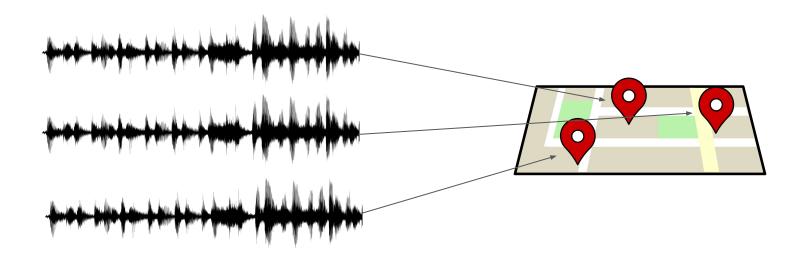
Where am I? Acoustic Location Classification with Temporal Lags

Master's Thesis

Stefan Kuhs 2020-05-28

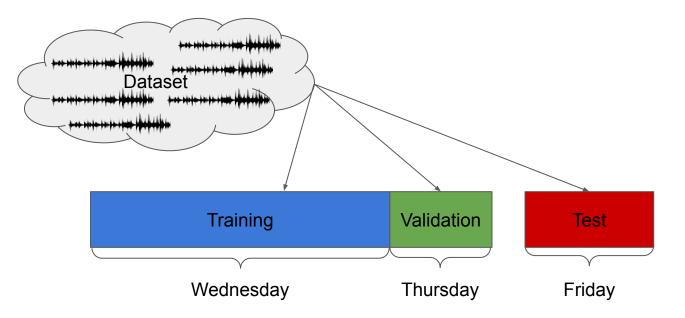
Acoustic Location Classification - ALC

- Artificial classification of audio samples to locations
- **Temporal** Constraints (Lags)

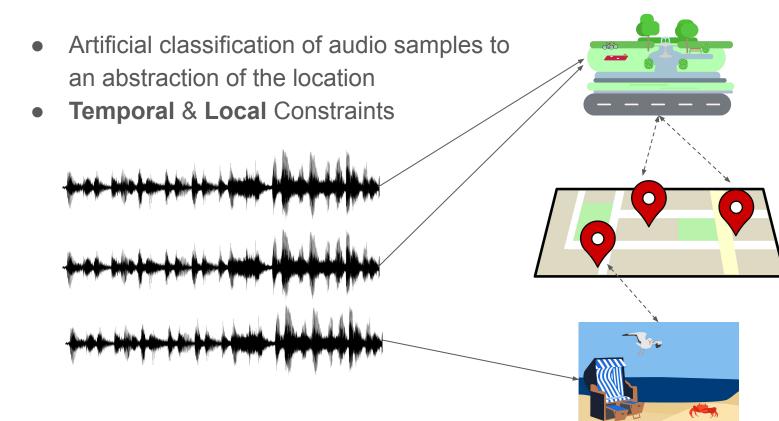


Temporal Constraints (Lags)

• Constrain audio samples on a temporal basis

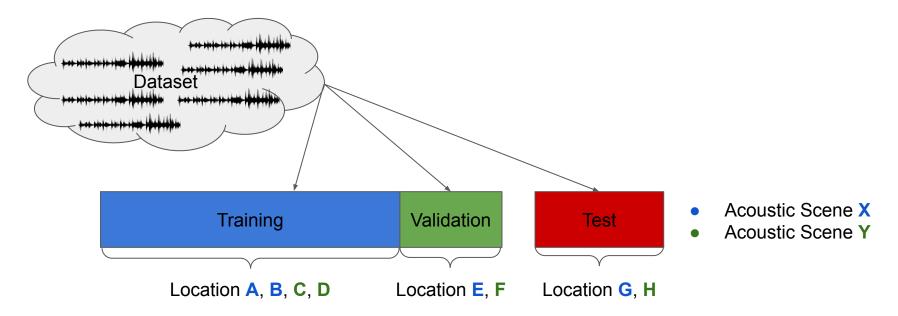


Acoustic Scene Classification - ASC



Local Constraints

• Constrain audio samples based on locations

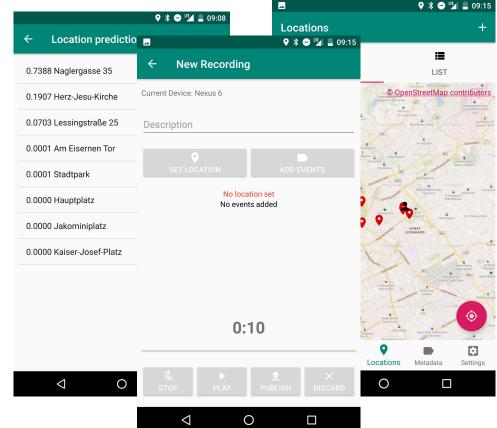


Objective

- Acoustic Location Classification
 - Capabilities
 - Limitations
- Relationship between ASC and ALC
 - Properties
 - Difficulties
- Impact of Constraints
 - Local & Temporal
 - ASC & ALC

Collecting audio data

- Client-server infrastructure
- Dedicated Android application
- Audio recordings
 - Consistent properties
 - Unprocessed
 - Monophonic
 - 48 kHz sample rate
 - Bit depth of 16 bit
- Metadata
 - Locations
 - Acoustic Scenes
 - Events
- Cloud-based classification
 - Convolutional Neural Network
 - ASC & ALC



Dataset for Acoustic Location Classification (Graz DS)

- 8 locations within target region Graz (AUT)
- 2 acoustic scenes
 - Public square
 - Urban green space
- 3 consecutive working days
 - Wednesday, Thursday, Friday
- 5 minutes per day and location
- Intraday time frame
 - 9:00 am to 12:00 am
 - Temporal intraday identity
- Minimal microphone movement
- Unchanged position at locations

Dataset for Acoustic Location Classification (Graz DS)

- Public squares
 - Am Eisernen Tor
 - Hauptplatz
 - Jakominiplatz
 - Kaiser-Josef-Platz
- Urban green spaces
 - Herz-Jesu-Kirche
 - Lessingstraße 25
 - Naglergasse 35
 - Stadtpark

Dataset for ALC (Graz DS) VS. TAU dataset

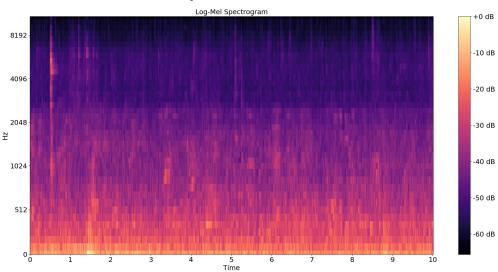
	Dataset for ALC (Graz DS)	TAU dataset
No. of 10 s audio samples	720	14400 (20x larger)
No. of recordings	24 (8 locations x 3 days)	~ 1000
Duration of one recording	~ 300	~ 144 (2 - 3 minutes)
Acoustic scenes	2	10
Locations	8	514
Sample rate	48 kHz	48 kHz
Bit depth	16 bit	24 bit
Channels	1	2 (binaural)
Recording solution	Nexus 6 with dedicated software	Professional audio recorder and in-ear microphone
Applicable for ALC & ASC with Temporal Constraints	YES	No

Classification A-Z

- Preprocessing
 - 10 s audio samples (Graz DS 5 min recordings)
 - Monophonic (**TAU** DS binaural)
 - 48 kHz sample rate
 - 16 bit (**TAU** DS 24 bit) bit depth
- Feature extraction
 - 40-band log-mel spectrograms
- Split into training, validation, and test set
 - Remove classes with an insufficient number of samples
 - Preserve class-wise distribution (Normal distribution)
 - Local & Temporal Constraints
- Normalize to zero mean & unit variance
- Train Convolutional Neural Network (CNN) and evaluate predictions

Features & Convolutional Neural Network (In-depth)

- DCASE 2019 Baseline for ASC
- 40-band log-mel spectrograms of 10 s audio samples
 - 40 ms window size
 - 20 ms overlap
 - Hamming windows
- 2 convolutional layers
 - Max Pooling
- Softmax output layer
- Adam
- Early Stopping, Dropout
- Batch normalization
- Cross-validation, Independent training runs

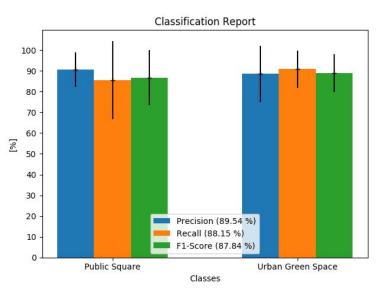


Experiments

	Description	Dataset	Unconstrained	Local 🖉	Temporal 🗽
A	Acoustic scene classification	TAU	76,45 _{+/-1,78}	57,19 _{+/- 2,30}	N/A
В	ASC on Urban Parks & Public Squares	TAU	N/A	89,45 _{+/- 0,51}	N/A
С	ALC on Urban Parks	TAU	84,27 _{+/-1,75}	N/A	N/A
D	Acoustic scene classification	Graz	98,74 _{+/-0,70}	88,15 _{+/- 10,48}	95,14 _{+/-2,37}
Е	ASC transferred from TAU dataset	TAU Graz	N/A	93,00 _{+/-1,51}	93,00 _{+/-1,51}
F	ASC by humans	Graz	N/A	N/A	95,83 _{+/-5,89}
G	Acoustic location classification	Graz	85,17 _{+/-1,70}	N/A	63,82 _{+/-4,49}
н	ALC with varying number of training samples	Graz	N/A	N/A	[26,32, 66,04] _{+/-9,46}
	1-30 per location, 8-240 in total, approx. 20 x 10 s samples per location				

Locally Constrained ASC

- Graz dataset
- 4-run Cross-validation
- 4-2-2 split
- Locations equally distributed w.r.t. the Acoustic Scenes
- High Std Dev between CV runs
 - Precision 9.15 %
 - Recall 10.48 %
 - F₁ score 10.99 %



Locally Constrained ASC (In-depth)

CV	Target	Location	Misclassification		
1	Public square	Kaiser-Josef-Platz	7,33		
	Urban green space	Stadtpark	0	Unique soundscape unsupported by	
0	Public square	Am Eisernen Tor	43,89	training data	
2	Urban green space	Herz-Jesu-Kirche	10,11		
2	Public square	Hauptplatz	5,56	Construction work based sound emissions on the first	
3	Urban green space	Lessingstraße 25	20,00	day	
	Public square	Jakominiplatz	1,22		
4	Urban green space	Naglergasse 35	6,67		

Transfer model

- Acoustic Scene Classification
 - Train on subset of TAU dataset
 - Evaluate on Graz dataset

● TAU dataset ↔ Graz dataset

- \circ Urban Park \leftrightarrow Urban Green Space
- $\circ \quad \text{Public Square} \leftrightarrow \text{Public Square}$
- Implies Local and Temporal Constraints

Transfer model (In comparison)

Training	Evaluation	Constraints	Accuracy
TAU dataset	Graz dataset	Temporal & Local	93,00
Graz dataset	Graz dataset		98,74
Graz dataset	Graz dataset	Local	88,15
Graz dataset	Graz dataset	Temporal	95,14

Humans versus Machines

- Acoustic Scene Classification
 - Temporally Constrained
 - Subset of Graz dataset
- 3 Test persons
 - 2 test persons resident in Graz
 - 1 test person involved in the collection process
- Training
 - \circ 1 10 s audio sample for each of the 8 locations
- Evaluation
 - 2 10 s audio samples for each of the 8 locations

Humans versus Machines (Results)

	Precision	Recall	F ₁	Support
Public square	93,33	100,00	96,30	8
Urban green space	100,00	91,67	95,24	8
Average	96,67	95,83	95,77	
+/-	4,71	5,89	5,99	

- 2 test persons with perfect classification
- Test person not resident in Graz
 - 2 x Herz-Jesu-Kirche misclassified as Public Square
 - Noise of passing vehicles within test samples

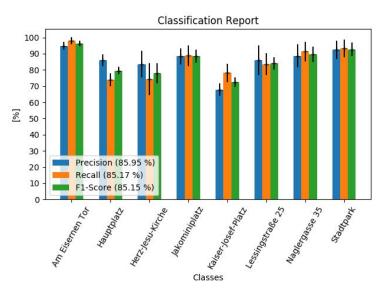
Humans versus Machines (In comparison)

Туре	Dataset	Constraints	Accuracy
ASC by humans	Subset of Graz dataset	Temporal	95,83
Artificial ASC	Graz dataset		98,74
Artificial ASC	Graz dataset	Local	88,15
Artificial ASC	Graz dataset	Temporal	95,14

• Humans outperform artificial counterpart!

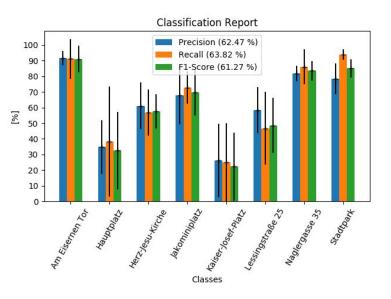
Unconstrained ALC

- Graz dataset
- <u>Reminder:</u>
 - 8 locations
 - o 3 days
- Training, validation, and test set
 - o 33 % 33 % 33 %
 - Benchmark for
 Temporally Constrained ALC
- 10 independent training runs
- Decent classification scores
 - \circ ~ 85 % Precision, Recall, F₁ score

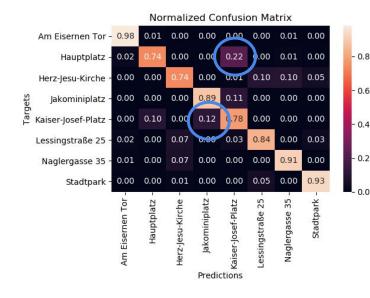


Temporally Constrained **ALC**

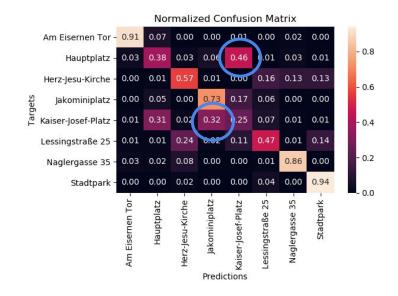
- Graz dataset
- Training, validation, and test set
 - o 33 % 33 % 33 %
 - 1 day for training / validation / testing
- CV with 6 runs
 - Permutations of the days
- Comparatively bad performance
- High Std Dev between CV runs for particular classes



Unconstrained vs. Temporally Constrained ALC



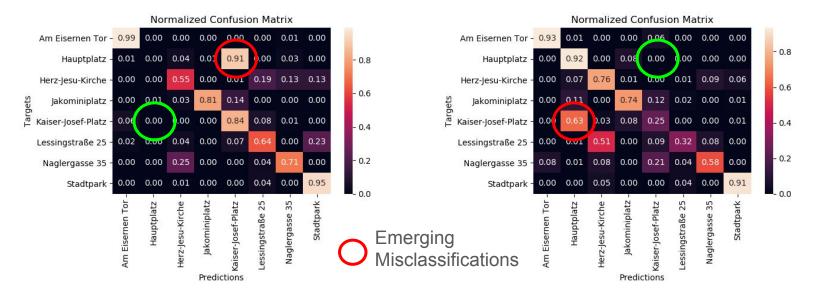
- Without Constraints
 - Higher classification sore
 - Falsified generalization estimate



- Temporal Constraints
 - Dampened classification score
 - Susceptible classes preserved

High Std Dev between CV runs for particular classes

1st vs. 4th CV run - Temporally Constrained ALC



- 1st CV run
 - 1st day training
 - 2nd day validation
 - \circ 3rd day testing

- 4th CV run
 - 1st day testing
 - 2nd day validation
 - 3rd day training

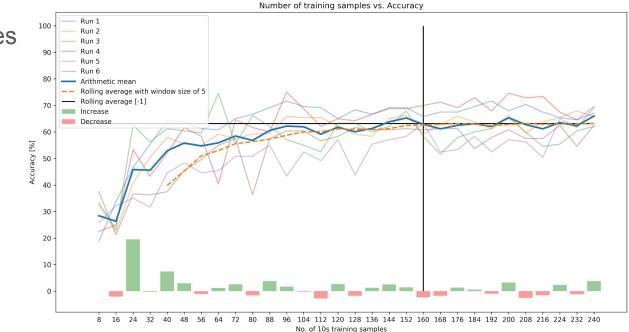
Training set size

- Acoustic Location Classification
 - Temporally Constrained
 - Graz dataset
 - 3-fold Cross-validation
 - 6 training-validation-test permutations
- Increasing number of training samples
 - Start with 1 sample per location
 - Till 30 samples per location
- Fixed validation and test set

Training set size (Results)

- 160 10 s audio samples
- 200 s of audio data per location
- Visual estimation

 Humanly biased
- Biased towards the underlying dataset



Future work

- Increase dataset
 - Daily recordings
 - Time frame over several weeks or months
 - More locations
 - Similar and different ones!
 - Monitor increasing intra-class/ decreasing inter-class variability [Schmidhofer2018]
- Adapt model complexity, optimize hyperparameters, etc.
- Related topics
 - Mismatched recording devices [Mesaros2018]
 - Indoor locations [Tarzia2011]
 - Sound Event Localization and Detection (SELD) [Adavanne2018, Adavanne2019]
- Artificial dataset augmentation [Chen2019]
- Transfer Learning (TL) [Pan2009]

Findings & Conclusion

- Constraints are necessary for ASC & ALC
 - Prevent biased evaluation
 - Reliable generalization estimates
 - Dampens the classification score
 - More samples required (e.g., ASC on Graz DS)
 - Obtain a well generalized representation for acoustic scenes
- Transferring models ASC
 - \circ TAU dataset \rightarrow Graz dataset
- Humans outperform machines ASC
- Approx. 200 s of audio data per location w.r.t. Temporally Constrained ALC

References

Mesaros, Annamaria, Toni Heittola, and Tuomas Virtanen. "A multi-device dataset for urban acoustic scene classification." arXiv preprint arXiv:1807.09840 (2018).

Tarzia, Stephen P., et al. "Indoor localization without infrastructure using the acoustic background spectrum." *Proceedings of the 9th international conference on Mobile systems, applications, and services*. 2011.

Chen, Hangting, et al. "Integrating the data augmentation scheme with various classifiers for acoustic scene modeling." *arXiv preprint arXiv:1907.06639* (2019).

Adavanne, Sharath, et al. "Sound event localization and detection of overlapping sources using convolutional recurrent neural networks." *IEEE Journal of Selected Topics in Signal Processing* 13.1 (2018): 34-48.

Adavanne, Sharath, Archontis Politis, and Tuomas Virtanen. "A multi-room reverberant dataset for sound event localization and detection." *arXiv preprint arXiv:1905.08546* (2019).

References

Pan, Sinno Jialin, and Qiang Yang. "A survey on transfer learning." *IEEE Transactions on knowledge and data engineering* 22.10 (2009): 1345-1359.

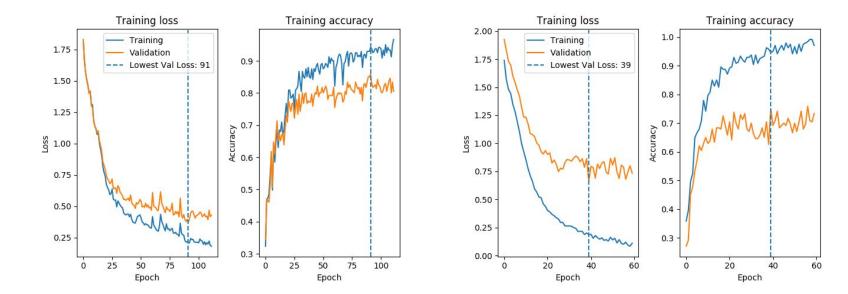
Imoto, Keisuke, and Nobutaka Ono. "Online acoustic scene analysis based on nonparametric Bayesian model." 2016 24th European Signal Processing Conference (EUSIPCO). IEEE, 2016.

Sahoo, Doyen, et al. "Online deep learning: Learning deep neural networks on the fly." *arXiv preprint arXiv:1711.03705* (2017).

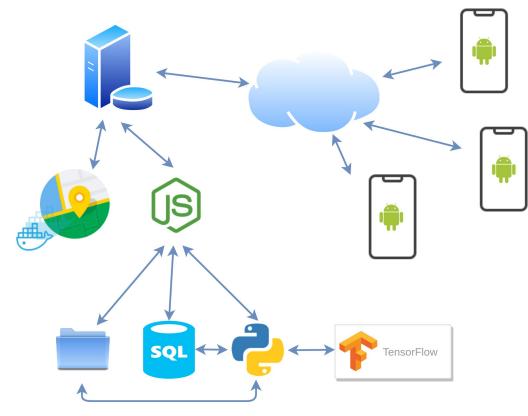
A. Schmidhofer, 'Dataset generation guideline for acoustic transport mode detection', Master's thesis, Graz University of Technology, 2018.

Training-Validation Loss & Accuracy (Graz DS)

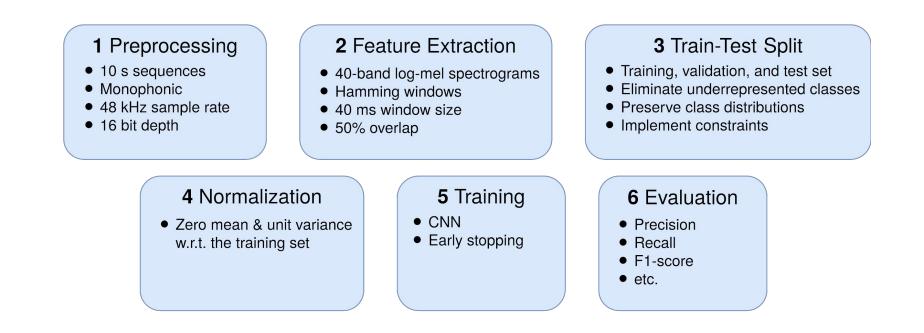
- ALC without Constraints
 AL
- ALC with Temporal Constraints



Infrastructure

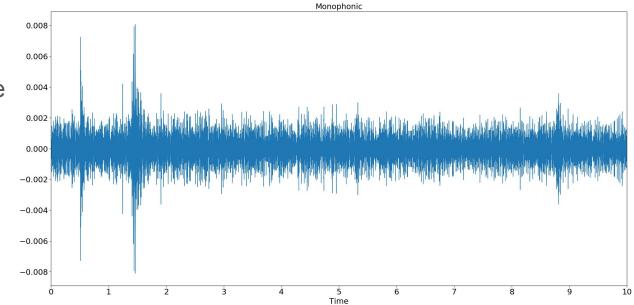


Classification A-Z



Recorded audio (In-depth)

- Unprocessed
- Monophonic
- 48 kHz sample rate
 - Nexus 6
- bit depth: 16 bit
 o Integer PCM



Overview

- 1. Collecting audio data
 - Client-server infrastructure
 - Dedicated Android application
 - Audio recordings and metadata
- 2. Datasets
 - Dataset for Acoustic Location Classification (Graz dataset)
 - TAU Urban Acoustic Scenes 2019, Development dataset [Mesaros2018] (TAU dataset)
- 3. Classification
 - Preprocessing, Feature extraction, etc.
 - Convolutional Neural Network
- 4. Evaluation
 - Experiments
 - Findings
- 5. Future Work

Summary

- 1. Set up infrastructure to collect audio samples and metadata with a dedicated Android application
- 2. Established dataset for Acoustic Location Classification
- 3. Implemented Classification A-Z
 - Preprocessing
 - Feature extraction
 - Constrained training & test splits
 - Convolutional Neural Network
- 4. Conducted several experiments
- 5. Evaluated and discussed the outcomes
- 6. Provided future outlook