 250 Gigabytes of raw data have been collected, distilled and
transformed into a graph. �e amount of data and the long observation time assure
a reality near representation of the system and it’s dynamics. �e two clustering
algorithms (Infomap & Louvain) as well as the two-weight functions 4.4 and 4.5
have been applied to the generated graph. �e complete results can be found in
Chapter 7 (Appendix).

�e evaluation process is divided into two parts: in the �rst part, the quality of the
discovered microservices is evaluated, based on in literature well-de�ned metrics.
In the second part, the discovered microservice candidates were evaluated by a
so�ware architect at the paring company who evaluated how well the algorithms
and the weight function performed in terms of domain detection and separation.

5.1 Evaluating the Results using metrics

5.1.1 Theoretical Background

E�erent and A�erent Distribution

To evaluate the quality of the generated clusters the e�erent and a�erent coup-
ling can be taken into account. �e E�erent Coupling measures the number of
microservices on which a given microservice depends. �e A�erent Coupling
measures how many microservices depend on a given microservice. Kohring [10]
describes that di�erent studies evaluating large so�ware systems have shown how

31

5 Evaluation

E�erent/A�erent Coupling behaves in ”well wri�en” so�ware. �e a�erent degree
distribution should follow Zipf’s Law. �e e�erent degree on the other hand should
follow a log-normal distribution.

Instability Index

Metrics are index numbers which are o�en used to compare and determinate so�-
ware quality. �e chosen quality metric for this thesis is the Instability Index. Taken
from object-oriented programming the metric helps to understand how tightly
coupled a system is. Loosely coupled systems tend to be more stable than those
which are tightly coupled.[13] �e goal when designing microservice architectures
is to have a high coupling inside the service but a loose coupling between the ser-
vices [15]. To compute the Instability Index the E�erent/A�erent Coupling has to
be determined for each microservice. �en the Instabiliy Index can be computed
as follows:

I(n) =
efferent(microservicen)

efferent(microservicen) + afferent(microservicen)
(5.1)

Large values of I(n) indicate an unstable microservice which is likely to change
more o�en than a microservice with a relatively smaller value of I(n). However as
Kohring [10] stated, the importance of an element not only depends on the number
of a�erent or e�erent links but also on the importance of the element from which
the a�erent link arises. Or in other words: small but central elements can be equally
or even more important to the application depending on where from the a�erent
connection arises. Elements with a high degree of centrality immediately have a
greater impact on development, maintenance and lastly on future architectural
decisions. To respect this phenomenon one needs to quantify the importance of a
node in a graph based on the importance of the nodes linking to it. Previous work
has been done in this �eld i.e. in 1999 by Page et.al. [17]. �e Page-Rank P (n) is
an iterative algorithm based on Markov-Chains which tries to identify more or
less important elements in a network PageRank. Kohring [10] does not propose
any enlargements of the Instability Index through the Page-Rank. To assign more
signi�cance to the Instability Index, in this work in the evaluation phase, not only
the Instability Index but also the Page-Rank is taken into account. �is enlargement
allows drawing conclusions about how unstable and how central a cluster is to the
system. �e higher the Page-Rank, the more central and unstable a cluster is. �is

32

5.1 Evaluating the Results using metrics

i.e. a�ects �elds like development and maintenance. Furthermore, a high value for
P (n) can help to predict how many active running instances for this cluster are
needed.

To computeP (n) a new graph is created based on the clusters found in the clustering
step described in Chapter 4. When a node inside the cluster has a dependency to a
node in another cluster, the clusters are connected. �e weight required to compute
the Page Rank is computed by taking the sum of nodes who have a dependency in
a speci�c cluster.

Figure 5.1: Graph created based on individual clusters

33

5 Evaluation

5.1.2 Evaluation Results

�is part of the evaluation is done by comparing the two clustering algorithms
as well the two-weight functions 4.4 and 4.5 against each other. To do so each
algorithm has been applied the graph respective weighted with 4.4 and 4.5.

Furthermore, a requirement for I(n) is de�ned: �e Instability Index should follow
a log-normal distribution. �is requirement follows an easy intuition: �is thesis
describes an approach for decomposing legacy systems with - to a greater or lesser
extent- business-centric modules. �erefore there will always be a few components
which tend to be highly unstable. By adding this requirement as a quality metric, it
can be assured that only a few microservice candidates tend to be more unstable
whereas the rest tends to be stable.

In the following sections, the results are discussed. For ease of understanding
each combination gets a short name. �e short names are de�ned de�ned in 5.1.
Each following distribution plots for A�erent/E�erent Coupling as well as for the
Instability Index can be interpreted as a linear trend line. All results are listed in
Chapter 7 (Appendix).

Short Name Algorithm Weightfunction
L-DIV Louvain 4.5
L-MULT Louvain 4.4
I-DIV Infomap 4.5
I-MULT Infomap 4.4

Table 5.1

34

5.1 Evaluating the Results using metrics

Approach 1.1 - I-DIV

As proposed by Kohring et. al. [10], the A�erent Coupling should follow a log-
normal distribution whereas the E�erent Distribution should behave like Zipf’s
law.

By plo�ing the A�erent Coupling Figure Figure (5.2), it can be seen, that R2, which
is a measure of how close the data-points are to the ��ed trend line, is nearly
95%. �is means, that the data A�erent Coupling heavily tends to a log-normal
distribution. However, when looking at the E�erent Coupling Figure(5.3), R2 is
under 60% and therefore does not follow Zipf’s Law.

Figure 5.2: A�erent Coupling distribution for Approach 1.1

35

5 Evaluation

Figure 5.3: E�erent Coupling distribution for Approach 1.1

As de�ned above, the Instability Index, which provides insights into how stable
and maintainable a cluster is, should follow a log-normal distribution. Although
most of the clusters tend to high stability, with an R2 of 55% approach 1.1 does not
provide an optimal solution.

Figure 5.4: Instability Index for Approach 1.1

By altering the Instability Index by the Page Rank, we can observe that clusters
which have a small I(n) can be very centric to the system, whereas microservices
which, in this approach, tend to have a high I(n) are not core components of the
system.

36

5.1 Evaluating the Results using metrics

It is important to note, that this approach was able to extract a very centric module
Figure (5.5 - Cluster 22) without causing the cluster to have a high I(n).

Figure 5.5: Page Rank and Instability Index in clusters

Approach 1.2 - I-MULT

In terms of A�erent and E�erent Coupling distribution, R2 in approach 1.2 tends
to be identical to approach 1.1. �e main di�erence between I-DIV and I-MULT is
that I-DIV has one cluster more than the current discussed approach.

Figure 5.6: A�erent Coupling distribution for Approach 1.2

37

5 Evaluation

Figure 5.7: E�erent Coupling distribution for Approach 1.2

When evaluating the Instability Index for this approach, the results for R2 show a
slight decrease in accuracy from 55% to 52%.

Figure 5.8: Instability Index for Approach 1.2

38

5.1 Evaluating the Results using metrics

Also in this approach the clustering algorithm was able to extract a very centric
module(5.9 - Cluster 21) without causing the cluster to have a high I(n).

Figure 5.9: Page Rank and Instability Index in clusters

39

5 Evaluation

Approach 2.1 - L-DIV

When applying the Louvain Algorithm to the weighted graph, R2 tends to be as
high as in Approach 1.1 and 1.2 when evaluating the A�erent Coupling distribution.
When evaluating the E�erent Coupling distribution R2 is above 79%, which is far
be�er in the above-described approaches.

By far the biggest di�erence can be observed in the number of clusters. �e Louvain
Algorithm weighted with 4.5 detects 27 clusters whereas the Infomap Algorithm in
both cases detects above 70 clusters. Although the main reason for this is the way
how these cluster algorithms work, Louvain (in this approach) tries to keep bigger
and therefore more cohesive.

Figure 5.10: A�erent Coupling distribution for Approach 1.2

40

5.1 Evaluating the Results using metrics

Figure 5.11: E�erent Coupling distribution for Approach 2.1

When evaluating the Instability Index for this approach, R2 is above 95% which,
taking into account the above-de�ned restriction and obtained results for the
approaches using the Infomap Algorithm, is very good.

Figure 5.12: Instability Index for Approach 2.1

41

5 Evaluation

Similar to the above-evaluated approaches, the clustering algorithm was able to
extract application-centric modules Figure (5.13) without causing the cluster to
have respectively high I(n).

Figure 5.13: Page Rank and Instability Index in clusters

42

5.1 Evaluating the Results using metrics

Approach 2.2 - L-MULT

Approach 2.2 behaves like the above described approach 2.1 when comparing R2

of the A�erent/E�erent Coupling distributions. A notable di�erence is a slight
decrease in both values of R2. Further L-MULT has one cluster more than the above
described L-DIV.

Figure 5.14: A�erent Coupling distribution for Approach 2.2

Figure 5.15: E�erent Coupling distribution for Approach 2.2

43

5 Evaluation

When evaluating the Instability Index for this approach and comparing it to L-DIV,
R2 decreases about 6%.

Figure 5.16: Instability Index for Approach 2.2

Also with this weight function, the algorithm was able to isolate application-centric
without causing the clusters to have a high I(n).

Figure 5.17: Page Rank and Instability Index in clusters

44

5.2 A domain expert’s view

5.2 A domain expert’s view

�is part of the evaluation is done in cooperation with a so�ware architect of the
paring company and aims to answer the following research questions:

• To which extend is domain knowledge necessary for the creation of mi-
croservices given an existing system?

• How much does the result of the developed tool di�er from a decomposition
provided by a domain expert?

• Is it possible to extract the di�erent domains of an existing legacy system
to provide a Domain Driven Design approach for extracting microservices
based on runtime-data of a legacy system?

Each above described approach comes along with di�erent pros and cons. Although
L-DIV and L-MULT have be�er metrics than I-DIV and I-MULT de�ned by liter-
ature, as described by the external evaluator, do not correctly identify and split
domain boundaries. �is not only leads to clear architectural no-go’s such as the
break of the - in the development guidelines de�ned - Model-View-Controller
(MVC) pa�ern, but also leads to merges of di�erent domains into one domain.
�ese phenomena are especially linked to parts of the application which might
overlap in terms of domain or technical implementation. �is merge, as described
by the so�ware architect, might be logical and rational from a technical and math-
ematical point of view, but does not re�ect any real-world scenarios. In contrast to
this, Approach 1.1 and Approach 1.2 do not perform well metric-wise, but were
able to detect domain boundaries successfully and provided a relatively good, but
sometimes too granular, way of spli�ing the system while not breaking entirely
de�ned development guidelines such as MVC.

Table 5.2 illustrates the results of the conducted random check performed by the
external evaluator at the paring company in detail. While both described approaches
perform well on easy to group clusters, mainly Approach 2.1 and Approach 2.2,
both of which used the Louvain Algorithm, performed worse on the conducted
random sample check. As described by the so�ware architect, the main downside of
Approach 1.1 and 1.2 is the high granularity. If the by the tool proposed architecture
would be realized, each microservice, as by the A�erent/E�erent Metrics described,
would have a high amount of dependencies. �is, di�erent when designing new
microservice architectures, leads to a massive shi� from dependencies allocated
in memory to dependencies allocated in the network and could lead to the absurd

45

5 Evaluation

scenario in which for processing one request one microservice has dozens of
dependencies to other microservices in the network Figure 5.18. �is according to
literature and the external evaluator, is not wrong but in practice it is not acceptable
since it not only increases the infrastructural load such as network but also increases
the call complexity of the system and its procedures. Besides this, the testing and
deployment strategies of the paring company will be in�uenced when having a high
amount of primary network-based dependencies. Josh Evans in his talk ”Mastering
Chaos - A Net�ix Guide to Microservices” [6] at the Infoq conference in 2016
explained this problem in detail.

(a) Existing SOA-Architecture: A request is processed
by one service. All dependencies are in-memory
dependencies.

(b) Mircorservice Architecture: A request can be processed
by multiple services causing cascading network depend-
encies.

Figure 5.18: Shi� from in-memory requests to recurring, cascading network requests.

�e so�ware architect states that when designing a new microservices based archi-
tecture, reoccurring network dependencies should be minimized. �e presented
approach and the underlying concepts are not designed to optimize such factors.
Despite the high grade of granularity the Infomap Algorithm is more accepted
by the external evaluator. �is has a simple reason: From a human point of view,
it’s easier to merge smaller, well-structured domains into bigger ones considering
the technical challenge of such a merging process. While merging microservices
domains will overlap but since it’s done by a domain expert who is evaluating each
case individually, it will not cause any harm to the architecture.

46

5.2 A domain expert’s view

As reported by the external evaluator, the described, unsupervised extraction ap-
proach can detect arbitrary well domains and their boundaries and allows So�ware
Architects to gain insights about their system and explore a possible microservice
architecture with a marginally overhead for combining services which are too
granular.

Approach L-DIV L-MULT I-DIV I-MULT
Number of investigated microservices 10 10 10 10

of it totally correctly assigned microservices 2 5 6 8
of it at least one component in the microservice is assigned to a wrong domain 3 2 2 1
of it at least one component in the microservice brook a design constraints (i.e. MVC) 3 2 0 0

of it have other issues
of it major (1) 2∗ 1∗
of it minor (0.5) 1† 1 †

Score 3 / 10 5 / 10 6.5 / 10 8.5 / 10

Table 5.2: Results of a conducted random check on the quality of the obtained microservices.
∗ Merged domains, † decoupling of core component which is planned to extract as library

47

6 Conclusion

�is thesis focused on �nding microservice candidates in monolithic applications
based on collected runtime data. Chapter 2 introduced the terms Monolith, SOA
and Microservice their strengths and their trade-o�s. Chapter 3 discussed the state
of the art semi-automated and automated approaches for microservice extraction.
�e developed approach was described in Chapter 4 and later evaluated in
Chapter 5.

6.1 Outcomes

�is section aims to answers the research questions.

RQ1: Are there existing best practices to decompose an existing monolithic system
into microservices and where are their key di�erences?
Outcome: Di�erent state of the art extraction methods have been found during
the research. When looking at automated procedures for microservice extractions,
methods use static code analysis, heuristics and process mining approaches. Non-
algorithmic methods have not been part of the research.

RQ2: To which extend is domain knowledge necessary for the creation of mi-
croservices given an existing system?
Outcome: Domain knowledge is necessary when designing microservice architec-
tures using a non-automated approach. As for the elaborated approach - based on
the evaluation - one may assume that less is required, but that can not be assured
since too few systems have been examined.

49

6 Conclusion

RQ3: How can a complex monolithic legacy system be observed at runtime, mod-
elled and split into smaller, independent services?
Outcome: �e observation of the system can be done using logs or an APM. While
logs can be quite inaccurate as one relies on the usage and implementation of the
logging system, APMs can provide information about the application state on every
application-level (Controller-Level, Logic-Level, and Data Access Layer). As for the
representation of the system the elaborated approach uses a directed graph which
can represent the connection between di�erent classes of the system. Spli�ing is
done by applying a graph-clustering algorithm on the graph wichs represents the
system.

RQ3.1: In which way have results be presented to so�ware architects and do-
main experts so that they can gain insights into their application and evaluate
microservice candidates?
Outcome: A web-based user interface has been developed where the user can
explore and browse the existing monolithic architecture and explore the generated
microservice architecture.

RQ3.2: Is it possible to extract the di�erent domains of an existing legacy system
to provide a Domain-Driven Design alike approach for extracting microservices
based on runtime-data of a legacy system?
Outcome: Overall it can be said that the described approach can represent domains
arbitrarily well in a monolithic legacy system.

RQ3.3: How much does the result of the developed tool di�er from a decomposition
provided by a domain expert?
Outcome: �e results of the developed tool di�er - to some extend - from the
decomposition provided by a domain expert. Depending on the graph-clustering
algorithm used, the tool splits the system into granular parts or breaks design
pa�erns such as MVC. As stated by the external evaluator: Although some minor
di�erences, the tool provides good insights and possible - not 100% accurate -
microservice decomposition of the observed monolithic system.

RQ3.4: How can the quality of the created microservices be assessed?
Outcome: �e quality of a microservice architecture can be assessed via speci�ed
metrics such as A�erent/E�erent distribution, Instability Index distribution or by a
domain expert. Further, this thesis elaborates a more sophisticated way to detect
the in�uence and the dependencies between microservices via the Page Rank.

50

6.2 Limitations & Future Work

6.2 Limitations & Future Work

Despite the generally positive observations in the evaluation, the presented ap-
proach has its limitations. Probably the biggest is the focus on class level. While the
computation of the graph on class level leads to a well structured and for humans
easily readable graph, architectural misconceptions can not be tackled down en-
tirely. To make an example: Two classes are in the same cluster because one class
uses only one speci�c function of the other class. In this case, the be�er solution
(if applicable in respect to the microservice principles) would be to migrate only
the function and assign the class to a cluster where it might �t be�er. De�ning
class-methods as the smallest unit of measurement would bring more granularity -
for sure this would be an endorsable feature but it might also decrease the human
understanding of the result and increase the potential of wrong coupling.

Described microservice architectures by this tool are very sophisticated and domain-
oriented respecting the simplicity of the approach but can only be seen as recom-
mendations and not as �nished and �xed architecture. �is is due to the fact, that a
microservice in practice is more than a set of classes [15]. To increase the precision,
granularity and to cope with domain-speci�c restrains such as design pa�erns,
domain requirements, security aspects and 3rd party connections, the described
approach has to be altered. �is can be done by adding i.e. a supervised learning
algorithm. In this case a domain expert could de�ne some ideal structures and
the system would try to build microservices as similar as possible to the de�ned
ones.

A big strength of the described approach is that it can be used in di�erent domains
as long as the provided input data is correct. �e plan is to further test the approach
in cooperation with other companies and to elaborate a more sophisticated and
company-focused way of extracting by allowing the user to input company-speci�c
constrains.

51

7 Appendix

7.1 I-MULT

Name A�erent E�erent Instability Index Page Rank
Cluster 0 6 49 0.890909 0.275644
Cluster 1 1 38 0.974359 0.172882
Cluster 2 9 24 0.727273 0.042600
Cluster 3 7 4 0.363636 0.032560
Cluster 4 2 5 0.714286 0.034228
Cluster 5 1 0 0.000000 0.004123
Cluster 6 11 9 0.450000 0.010577
Cluster 7 4 12 0.750000 0.014129
Cluster 8 0 2 1.000000 0.056456
Cluster 9 2 3 0.600000 0.031923
Cluster 10 7 1 0.125000 0.004442
Cluster 11 13 1 0.071429 0.005769
Cluster 12 0 11 1.000000 0.014622
Cluster 13 0 12 1.000000 0.015955
Cluster 14 2 10 0.833333 0.013439
Cluster 15 7 4 0.363636 0.009226
Cluster 16 4 6 0.600000 0.007852
Cluster 17 5 1 0.166667 0.004393
Cluster 18 8 0 0.000000 0.004123
Cluster 19 4 0 0.000000 0.004123
Cluster 20 6 2 0.250000 0.004743
Cluster 21 4 3 0.428571 0.010050
Cluster 22 6 0 0.000000 0.004123
Cluster 23 8 0 0.000000 0.004123
Cluster 24 2 1 0.333333 0.004393

53

7 Appendix

Name A�erent E�erent Instability Index Page Rank
Cluster 25 4 0 0.000000 0.004123
Cluster 26 8 2 0.200000 0.005167
Cluster 27 3 1 0.250000 0.004368
Cluster 28 2 5 0.714286 0.007476
Cluster 29 1 2 0.666667 0.004911
Cluster 30 4 0 0.000000 0.004123
Cluster 31 0 2 1.000000 0.006771
Cluster 32 2 0 0.000000 0.004123
Cluster 33 3 2 0.400000 0.005244
Cluster 34 11 0 0.000000 0.004123
Cluster 35 0 0 0.000000 0.000000
Cluster 36 0 2 1.000000 0.005420
Cluster 37 5 0 0.000000 0.004123
Cluster 38 5 0 0.000000 0.004123
Cluster 39 4 0 0.000000 0.004123
Cluster 40 2 0 0.000000 0.004123
Cluster 41 0 0 0.000000 0.000000
Cluster 42 0 1 1.000000 0.030155
Cluster 43 2 1 0.333333 0.005291
Cluster 44 2 0 0.000000 0.004123
Cluster 45 3 0 0.000000 0.004123
Cluster 46 2 0 0.000000 0.004123
Cluster 47 1 0 0.000000 0.004123
Cluster 48 2 0 0.000000 0.004123
Cluster 49 3 0 0.000000 0.004123
Cluster 50 1 0 0.000000 0.004123
Cluster 51 0 2 1.000000 0.005175
Cluster 52 3 0 0.000000 0.004123
Cluster 53 1 0 0.000000 0.004123
Cluster 54 0 2 1.000000 0.005003
Cluster 55 3 0 0.000000 0.004123
Cluster 56 2 0 0.000000 0.004123
Cluster 57 2 0 0.000000 0.004123
Cluster 58 3 0 0.000000 0.004123
Cluster 59 0 0 0.000000 0.000000
Cluster 60 5 0 0.000000 0.004123

54

7.2 I-DIV

Name A�erent E�erent Instability Index Page Rank
Cluster 61 3 0 0.000000 0.004123
Cluster 62 2 0 0.000000 0.004123
Cluster 63 0 1 1.000000 0.004393
Cluster 64 2 0 0.000000 0.004123
Cluster 65 3 0 0.000000 0.004123
Cluster 66 0 1 1.000000 0.004561
Cluster 67 1 0 0.000000 0.004123
Cluster 68 0 0 0.000000 0.000000
Cluster 69 2 0 0.000000 0.004123
Cluster 70 1 0 0.000000 0.004123

Table 7.1: Complete results for I-MULT

7.2 I-DIV

Name A�erent E�erent Instability Index Page Rank
Cluster 0 6 50 0.892857 0.276160
Cluster 1 1 38 0.974359 0.171123
Cluster 2 11 23 0.676471 0.043168
Cluster 3 7 4 0.363636 0.032504
Cluster 4 2 5 0.714286 0.034276
Cluster 5 10 10 0.500000 0.011356
Cluster 6 1 0 0.000000 0.004072
Cluster 7 4 12 0.750000 0.013932
Cluster 8 2 3 0.600000 0.031709
Cluster 9 0 2 1.000000 0.056584
Cluster 10 7 1 0.125000 0.004387
Cluster 11 13 1 0.071429 0.005601
Cluster 12 0 12 1.000000 0.015361
Cluster 13 2 10 0.833333 0.012471
Cluster 14 5 5 0.500000 0.007196
Cluster 15 7 4 0.363636 0.008924
Cluster 16 4 0 0.000000 0.004072
Cluster 17 8 0 0.000000 0.004072
Cluster 18 5 1 0.166667 0.004419

55

7 Appendix

Name A�erent E�erent Instability Index Page Rank
Cluster 19 4 3 0.428571 0.008111
Cluster 20 6 2 0.250000 0.004765
Cluster 21 6 0 0.000000 0.004072
Cluster 22 2 1 0.333333 0.004419
Cluster 23 4 0 0.000000 0.004072
Cluster 24 8 2 0.200000 0.005104
Cluster 25 3 1 0.250000 0.004310
Cluster 26 2 5 0.714286 0.007482
Cluster 27 4 0 0.000000 0.004072
Cluster 28 2 0 0.000000 0.004072
Cluster 29 2 1 0.333333 0.004419
Cluster 30 0 11 1.000000 0.014360
Cluster 31 0 0 0.000000 0.000000
Cluster 32 3 2 0.400000 0.005176
Cluster 33 0 2 1.000000 0.005430
Cluster 34 5 0 0.000000 0.004072
Cluster 35 5 0 0.000000 0.004072
Cluster 36 4 0 0.000000 0.004072
Cluster 37 0 2 1.000000 0.006703
Cluster 38 2 0 0.000000 0.004072
Cluster 39 8 0 0.000000 0.004072
Cluster 40 0 1 1.000000 0.030155
Cluster 41 2 0 0.000000 0.004072
Cluster 42 2 1 0.333333 0.005601
Cluster 43 3 0 0.000000 0.004072
Cluster 44 2 0 0.000000 0.004072
Cluster 45 2 0 0.000000 0.004072
Cluster 46 1 0 0.000000 0.004072
Cluster 47 3 0 0.000000 0.004072
Cluster 48 1 0 0.000000 0.004072
Cluster 49 0 2 1.000000 0.005192
Cluster 50 0 0 0.000000 0.000000
Cluster 51 3 0 0.000000 0.004072
Cluster 52 3 0 0.000000 0.004072
Cluster 53 5 0 0.000000 0.004072
Cluster 54 1 0 0.000000 0.004072

56

7.3 L-MULT

Name A�erent E�erent Instability Index Page Rank
Cluster 55 2 0 0.000000 0.004072
Cluster 56 2 0 0.000000 0.004072
Cluster 57 0 2 1.000000 0.005031
Cluster 58 1 1 0.500000 0.005601
Cluster 59 2 0 0.000000 0.004072
Cluster 60 2 0 0.000000 0.004072
Cluster 61 3 0 0.000000 0.004072
Cluster 62 0 0 0.000000 0.000000
Cluster 63 3 0 0.000000 0.004072
Cluster 64 2 0 0.000000 0.004072
Cluster 65 0 1 1.000000 0.004505
Cluster 66 0 0 0.000000 0.000000
Cluster 67 0 3 1.000000 0.006005
Cluster 68 2 0 0.000000 0.004072
Cluster 69 1 0 0.000000 0.004072
Cluster 70 10 0 0.000000 0.004072
Cluster 71 1 0 0.000000 0.004072

Table 7.2: Complete results for I-DIV

7.3 L-MULT

Name A�erent E�erent Instability Index Page Rank
Cluster 0 8 20 0.714286 0.259608
Cluster 1 10 3 0.230769 0.014339
Cluster 2 4 18 0.818182 0.178700
Cluster 3 7 6 0.461538 0.041880
Cluster 4 5 6 0.545455 0.053855
Cluster 5 9 5 0.357143 0.021240
Cluster 6 7 9 0.562500 0.061537
Cluster 7 11 16 0.592593 0.133134
Cluster 8 0 0 0.000000 0.000000
Cluster 9 6 9 0.600000 0.049198
Cluster 10 1 0 0.000000 0.006818
Cluster 11 5 4 0.444444 0.022895

57

7 Appendix

Name A�erent E�erent Instability Index Page Rank
Cluster 12 0 0 0.000000 0.000000
Cluster 13 6 6 0.500000 0.017572
Cluster 14 7 6 0.461538 0.030252
Cluster 15 7 1 0.125000 0.009390
Cluster 16 5 3 0.375000 0.026516
Cluster 17 3 0 0.000000 0.006818
Cluster 18 4 1 0.200000 0.028517
Cluster 19 5 2 0.285714 0.010458
Cluster 20 2 0 0.000000 0.006818
Cluster 21 1 0 0.000000 0.006818
Cluster 22 1 0 0.000000 0.006818
Cluster 23 1 0 0.000000 0.006818
Cluster 24 0 0 0.000000 0.000000
Cluster 25 0 0 0.000000 0.000000

Table 7.3: Complete results for L-MULT

7.4 L-DIV

Name A�erent E�erent Instability Index Page Rank
Cluster 0 9 17 0.653846 0.259117
Cluster 1 8 3 0.272727 0.020574
Cluster 2 6 15 0.714286 0.180373
Cluster 3 6 5 0.454545 0.049080
Cluster 4 4 8 0.666667 0.082238
Cluster 5 9 5 0.357143 0.030702
Cluster 6 8 8 0.500000 0.037603
Cluster 7 9 13 0.590909 0.159383
Cluster 8 2 2 0.500000 0.018924
Cluster 9 0 0 0.000000 0.000000
Cluster 10 1 0 0.000000 0.007895
Cluster 11 5 4 0.444444 0.027684
Cluster 12 0 0 0.000000 0.000000
Cluster 13 7 6 0.461538 0.028619
Cluster 14 5 4 0.444444 0.018546

58

7.4 L-DIV

Name A�erent E�erent Instability Index Page Rank
Cluster 15 4 1 0.200000 0.023226
Cluster 16 3 2 0.400000 0.019208
Cluster 17 5 2 0.285714 0.013144
Cluster 18 2 0 0.000000 0.007895
Cluster 19 1 0 0.000000 0.007895
Cluster 20 1 0 0.000000 0.007895
Cluster 21 0 0 0.000000 0.000000
Cluster 22 0 0 0.000000 0.000000

Table 7.4: Complete results for L-DIV

59

Bibliography

[1] V. D. Blondel, J.-L. Guillaume, R. Lambio�e, and E. Lefebvre. Fast unfolding of
communities in large networks. Journal of Statistical Mechanics: �eory and
Experiment, 2008(10):P10008, oct 2008.

[2] L. Bohlin, D. Edler, A. Lancichine�i, and M. Rosvall. Community Detection
and Visualization of Networks with the Map Equation Framework, pages 3–34.
09 2014.

[3] A. Carrasco, B. v. Bladel, and S. Demeyer. Migrating towards microservices:
Migration and architecture smells. In Proceedings of the 2nd International
Workshop on Refactoring, IWoR 2018, page 1–6, New York, NY, USA, 2018.
Association for Computing Machinery.

[4] R. Chen, S. Li, and Z. E. Li. From monolith to microservices: A data�ow-driven
approach. pages 466–475, 12 2017.

[5] A. De Alwis, A. Barros, A. Polyvyanyy, and C. Fidge. Function-spli�ing
heuristics for discovery of microservices in enterprise systems. pages 37–53,
11 2018.

[6] J. Evans. Mastering Chaos - A Net�ix Guide to Microservices, accessed
December 19, 2020. https://www.infoq.com/presentations/
netflix-chaos-microservices/.

[7] M. Fowler. Monolith First, 2015 (accessed July 23, 2020). https://
martinfowler.com/bliki/MonolithFirst.html.

[8] M. Gysel, L. Kölbener, W. Giersche, and O. Zimmermann. Service cu�er: A
systematic approach to service decomposition. pages 185–200, 09 2016.

[9] N. M. Josu�is. SOA in practice: the art of distributed system design. ” O’Reilly
Media, Inc.”, 2007.

61

https://www.infoq.com/presentations/netflix-chaos-microservices/
https://www.infoq.com/presentations/netflix-chaos-microservices/
https://martinfowler.com/bliki/MonolithFirst.html
https://martinfowler.com/bliki/MonolithFirst.html

Bibliography

[10] G. Kohring. Complex dependencies in large so�ware systems. Advances in
Complex Systems, 12(06):565–581, 2009.

[11] A. Krause, C. Zirkelbach, W. Hasselbring, S. Lenga, and D. Kröger. Microservice
decomposition via static and dynamic analysis of the monolith, 2020.

[12] J. Lewis and M. Fowler. Microservices - a de�nition of this new architectural
term, 2014 (accessed July 23, 2020). https://martinfowler.com/
articles/microservices.html.

[13] R. C. Martin. Agile So�ware Development: Principles, Pa�erns, and Practices.
Prentice Hall PTR, USA, 2003.

[14] G. Mazlami, J. Cito, and P. Leitner. Extraction of microservices from monolithic
so�ware architectures. In 2017 IEEE International Conference on Web Services
(ICWS), pages 524–531, 2017.

[15] S. Newman. Building Microservices: Designing Fine-Grained Systems. O’Reilly
Media, 1st edition, February 2015.

[16] N. Niknejad, W. Ismail, I. Ghani, B. Nazari, M. Bahari, and A. R. B. C. Hussin.
Understanding service-oriented architecture (soa): A systematic literature
review and directions for further investigation. Information Systems, 91:101491,
2020.

[17] L. Page, S. Brin, R. Motwani, and T. Winograd. �e pagerank citation rank-
ing: Bringing order to the web. Technical Report 1999-66, Stanford InfoLab,
November 1999. Previous number = SIDL-WP-1999-0120.

[18] F. Ponce, G. Márquez, and H. Astudillo. Migrating from monolithic architecture
to microservices: A rapid review. In 2019 38th International Conference of the
Chilean Computer Science Society (SCCC), pages 1–7, 2019.

[19] C. Richardson. Pa�ern: Monolithic architecture, accessed July 23, 2020. https:
//microservices.io/patterns/monolithic.html.

[20] M. Rosvall, D. Axelsson, and C. T. Bergstrom. �e map equation. �e European
Physical Journal Special Topics, 178(1):13–23, Nov 2009.

[21] D. Taibi, V. Lenarduzzi, and C. Pahl. Processes, motivations and issues for
migrating to microservices architectures: An empirical investigation. IEEE
Cloud Computing, 4, 10 2017.

62

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://microservices.io/patterns/monolithic.html
https://microservices.io/patterns/monolithic.html

Bibliography

[22] D. Taibi and K. Systä. From monolithic systems to microservices: A decom-
position framework based on process mining. In CLOSER, 2019.

[23] O. Zimmermann. Microservices tenets: Agile approach to service development
and deployment. Computer Science - Research and Development, 11 2016.

63

	Abstract
	Introduction
	Motivation
	Research Questions
	Structure of the Thesis

	Theoretical Background
	Monolithic Application
	Service Oriented Architecture
	Microservices
	Benefits and Challenges

	State of the art extraction methods
	Function-Splitting Heuristics for Discovery of Microservices in Enterprise Systems
	Extraction of Microservices from Monolithic Software Architectures
	Service Cutter: A Systematic Approach to Service Decomposition
	Microservice Decomposition via Static and Dynamic Analysis of the Monolith
	A Decomposition Framework based on Process Mining
	From Monolith to Microservices: A Dataflow-Driven Approach
	Weaknesses of recent works

	A data-driven approach for microservice extraction
	The proposed approach
	Data acquisition, filtering & distillation
	Graph creation
	Weight factors
	Weight function
	Community Detection

	Visualisation

	Evaluation
	Evaluating the Results using metrics
	Theoretical Background
	Evaluation Results

	A domain expert's view

	Conclusion
	Outcomes
	Limitations & Future Work

	Appendix
	I-MULT
	I-DIV
	L-MULT
	L-DIV

	Bibliography

