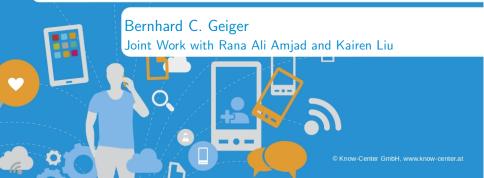


AUSTRIA'S LEADING RESEARCH CENTER
FOR DATA-DRIVEN BUSINESS AND BIG DATA ANALYTICS

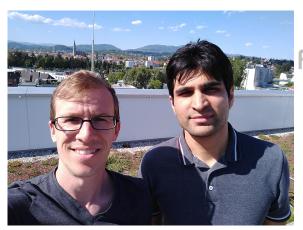
# **Understanding Neural Networks with Information Theory**







#### Who are we?





Unterstützt von / Supported by



Alexander von Humboldt Stiftung/Foundation



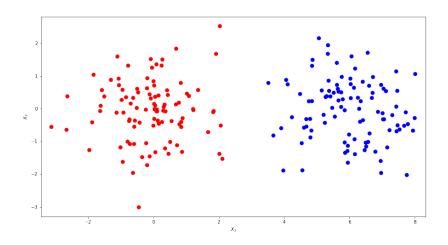
#### **Overview**

- 1 Logistic Regression
- 2 Neural Networks
- 3 Understanding NNs
- 4 Information-Ordered Cumulative Ablation
- 5 Conclusion
- 6 Presentation TRIPLE Project





# **Binary Classification Task**







## **Logistic Regression**

▶ learn class label (red, blue) from features  $X_1$  and  $X_2$ 





## **Logistic Regression**

- ▶ learn class label (red, blue) from features  $X_1$  and  $X_2$
- ▶ logistic regression is a linear model



## **Logistic Regression**

- ▶ learn class label (red, blue) from features  $X_1$  and  $X_2$
- logistic regression is a linear model
- logistic regression yields class probabilities:

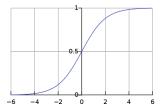
If  $X_1 = x$  and  $X_2 = x'$ , then the probability that Y is red is p.





# Logistic Regression (cont'd)

$$\mathbb{P}[Y = \text{red}] = \sigma(w_1 \cdot X_1 + w_2 \cdot X_2 + w_0)$$



Public Domain by Qef.

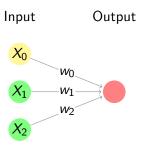
- $w_1 \cdot X_1 + w_2 \cdot X_2 + w_0 < 0$ , then Y is more likely to be blue
- $\triangleright$   $w_1$ ,  $w_2$ , and  $w_0$  define decision boundary
- ► Task: Learn w<sub>1</sub>, w<sub>2</sub>, and w<sub>0</sub> from data
- (typically: cross-entropy loss + L<sub>2</sub> regularization)





# Logistic Regression (cont'd)

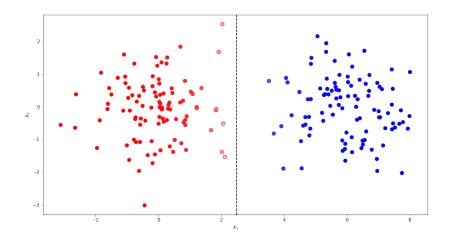
$$\mathbb{P}[Y = \text{red}] = \sigma(w_1 \cdot X_1 + w_2 \cdot X_2 + w_0)$$







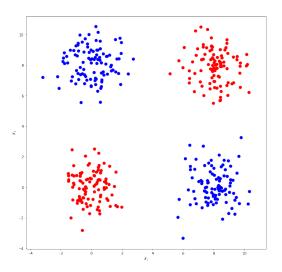
# Binary Classification using Logistic Regression





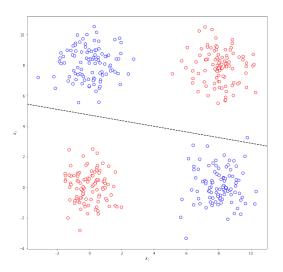


# **Binary Classification (slightly more complicated)**





# **Binary Classification (slightly more complicated)**







# Logistic Regression Fails...

...if the data is not linearly separable





# Logistic Regression Fails...

... if the data is not linearly separable

Idea: Stack multiple linear regression models on top of each other!

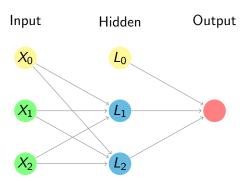




## Logistic Regression Fails...

... if the data is not linearly separable

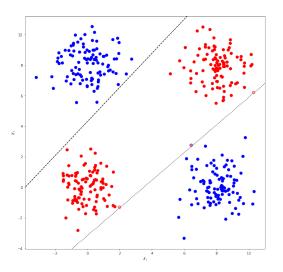
Idea: Stack multiple linear regression models on top of each other!







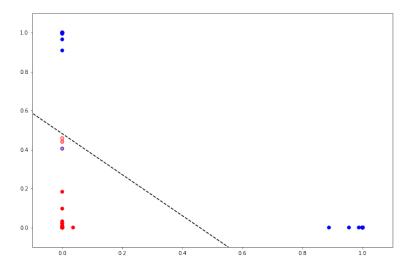
#### Binary Classification with a Neural Network







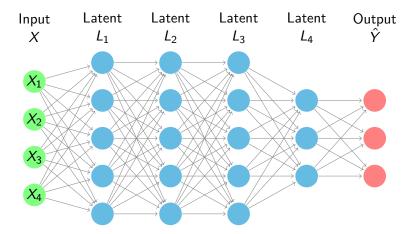
# Binary Classification with a Neural Network







#### **Binary Classification with Neural Networks**





#### **Binary Classification with Neural Networks**

- Still easy to understand with two input features, hidden layers of width two (2D scatter plot)
- ▶ What happens for higher-dimensional input?
  - MNIST: input has 784 dimensions
  - CIFAR-10: input has  $3 \times 1024$  dimensions
  - ...
- What happens for wider layers?
  - e.g., a 100 100 MLP trained on MNIST?
  - ...



## Two Approaches to Understand NNs

- Explainable/Interpretable AI:
  - What input features led to the decision?<sup>1</sup>
  - What training data was most influential for this decision?<sup>2</sup>
  - Simplified decision boundaries<sup>3</sup>, extract decision procedure, etc.
  - ...
- How do NNs work internally?
  - Behavior during training
  - Why do NNs generalize so well?<sup>4</sup>
  - Importance of individual ("cat") neurons
  - ..

 $<sup>^{1}</sup>$ Montavon, Samek, and Müller, "Methods for interpreting and understanding deep neural networks", 2018

<sup>&</sup>lt;sup>2</sup>Koh and Liang, "Understanding Black-box Predictions via Influence Functions", 2017

<sup>&</sup>lt;sup>3</sup>Ribeiro, Singh, and Guestrin, ""Why should I trust you?" Explaining the predictions of any classifier", 2016

<sup>&</sup>lt;sup>4</sup>Frankle and Carbin, "The Lottery Ticket Hypothesis: Training Pruned Neural Networks",



#### Two Approaches to Understand NNs

- Explainable/Interpretable AI:
  - What input features led to the decision?<sup>1</sup>
  - What training data was most influential for this decision?<sup>2</sup>
  - Simplified decision boundaries<sup>3</sup>, extract decision procedure, etc.
  - ...
- How do NNs work internally?
  - Behavior during training
  - Why do NNs generalize so well?<sup>4</sup>
  - Importance of individual ("cat") neurons
  - ..

<sup>&</sup>lt;sup>1</sup>Montavon, Samek, and Müller, "Methods for interpreting and understanding deep neural networks", 2018

<sup>&</sup>lt;sup>2</sup>Koh and Liang, "Understanding Black-box Predictions via Influence Functions", 2017

<sup>&</sup>lt;sup>3</sup>Ribeiro, Singh, and Guestrin, ""Why should I trust you?" Explaining the predictions of any classifier", 2016

<sup>&</sup>lt;sup>4</sup>Frankle and Carbin, "The Lottery Ticket Hypothesis: Training Pruned Neural Networks",





## **Prerequisite: Mutual Information**

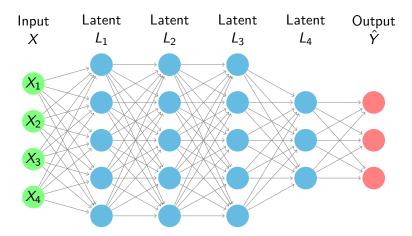
I(U; V)

- is defined for general random variables
- measures statistical dependence between U and V
- generalizes (linear) correlation
- ▶ is zero if and only if *U* and *V* are independent
- is invariant under invertible maps
- (can be difficult to estimate)





#### **Information Plane Analyses**







Intermediate representation L (NN layer) should

- P1 contain sufficient info for classification
  - e.g., L should suffice to determine whether X is a cat or a dog
- P2 ...but not more info than necessary (compression)
  - e.g., L should not contain information about the color of the fur, length of ears, etc.

<sup>&</sup>lt;sup>5</sup>Alemi et al., "Deep Variational Information Bottleneck", 2017

<sup>&</sup>lt;sup>6</sup>Kolchinsky, Tracey, and Wolpert, "Nonlinear Information Bottleneck", 2019

<sup>&</sup>lt;sup>7</sup>Fischer, "The Conditional Entropy Bottleneck", 2020





Intermediate representation L (NN layer) should

- P1 contain sufficient info for classification
  - e.g., L should suffice to determine whether X is a cat or a dog
- P2 ...but not more info than necessary (compression)
  - e.g., *L* should not contain information about the color of the fur, length of ears, etc.

$$P1 \Leftrightarrow large I(Y; L)$$

$$P2 \Leftrightarrow small\ I(X; L)$$

<sup>&</sup>lt;sup>5</sup>Alemi et al., "Deep Variational Information Bottleneck", 2017

<sup>&</sup>lt;sup>6</sup>Kolchinsky, Tracey, and Wolpert, "Nonlinear Information Bottleneck", 2019

<sup>&</sup>lt;sup>7</sup>Fischer, "The Conditional Entropy Bottleneck", 2020





Intermediate representation L (NN layer) should

- P1 contain sufficient info for classification
  - e.g., L should suffice to determine whether X is a cat or a dog
- P2 ...but not more info than necessary (compression)
  - e.g., L should not contain information about the color of the fur, length of ears, etc.

P1 
$$\Leftrightarrow$$
 large  $I(Y; L)$ 

 $P2 \Leftrightarrow small I(X; L)$ 

#### Idea has been successfully applied in NN training<sup>5,6,7</sup>

<sup>&</sup>lt;sup>5</sup>Alemi et al., "Deep Variational Information Bottleneck", 2017

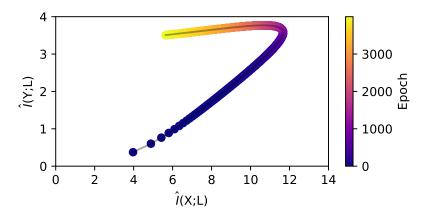
<sup>&</sup>lt;sup>6</sup>Kolchinsky, Tracey, and Wolpert, "Nonlinear Information Bottleneck", 2019

<sup>&</sup>lt;sup>7</sup>Fischer, "The Conditional Entropy Bottleneck", 2020





Estimate how I(X; L) and I(Y; L) evolve during NN training<sup>8</sup>:



<sup>&</sup>lt;sup>8</sup>Shwartz-Ziv and Tishby, Opening the Black Box of Deep Neural Networks via Information, 2017





#### Hot Topic, but many open questions:

- requires estimating mutual information, which is problematic<sup>9</sup>
- connection to generalization not fully clear, e.g.<sup>10</sup>
- ▶ information plane appears to show geometric picture (clustering)<sup>11</sup>
- current results in the literature are inconsistent (is there a compression phase?, etc.)<sup>12</sup>
- ongoing debate

<sup>&</sup>lt;sup>9</sup>Amjad and Geiger, "Learning Representations for Neural Network-Based Classification Using the Information Bottleneck Principle", 2020

<sup>&</sup>lt;sup>10</sup>Saxe et al., "On the Information Bottleneck Theory of Deep Learning", 2018

 $<sup>^{11}</sup>$ Goldfeld et al., "Estimating Information Flow in Deep Neural Networks", 2019

<sup>&</sup>lt;sup>12</sup>Geiger, On Information Plane Analyses of Neural Network Classifiers - A Review, 2020



 $<sup>^{13}\</sup>mathrm{Vera}$ , Piantanida, and Vega, "The Role of the Information Bottleneck in Representation Learning", 2018

 $<sup>^{14}</sup>$ Shwartz-Ziv, Painsky, and Tishby, Representation Compression and Generalization in Deep Neural Networks, 2018

 $<sup>^{15}</sup>$ Xu and Raginsky, "Information-theoretic analysis of generalization capability of learning algorithms", 2017

<sup>&</sup>lt;sup>16</sup>Bu, Zou, and Veeravalli, "Tightening Mutual Information Based Bounds on Generalization Error", 2019

<sup>&</sup>lt;sup>17</sup>Pensia, Jog, and Loh, "Generalization Error Bounds for Noisy, Iterative Algorithms", 2018

 $<sup>^{18}</sup>$ Achille and Soatto, "Emergence of Invariance and Disentanglement in Deep Representations", 2018



- $ightharpoonup \propto \sqrt{I(X;L)} \frac{\log m}{\sqrt{m}}$ , see<sup>13</sup>
- $\left(2^{I(X;L)} + \log(2/\delta)\right)/(2m)$  with probability  $1 \delta$ , see<sup>14</sup>

 $<sup>^{13}</sup>$ Vera, Piantanida, and Vega, "The Role of the Information Bottleneck in Representation Learning", 2018

 $<sup>^{14}</sup>$ Shwartz-Ziv, Painsky, and Tishby, Representation Compression and Generalization in Deep Neural Networks, 2018

 $<sup>^{15}\</sup>text{Xu}$  and Raginsky, "Information-theoretic analysis of generalization capability of learning algorithms", 2017

<sup>&</sup>lt;sup>16</sup>Bu, Zou, and Veeravalli, "Tightening Mutual Information Based Bounds on Generalization Error", 2019

 $<sup>^{17}\</sup>mbox{Pensia}$ , Jog, and Loh, "Generalization Error Bounds for Noisy, Iterative Algorithms", 2018

 $<sup>^{18}</sup>$ Achille and Soatto, "Emergence of Invariance and Disentanglement in Deep Representations", 2018



- $ightharpoonup \propto \sqrt{I(X;L)} \frac{\log m}{\sqrt{m}}$ , see<sup>13</sup>
- $(2^{I(X;L)} + \log(2/\delta))/(2m)$  with probability  $1 \delta$ , see<sup>14</sup>
- $ightharpoonup \propto \sqrt{rac{1}{m}I(\mathcal{D};A(\mathcal{D}))}$ , see<sup>15</sup>
- $ightharpoonup \propto \frac{1}{m} \sum_{i=1}^m \sqrt{I(D_i; A(\mathcal{D}))}$ , see<sup>16</sup>
- extensions to SGD-type training<sup>17</sup>

 $<sup>^{13}</sup>$ Vera, Piantanida, and Vega, "The Role of the Information Bottleneck in Representation Learning", 2018

<sup>&</sup>lt;sup>14</sup>Shwartz-Ziv, Painsky, and Tishby, Representation Compression and Generalization in Deep Neural Networks, 2018

 $<sup>^{15}\</sup>mbox{Xu}$  and Raginsky, "Information-theoretic analysis of generalization capability of learning algorithms", 2017

<sup>&</sup>lt;sup>16</sup>Bu, Zou, and Veeravalli, "Tightening Mutual Information Based Bounds on Generalization Error", 2019

 $<sup>^{17}</sup>$ Pensia, Jog, and Loh, "Generalization Error Bounds for Noisy, Iterative Algorithms", 2018

 $<sup>^{18}</sup>$ Achille and Soatto, "Emergence of Invariance and Disentanglement in Deep Representations", 2018



- $ightharpoonup \propto \sqrt{I(X;L)} rac{\log m}{\sqrt{m}}$ , see<sup>13</sup>
- $(2^{I(X;L)} + \log(2/\delta))/(2m)$  with probability  $1 \delta$ , see<sup>14</sup>
- $ightharpoonup \propto \sqrt{rac{1}{m}I(\mathcal{D};A(\mathcal{D}))}$ , see<sup>15</sup>
- $ightharpoonup \propto rac{1}{m} \sum_{i=1}^m \sqrt{I(D_i; A(\mathcal{D}))}$ , see<sup>16</sup>
- extensions to SGD-type training<sup>17</sup>
- ▶ see also<sup>18</sup>

 $<sup>^{13}</sup>$ Vera, Piantanida, and Vega, "The Role of the Information Bottleneck in Representation Learning", 2018

 $<sup>^{14}</sup>$ Shwartz-Ziv, Painsky, and Tishby, Representation Compression and Generalization in Deep Neural Networks, 2018

 $<sup>^{15}\</sup>mbox{Xu}$  and Raginsky, "Information-theoretic analysis of generalization capability of learning algorithms", 2017

<sup>&</sup>lt;sup>16</sup>Bu, Zou, and Veeravalli, "Tightening Mutual Information Based Bounds on Generalization Error", 2019

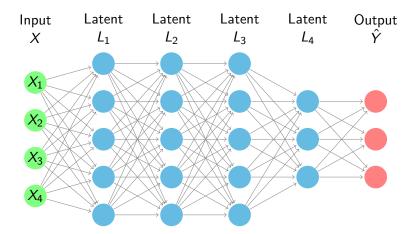
 $<sup>^{17}</sup>$ Pensia, Jog, and Loh, "Generalization Error Bounds for Noisy, Iterative Algorithms", 2018

 $<sup>^{18}</sup>$ Achille and Soatto, "Emergence of Invariance and Disentanglement in Deep Representations", 2018





#### What about Individual Neurons?





# What about Individual Neurons? (cont'd)

How important is the  $\ell$ -th neuron in the i-th layer?



# What about Individual Neurons? (cont'd)

How important is the  $\ell$ -th neuron in the i-th layer?

- ightharpoonup compute mutual information  $I(Y; L_{i,\ell})$
- ▶ much easier to estimate than  $I(Y; L_i)$  (whole layer) or  $I(X; L_i)$  (X is high-dimensional/continuously distributed)
- ► Hypothesis: Large values indicate that the \(\ell\)-th neuron in the i-th layer is important for the task



#### Information-Ordered Cumulative Ablation<sup>19</sup>

▶ **Ablation**: Turning off individual neurons, i.e., set  $L_{i,\ell} = 0$ 

<sup>&</sup>lt;sup>19</sup>Liu, Amjad, and Geiger, Understanding Individual Neuron Importance Using Information Theory, 2018



### Information-Ordered Cumulative Ablation<sup>19</sup>

- ▶ **Ablation**: Turning off individual neurons, i.e., set  $L_{i,\ell} = 0$
- ► Cumulative Ablation: Turn off more and more neurons and see how, e.g., classification accuracy is affected

<sup>&</sup>lt;sup>19</sup>Liu, Amjad, and Geiger, Understanding Individual Neuron Importance Using Information Theory, 2018



### Information-Ordered Cumulative Ablation<sup>19</sup>

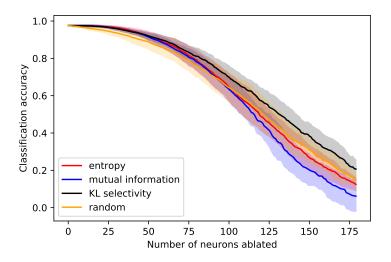
- ▶ **Ablation**: Turning off individual neurons, i.e., set  $L_{i,\ell} = 0$
- Cumulative Ablation: Turn off more and more neurons and see how, e.g., classification accuracy is affected
- ▶ Information-Ordering: Turn off the k neurons with lowest (highest) mutual information and compare with turning off neurons randomly

<sup>&</sup>lt;sup>19</sup>Liu, Amjad, and Geiger, Understanding Individual Neuron Importance Using Information Theory, 2018





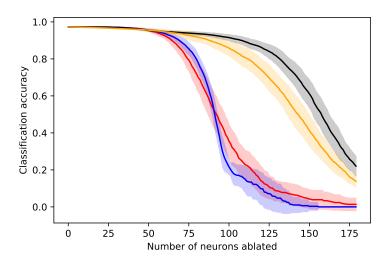
## MNIST 100 - 100, $L_2$ regularization







## MNIST 100-100, Dropout





## What about Individual Neurons? (cont'd)

How important is the  $\ell$ -th neuron in the i-th layer?

- ▶ it seems as if neurons with high mutual information are not useful/hurting classification performance
- reproduces results from<sup>20</sup>

<sup>&</sup>lt;sup>20</sup>Morcos et al., On the importance of single directions for generalization, 2018





### What about Individual Neurons? (cont'd)

How important is the  $\ell$ -th neuron in the i-th layer?

- ▶ it seems as if neurons with high mutual information are not useful/hurting classification performance
- reproduces results from<sup>20</sup>

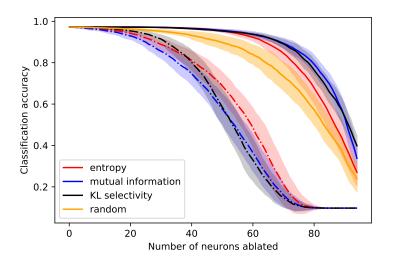
Let's take a closer look!

<sup>&</sup>lt;sup>20</sup>Morcos et al., On the importance of single directions for generalization, 2018





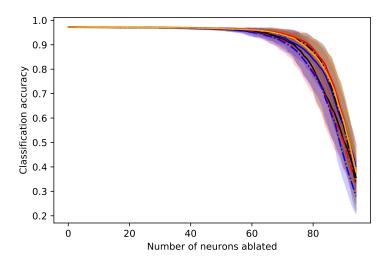
# MNIST 100-100, Dropout, Layer 1







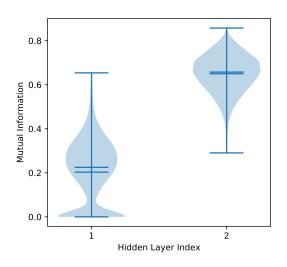
# MNIST 100-100, Dropout, Layer 2







## MNIST 100-100, Dropout







## What about Individual Neurons? (cont'd)

How important is the  $\ell$ -th neuron in the i-th layer?

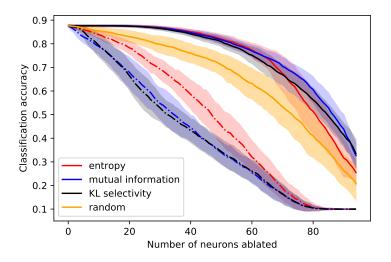
- ▶ it seems as if neurons with high mutual information are not useful/hurting classification performance<sup>21</sup>
- ▶ BUT: neurons with high mutual information are useful within a given layer
- layers have different distribution of mutual information values
- ➤ ⇒ Simpson's paradox

<sup>&</sup>lt;sup>21</sup>Morcos et al., On the importance of single directions for generalization, 2018





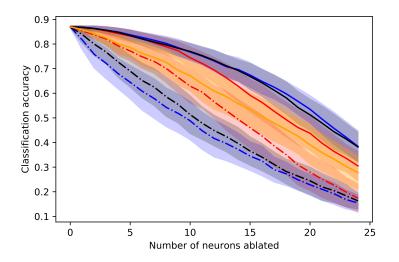
# FashionMNIST 100 - 100, $L_2$ , Layer 1







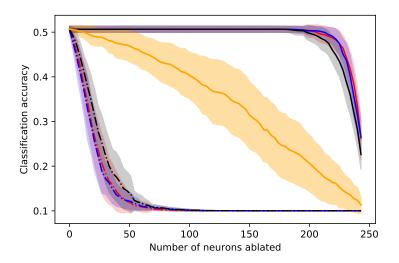
## FashionMNIST 30 - 30, $L_2$ , Layer 1







# CIFAR-10 250 - 500 - 250 - 500, $L_2$ , Layer 3





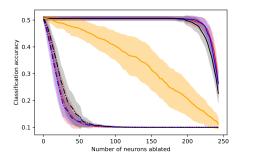
#### Information-Ordered Cumulative Ablation

What else can we learn?





# CIFAR-10 250 - 500 - 250 - 500, $L_2$ , Layer 2

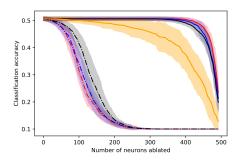


- ▶ 40 neurons with highest mutual information suffice
- removing 60 neurons with highest mutual information destroy performance
- ➤ ≈ 200 neurons are inactive





## CIFAR-10 250 - 500 - 250 - 500, $L_2$ , Layer 4



- ▶ 100 neurons with highest mutual information suffice
- removing 250 neurons with highest mutual information destroy performance
- ightharpoonup pprox 250 neurons are inactive
- ightharpoonup pprox 50-150 neurons are redundant



## More Insights?

- beyond mutual information
- beyond ReLU activation functions
- beyond L<sub>2</sub> regularization
- effects of quantization
- **.**..

arXiv:1804.06679v3 [cs.LG]





#### **Conclusion**

NNs are difficult to understand, but

#### information theory is powerful:

- Bounds on the generalization error
- Investigating learning behavior
- ▶ Interplay between learning and geometric compression
- Importance of individual neurons via ordered cumulative ablation
  - neurons with large mutual information (within a layer) are important for classification
  - mutual information values differ between layers
  - cumulative ablation reveals inactive, redundant, and synergistic neurons





#### **Conclusion**

NNs are difficult to understand, but

#### information theory is powerful:

- Bounds on the generalization error
- Investigating learning behavior
- ▶ Interplay between learning and geometric compression
- Importance of individual neurons via ordered cumulative ablation
  - neurons with large mutual information (within a layer) are important for classification
  - mutual information values differ between layers
  - cumulative ablation reveals inactive, redundant, and synergistic neurons

### Thanks for your attention!



