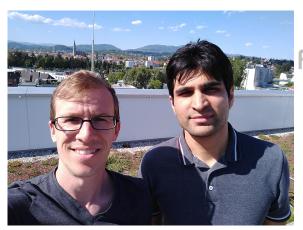


AUSTRIA'S LEADING RESEARCH CENTER
FOR DATA-DRIVEN BUSINESS AND BIG DATA ANALYTICS

Understanding Neural Networks with Information Theory

Who are we?



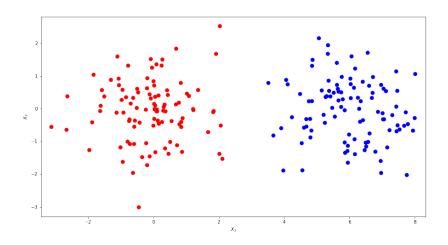
Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

Overview

- 1 Logistic Regression
- 2 Neural Networks
- 3 Understanding NNs
- 4 Information-Ordered Cumulative Ablation
- 5 Conclusion
- 6 Presentation TRIPLE Project

Binary Classification Task



Logistic Regression

▶ learn class label (red, blue) from features X_1 and X_2

Logistic Regression

- ▶ learn class label (red, blue) from features X_1 and X_2
- ▶ logistic regression is a linear model

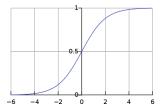
Logistic Regression

- ▶ learn class label (red, blue) from features X_1 and X_2
- logistic regression is a linear model
- logistic regression yields class probabilities:

If $X_1 = x$ and $X_2 = x'$, then the probability that Y is red is p.

Logistic Regression (cont'd)

$$\mathbb{P}[Y = \text{red}] = \sigma(w_1 \cdot X_1 + w_2 \cdot X_2 + w_0)$$

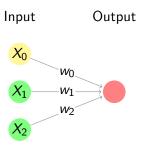


Public Domain by Qef.

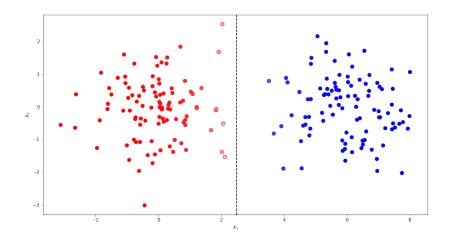
- $w_1 \cdot X_1 + w_2 \cdot X_2 + w_0 < 0$, then Y is more likely to be blue
- \triangleright w_1 , w_2 , and w_0 define decision boundary
- ► Task: Learn w₁, w₂, and w₀ from data
- (typically: cross-entropy loss + L₂ regularization)

Logistic Regression (cont'd)

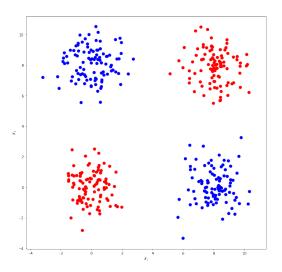
$$\mathbb{P}[Y = \text{red}] = \sigma(w_1 \cdot X_1 + w_2 \cdot X_2 + w_0)$$



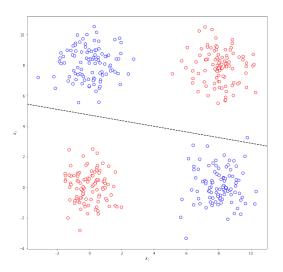
Binary Classification using Logistic Regression



Binary Classification (slightly more complicated)



Binary Classification (slightly more complicated)



Logistic Regression Fails...

...if the data is not linearly separable

Logistic Regression Fails...

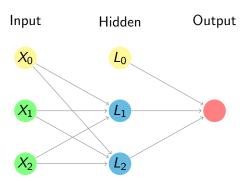
... if the data is not linearly separable

Idea: Stack multiple linear regression models on top of each other!

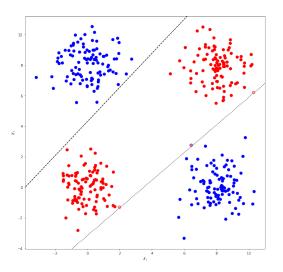
Logistic Regression Fails...

... if the data is not linearly separable

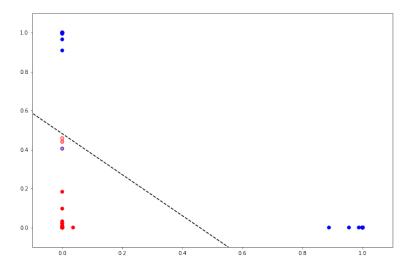
Idea: Stack multiple linear regression models on top of each other!



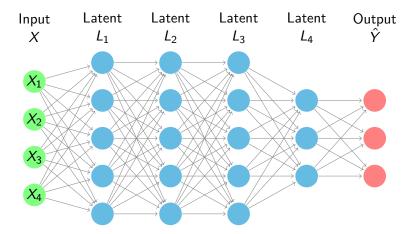
Binary Classification with a Neural Network



Binary Classification with a Neural Network



Binary Classification with Neural Networks



Binary Classification with Neural Networks

- Still easy to understand with two input features, hidden layers of width two (2D scatter plot)
- ▶ What happens for higher-dimensional input?
 - MNIST: input has 784 dimensions
 - CIFAR-10: input has 3×1024 dimensions
 - ...
- What happens for wider layers?
 - e.g., a 100 100 MLP trained on MNIST?
 - ...

Two Approaches to Understand NNs

- Explainable/Interpretable AI:
 - What input features led to the decision?¹
 - What training data was most influential for this decision?²
 - Simplified decision boundaries³, extract decision procedure, etc.
 - ...
- How do NNs work internally?
 - Behavior during training
 - Why do NNs generalize so well?⁴
 - Importance of individual ("cat") neurons
 - ..

 $^{^{1}}$ Montavon, Samek, and Müller, "Methods for interpreting and understanding deep neural networks", 2018

²Koh and Liang, "Understanding Black-box Predictions via Influence Functions", 2017

³Ribeiro, Singh, and Guestrin, ""Why should I trust you?" Explaining the predictions of any classifier", 2016

⁴Frankle and Carbin, "The Lottery Ticket Hypothesis: Training Pruned Neural Networks",

Two Approaches to Understand NNs

- Explainable/Interpretable AI:
 - What input features led to the decision?¹
 - What training data was most influential for this decision?²
 - Simplified decision boundaries³, extract decision procedure, etc.
 - ...
- How do NNs work internally?
 - Behavior during training
 - Why do NNs generalize so well?⁴
 - Importance of individual ("cat") neurons
 - ..

¹Montavon, Samek, and Müller, "Methods for interpreting and understanding deep neural networks", 2018

²Koh and Liang, "Understanding Black-box Predictions via Influence Functions", 2017

³Ribeiro, Singh, and Guestrin, ""Why should I trust you?" Explaining the predictions of any classifier", 2016

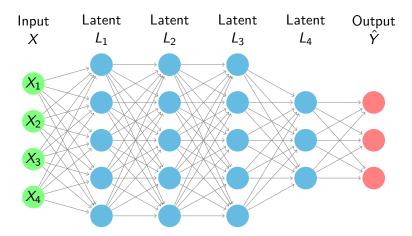
⁴Frankle and Carbin, "The Lottery Ticket Hypothesis: Training Pruned Neural Networks",

Prerequisite: Mutual Information

I(U; V)

- is defined for general random variables
- measures statistical dependence between U and V
- generalizes (linear) correlation
- ▶ is zero if and only if *U* and *V* are independent
- is invariant under invertible maps
- (can be difficult to estimate)

Information Plane Analyses



Intermediate representation L (NN layer) should

- P1 contain sufficient info for classification
 - e.g., L should suffice to determine whether X is a cat or a dog
- P2 ...but not more info than necessary (compression)
 - e.g., L should not contain information about the color of the fur, length of ears, etc.

⁵Alemi et al., "Deep Variational Information Bottleneck", 2017

⁶Kolchinsky, Tracey, and Wolpert, "Nonlinear Information Bottleneck", 2019

⁷Fischer, "The Conditional Entropy Bottleneck", 2020

Intermediate representation L (NN layer) should

- P1 contain sufficient info for classification
 - e.g., L should suffice to determine whether X is a cat or a dog
- P2 ...but not more info than necessary (compression)
 - e.g., *L* should not contain information about the color of the fur, length of ears, etc.

$$P1 \Leftrightarrow large I(Y; L)$$

$$P2 \Leftrightarrow small\ I(X; L)$$

⁵Alemi et al., "Deep Variational Information Bottleneck", 2017

⁶Kolchinsky, Tracey, and Wolpert, "Nonlinear Information Bottleneck", 2019

⁷Fischer, "The Conditional Entropy Bottleneck", 2020

Intermediate representation L (NN layer) should

- P1 contain sufficient info for classification
 - e.g., L should suffice to determine whether X is a cat or a dog
- P2 ...but not more info than necessary (compression)
 - e.g., L should not contain information about the color of the fur, length of ears, etc.

P1
$$\Leftrightarrow$$
 large $I(Y; L)$

 $P2 \Leftrightarrow small I(X; L)$

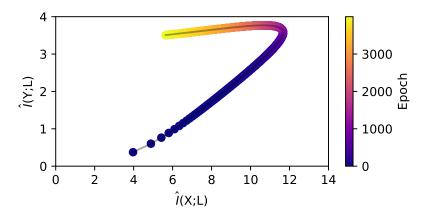
Idea has been successfully applied in NN training^{5,6,7}

⁵Alemi et al., "Deep Variational Information Bottleneck", 2017

⁶Kolchinsky, Tracey, and Wolpert, "Nonlinear Information Bottleneck", 2019

⁷Fischer, "The Conditional Entropy Bottleneck", 2020

Estimate how I(X; L) and I(Y; L) evolve during NN training⁸:



⁸Shwartz-Ziv and Tishby, Opening the Black Box of Deep Neural Networks via Information, 2017

Hot Topic, but many open questions:

- requires estimating mutual information, which is problematic⁹
- connection to generalization not fully clear, e.g.¹⁰
- ▶ information plane appears to show geometric picture (clustering)¹¹
- current results in the literature are inconsistent (is there a compression phase?, etc.)¹²
- ongoing debate

⁹Amjad and Geiger, "Learning Representations for Neural Network-Based Classification Using the Information Bottleneck Principle", 2020

¹⁰Saxe et al., "On the Information Bottleneck Theory of Deep Learning", 2018

 $^{^{11}}$ Goldfeld et al., "Estimating Information Flow in Deep Neural Networks", 2019

¹²Geiger, On Information Plane Analyses of Neural Network Classifiers - A Review, 2020

 $^{^{13}\}mathrm{Vera}$, Piantanida, and Vega, "The Role of the Information Bottleneck in Representation Learning", 2018

 $^{^{14}}$ Shwartz-Ziv, Painsky, and Tishby, Representation Compression and Generalization in Deep Neural Networks, 2018

 $^{^{15}}$ Xu and Raginsky, "Information-theoretic analysis of generalization capability of learning algorithms", 2017

¹⁶Bu, Zou, and Veeravalli, "Tightening Mutual Information Based Bounds on Generalization Error", 2019

¹⁷Pensia, Jog, and Loh, "Generalization Error Bounds for Noisy, Iterative Algorithms", 2018

 $^{^{18}}$ Achille and Soatto, "Emergence of Invariance and Disentanglement in Deep Representations", 2018

- $ightharpoonup \propto \sqrt{I(X;L)} \frac{\log m}{\sqrt{m}}$, see¹³
- $\left(2^{I(X;L)} + \log(2/\delta)\right)/(2m)$ with probability 1δ , see¹⁴

 $^{^{13}}$ Vera, Piantanida, and Vega, "The Role of the Information Bottleneck in Representation Learning", 2018

 $^{^{14}}$ Shwartz-Ziv, Painsky, and Tishby, Representation Compression and Generalization in Deep Neural Networks, 2018

 $^{^{15}\}text{Xu}$ and Raginsky, "Information-theoretic analysis of generalization capability of learning algorithms", 2017

¹⁶Bu, Zou, and Veeravalli, "Tightening Mutual Information Based Bounds on Generalization Error", 2019

 $^{^{17}\}mbox{Pensia}$, Jog, and Loh, "Generalization Error Bounds for Noisy, Iterative Algorithms", 2018

 $^{^{18}}$ Achille and Soatto, "Emergence of Invariance and Disentanglement in Deep Representations", 2018

- $ightharpoonup \propto \sqrt{I(X;L)} \frac{\log m}{\sqrt{m}}$, see¹³
- $(2^{I(X;L)} + \log(2/\delta))/(2m)$ with probability 1δ , see¹⁴
- $ightharpoonup \propto \sqrt{rac{1}{m}I(\mathcal{D};A(\mathcal{D}))}$, see¹⁵
- $ightharpoonup \propto \frac{1}{m} \sum_{i=1}^m \sqrt{I(D_i; A(\mathcal{D}))}$, see¹⁶
- extensions to SGD-type training¹⁷

 $^{^{13}}$ Vera, Piantanida, and Vega, "The Role of the Information Bottleneck in Representation Learning", 2018

¹⁴Shwartz-Ziv, Painsky, and Tishby, Representation Compression and Generalization in Deep Neural Networks, 2018

 $^{^{15}\}mbox{Xu}$ and Raginsky, "Information-theoretic analysis of generalization capability of learning algorithms", 2017

¹⁶Bu, Zou, and Veeravalli, "Tightening Mutual Information Based Bounds on Generalization Error", 2019

 $^{^{17}}$ Pensia, Jog, and Loh, "Generalization Error Bounds for Noisy, Iterative Algorithms", 2018

 $^{^{18}}$ Achille and Soatto, "Emergence of Invariance and Disentanglement in Deep Representations", 2018

- $ightharpoonup \propto \sqrt{I(X;L)} rac{\log m}{\sqrt{m}}$, see¹³
- $(2^{I(X;L)} + \log(2/\delta))/(2m)$ with probability 1δ , see¹⁴
- $ightharpoonup \propto \sqrt{rac{1}{m}I(\mathcal{D};A(\mathcal{D}))}$, see¹⁵
- $ightharpoonup \propto rac{1}{m} \sum_{i=1}^m \sqrt{I(D_i; A(\mathcal{D}))}$, see¹⁶
- extensions to SGD-type training¹⁷
- ▶ see also¹⁸

 $^{^{13}}$ Vera, Piantanida, and Vega, "The Role of the Information Bottleneck in Representation Learning", 2018

 $^{^{14}}$ Shwartz-Ziv, Painsky, and Tishby, Representation Compression and Generalization in Deep Neural Networks, 2018

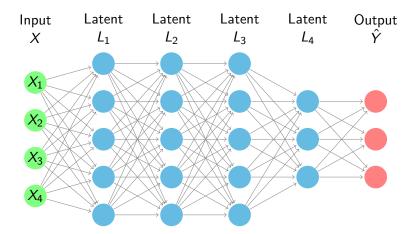
 $^{^{15}\}mbox{Xu}$ and Raginsky, "Information-theoretic analysis of generalization capability of learning algorithms", 2017

¹⁶Bu, Zou, and Veeravalli, "Tightening Mutual Information Based Bounds on Generalization Error", 2019

 $^{^{17}}$ Pensia, Jog, and Loh, "Generalization Error Bounds for Noisy, Iterative Algorithms", 2018

 $^{^{18}}$ Achille and Soatto, "Emergence of Invariance and Disentanglement in Deep Representations", 2018

What about Individual Neurons?



What about Individual Neurons? (cont'd)

How important is the ℓ -th neuron in the i-th layer?

What about Individual Neurons? (cont'd)

How important is the ℓ -th neuron in the i-th layer?

- ightharpoonup compute mutual information $I(Y; L_{i,\ell})$
- ▶ much easier to estimate than $I(Y; L_i)$ (whole layer) or $I(X; L_i)$ (X is high-dimensional/continuously distributed)
- ► Hypothesis: Large values indicate that the \(\ell\)-th neuron in the i-th layer is important for the task

Information-Ordered Cumulative Ablation¹⁹

▶ **Ablation**: Turning off individual neurons, i.e., set $L_{i,\ell} = 0$

¹⁹Liu, Amjad, and Geiger, Understanding Individual Neuron Importance Using Information Theory, 2018

Information-Ordered Cumulative Ablation¹⁹

- ▶ **Ablation**: Turning off individual neurons, i.e., set $L_{i,\ell} = 0$
- ► Cumulative Ablation: Turn off more and more neurons and see how, e.g., classification accuracy is affected

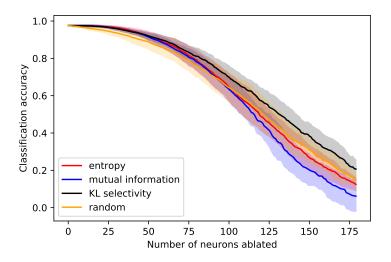
¹⁹Liu, Amjad, and Geiger, Understanding Individual Neuron Importance Using Information Theory, 2018

Information-Ordered Cumulative Ablation¹⁹

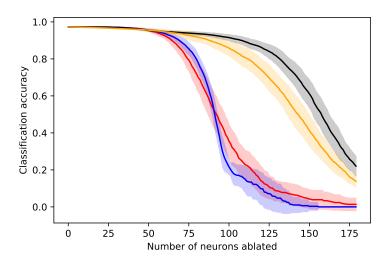
- ▶ **Ablation**: Turning off individual neurons, i.e., set $L_{i,\ell} = 0$
- Cumulative Ablation: Turn off more and more neurons and see how, e.g., classification accuracy is affected
- ▶ Information-Ordering: Turn off the k neurons with lowest (highest) mutual information and compare with turning off neurons randomly

¹⁹Liu, Amjad, and Geiger, Understanding Individual Neuron Importance Using Information Theory, 2018

MNIST 100 - 100, L_2 regularization



MNIST 100-100, Dropout



What about Individual Neurons? (cont'd)

How important is the ℓ -th neuron in the i-th layer?

- ▶ it seems as if neurons with high mutual information are not useful/hurting classification performance
- reproduces results from²⁰

²⁰Morcos et al., On the importance of single directions for generalization, 2018

What about Individual Neurons? (cont'd)

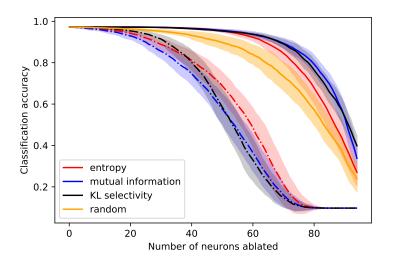
How important is the ℓ -th neuron in the i-th layer?

- ▶ it seems as if neurons with high mutual information are not useful/hurting classification performance
- reproduces results from²⁰

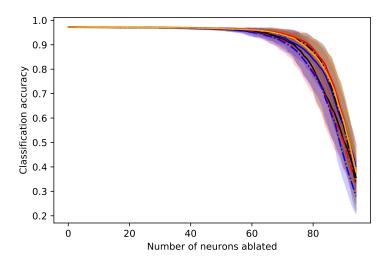
Let's take a closer look!

²⁰Morcos et al., On the importance of single directions for generalization, 2018

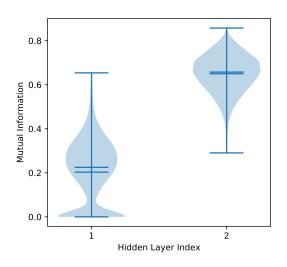
MNIST 100-100, Dropout, Layer 1



MNIST 100-100, Dropout, Layer 2



MNIST 100-100, Dropout



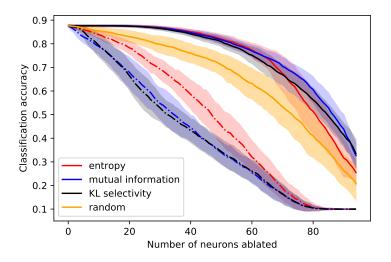
What about Individual Neurons? (cont'd)

How important is the ℓ -th neuron in the i-th layer?

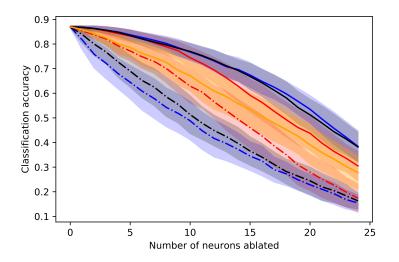
- ▶ it seems as if neurons with high mutual information are not useful/hurting classification performance²¹
- ▶ BUT: neurons with high mutual information are useful within a given layer
- layers have different distribution of mutual information values
- ➤ ⇒ Simpson's paradox

²¹Morcos et al., On the importance of single directions for generalization, 2018

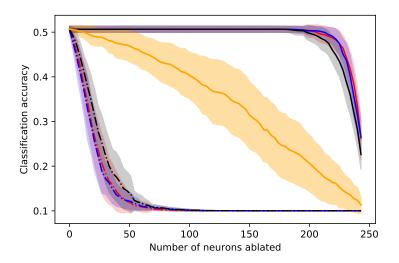
FashionMNIST 100 - 100, L_2 , Layer 1



FashionMNIST 30 - 30, L_2 , Layer 1



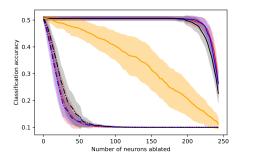
CIFAR-10 250 - 500 - 250 - 500, L_2 , Layer 3



Information-Ordered Cumulative Ablation

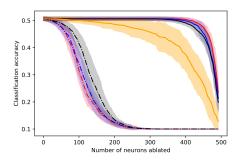
What else can we learn?

CIFAR-10 250 - 500 - 250 - 500, L_2 , Layer 2



- ▶ 40 neurons with highest mutual information suffice
- removing 60 neurons with highest mutual information destroy performance
- ➤ ≈ 200 neurons are inactive

CIFAR-10 250 - 500 - 250 - 500, L_2 , Layer 4



- ▶ 100 neurons with highest mutual information suffice
- removing 250 neurons with highest mutual information destroy performance
- ightharpoonup pprox 250 neurons are inactive
- ightharpoonup pprox 50-150 neurons are redundant

More Insights?

- beyond mutual information
- beyond ReLU activation functions
- beyond L₂ regularization
- effects of quantization
- **.**..

arXiv:1804.06679v3 [cs.LG]

Conclusion

NNs are difficult to understand, but

information theory is powerful:

- Bounds on the generalization error
- Investigating learning behavior
- ▶ Interplay between learning and geometric compression
- Importance of individual neurons via ordered cumulative ablation
 - neurons with large mutual information (within a layer) are important for classification
 - mutual information values differ between layers
 - cumulative ablation reveals inactive, redundant, and synergistic neurons

Conclusion

NNs are difficult to understand, but

information theory is powerful:

- Bounds on the generalization error
- Investigating learning behavior
- ▶ Interplay between learning and geometric compression
- Importance of individual neurons via ordered cumulative ablation
 - neurons with large mutual information (within a layer) are important for classification
 - mutual information values differ between layers
 - cumulative ablation reveals inactive, redundant, and synergistic neurons

Thanks for your attention!

