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ABSTRACT
Deep learning belongs to the field of artificial intelligence, where machines perform
tasks that typically require some kind of human intelligence. Deep learning tries to
achieve this by drawing inspiration from the learning of a human brain. Similar
to the basic structure of a brain, which consists of (billions of) neurons and
connections between them, a deep learning algorithm consists of an artificial neural
network, which resembles the biological brain structure. Mimicking the learning
process of humans with their senses, deep learning networks are fed with (sensory)
data, like texts, images, videos or sounds. These networks outperform the state-of-
the-art methods in different tasks and, because of this, the whole field saw an
exponential growth during the last years. This growth resulted in way over 10,000
publications per year in the last years. For example, the search engine PubMed
alone, which covers only a sub-set of all publications in the medical field, provides
already over 11,000 results in Q3 2020 for the search term ‘deep learning’, and
around 90% of these results are from the last three years. Consequently, a complete
overview over the field of deep learning is already impossible to obtain and, in
the near future, it will potentially become difficult to obtain an overview over a
subfield. However, there are several review articles about deep learning, which are
focused on specific scientific fields or applications, for example deep learning
advances in computer vision or in specific tasks like object detection. With these
surveys as a foundation, the aim of this contribution is to provide a first high-level,
categorized meta-survey of selected reviews on deep learning across different
scientific disciplines and outline the research impact that they already have during a
short period of time. The categories (computer vision, language processing, medical
informatics and additional works) have been chosen according to the underlying
data sources (image, language, medical, mixed). In addition, we review the common
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architectures, methods, pros, cons, evaluations, challenges and future directions for
every sub-category.

Subjects Bioinformatics, Artificial Intelligence, Computer Vision, Emerging Technologies, Natural
Language and Speech
Keywords Deep learning, Artificial neural networks, Machine learning, Data analysis, Image
analysis, Language processing, Speech recognition, Big data, Medical image analysis, Meta-review

INTRODUCTION
Deep learning belongs to the field of artificial intelligence, where machines execute tasks
that usually require human intelligence. Deep learning is trying to achieve this by
mimicking the learning of a human brain. Imitating the physiological structure of a brain,
which consists of billions of neurons and connections between them, a deep learning
algorithm consists of an artificial neural network of interconnected neurons (McCulloch &
Pitts, 1990; LeCun, Bengio & Hinton, 2015). Also, similarly to the learning process of
humans with their senses, deep neural networks are fed with sensory or sensor data
like texts, images, videos or sounds (Ravì et al., 2016). These networks outperform the
state-of-the-art methods in different tasks and, thanks to this, the whole field saw an
exponential growth (Wang et al., 2018a; Gibson et al., 2018; Pepe et al., 2020). This resulted
in way over 10,000 publications per year, in the last years. For example, alone the search
engine PubMed (https://pubmed.ncbi.nlm.nih.gov/), which covers only a sub-set of all
publications in the medical field, returns over 11,000 results for the search term deep
learning in Q3 2020, and around 90% of these publications are from the last 3 years
only. Consequently, a complete overview over the field of deep learning is already
impossible to obtain and, in the near future, it will probably become difficult even for single
sub-fields. However, there are several review or survey articles about deep learning,
which focus on specific scientific fields or applications, for example, covering only deep
learning approaches from computer vision (Voulodimos et al., 2018; Guo et al., 2016), or
specific tasks like object detection (Liu et al., 2020; Zhao et al., 2019; Jiao et al., 2019)
or object segmentation (Garcia-Garcia et al., 2018;Minaee et al., 2020). With these surveys
as foundation, the aim of this contribution is to provide a first categorized and high-level
meta-survey of selected works of deep learning reviews or surveys. On the top level,
four main categories have been chosen for this contribution, namely: computer vision,
(natural) language processing, medical informatics and additional works. The reasons
behind this course of action was the underlying characteristics of data sources and to
have about the same number of reviews for every main category with a well-balanced
distribution. Although the last category could be further divided, this would lead to main
categories with a small number of reviews; even only one review for some niche fields.
Table 1 gives an overview of the four main categories and the number of screened reviews
for each of them. Further, it presents the sum of the overall references and citations per
category, to provide an impression of how comprehensive and influential the fields are.
The subsequent tables from the single categories present more details for each of the
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main categories. The tables present the sub-categories and the corresponding publications,
and again, also the number of references and citations for each of these sub-categories.
Hence, these selected works of deep learning reviews or surveys across scientific disciplines
depict the research impact they already had within a relatively short time. Note that the
deep learning reviews selected for this contribution present themselves mostly an overview
of (selected) deep learning works in a specific field and categorize them in sub-sections or
areas. Therefore, this course of action is also applied to this meta-survey. The reason
for this is that deep learning algorithms have often been applied to completely different
datasets and modalities, which makes it difficult to combine them in a systematic survey as
it can be seen in the referenced reviews.

Search strategy
For this meta-survey a search in IEEE Xplore Digital Library, Scopus, DBLP, PubMed,
Web of Science and Google Scholar for the keyword ‘Deep Learning’ together with any
keyword between ‘Review’, ‘Survey’ was performed. Based on titles and abstracts, all
records, which were not actual review or survey contributions, were excluded. This
ultimately resulted in a total number of 61 review or survey publications about deep
learning, which will be covered within this meta-survey. Summarized, this high-level
meta-survey gives a snapshot overview of published deep learning reviews (status as of
August 2020) and a compact overview of the search results can be found in the subsequent
Tables of the corresponding sections of this contribution. Note that this meta-survey
includes a few selected preprints. However, some of these have already up to one hundred
or even several hundreds of citations, and hence have proven to be of high interest for
the community and it can be expected that they will be published in a peer-reviewed venue
sooner or later. These reviews were included as they cover specific and interesting research
areas that have not been covered elsewhere yet.

Manuscript outline
The core of this meta-survey explores exclusively reviews and surveys on deep learning.
Because some of the included reviews cover up to several hundred publications themselves,
only high-level summaries and excerpts are given to keep the manuscript concise for
the reader. Hence, every review publication is summarized in around 100 to 200 words
and, thus, every sub-category has around 100 to up to a few hundred words, depending

Table 1 Overview of published reviews in deep learning divided into the categories: Computer vision, language processing, medical
informatics and additional deep learning surveys. The table presents also the sum of the overall references and citations for the single categories.

Categories Number of publications Years Number of references Citations (until August 2020) Preprints

Computer vision 18 2016–2020* 3,624 3,923 Yes

Language processing 14 2016–2020 2,109 2,490 Yes

Medical informatics 12 2016–2020 2,210 6,722 No

Additional works 17 2016–2020 3,481 4,171 Yes

Sum 61 – 11,424 17,306 –

Note:
* Note, there is one survey that was published in a journal in 2021, but existed already as preprint in 2020, hence we included it within this meta-survey.
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on the amount of review contributions in this area. The classification and arrangement
of the presented deep learning reviews should enable the interested reader to dive
deeper into specific categories and sub-categories by pointing to the associated
publications. We also mention already reviewed deep learning architectures, like CNNs.
However, all architectures, methods, etc., will be outlined in detail within the next sections,
called: Going deeper: common architectures, methods, evaluations, pros, cons, challenges
and future directions of the categories. Hence, the second parts of this first section also
outline the fundamental deep learning concepts. Summarized, the following main sections
of this meta-survey are organized as follows: Section two introduces the deep learning
reviews or surveys on a high (meta) level divided into four main categories: computer
vision, language processing, medical informatics and additional works, and presents the
common architectures, methods, pros, cons, evaluations, challenges and future directions
for every sub-category. Section “Conclusion and Discussion” concludes and discusses
the contributions and outlines areas of future directions, also on a high (meta) level.

Furthermore, for readers with a particular interest towards the medical field, a
systematic meta-survey about medical deep learning surveys, which are only partially
covered within this contribution, is also available (Egger et al., 2020).

Fundamental deep learning concepts
Deep learning (Sze et al., 2017; Goodfellow et al., 2016) is an important part of the
discipline of artificial intelligence (AI), which was coined by John McCarthy. Figure 1
shows the relationship of deep learning to the whole field of artificial intelligence.

Figure 1 Relationship between deep learning and artificial intelligence.
Full-size DOI: 10.7717/peerj-cs.773/fig-1
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As one of the main subfields of AI, the study of machine learning, which was defined by
Arthur Samuel in 1959, makes it possible for machines to learn certain patterns in data,
without being further taught or programmed by humans. This process is also referred to
as training. As a result, the machines can complete many tasks without hand-crafted
approaches created by humans. Within the field of machine learning, neural networks, as
the name suggests, aim to emulate how a human brain works, even though only in a highly
abstracted way. Like the real brain, the neural networks comprise mainly neurons and
synapses, which are usually called artificial neurons and connections.

Neuron and neural network
As shown in Fig. 2, a neuron in machine learning is simply a mathematical function. The
inputs are multiplied by weights w and summed together. Additionally, a bias b may be
added. This weighted sum is then passed to a function f, which is usually non linear and the
output of the neuron. During the forward propagation of data through a neural network,
this procedure is applied to each neuron:

yj ¼ f ðnetjÞ ¼ f
Xn
i¼1

wijxi þ bj

 !
(1)

where xi and yj are the inputs and output of the neuron and wij and bj are the weights and
bias terms. At the beginning of the training process these terms are typically randomly
initialized. The input netj represents the weighted sum of outputs from previous neurons.
A common activation functions is the logistic Sigmoid function:

yj ¼ 1
1þ e�netj

(2)

Figure 2 The outputs of neuron related to the inputs. Full-size DOI: 10.7717/peerj-cs.773/fig-2
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It can also be proven that the derivative of Eq. (2) function can be simply computed as:

@yj
@netj

¼ yj � ð1� yjÞ (3)

Figure 3 shows an example of a neural network architecture in its simplest form. Within
the neural network, neurons are arranged in layers. A network always has an input and
output layer, whose configurations are determined by the dimensions of input and
output data. Between them, a number of hidden layers is introduced, which, during the
training process, are used to model the relationship between the input and output. In
so-called deep neural networks (DNNs), a high number of hidden layers are introduced,
which is the reason why DNNs are usually capable of learning features of high complexity.
The propagation of the inputs to the output layer is called the forward propagation.

During the training process, the architecture of neural networks remains unchanged,
while the weights of connections and the biases of neurons are adapted depending on the
difference between network outputs and real data. In the field of computer vision, for
example, the inputs can be pixels of images, while the outputs can be labels for the entire
images (image classification) or labels for the individual pixels (image segmentation).

Figure 3 Example of a simple neural networks. The network contains one input layer, one hidden layer
and one output layer. Activations (neurons) in different layers are connected by weights.

Full-size DOI: 10.7717/peerj-cs.773/fig-3
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An example for the forward propagation using DNNs is shown in Fig. 4. An image is
used as an input to the network, where each pixel is weighted and propagated through the
hidden layers. Each output activation gives a value, which is the probability of the shown
animal to belong to a specific class or label. The highest value determines the most likely
answer. The difference between the network output and the desired output is called the
loss. The goal of the training process is to minimize the loss by means of changing the
weights and biases, for which two main schemes are introduced in the next subsection.

Backpropagation and gradient descent
In this section, two basic concepts for the training of deep learning models are introduced,
namely backpropagation and gradient descent. For the reason of simplification, a
simple network, as shown in Fig. 5, is introduced. It consists of only one input and one
output layer, without any hidden layer. After the forward propagation, the outputs are
calculated and compared with the correct values. The motivation during the training
process is to update the model parameters such that the output moves closer to the truth.
To this end, the current error or loss of the network is passed reversely through the model,
which is why this step is called backward propagation or backpropagation.

The first step in the backpropagation is to calculate the output loss. There is a large
range of loss functions that are commonly used in deep networks, depending on the
application. As an example, we show the usage of a squared error loss function:

E ¼ 1
2

Xn
i¼1

ðti � yiÞ2 (4)

Here, ti are the expected outputs, yi the actual outputs of output neurons, and E is the
resulting overall error or loss. The coefficient of 1/2 is added to offset the derivative
exponent.

Figure 4 Example of a DNN. The image data is provided to the input layer, weighted and propagated to
further hidden layers. The output layer provides the prediction about what kind of animal (dog or cat) is
shown in the input image (photographer source credit: Yuan Jin).

Full-size DOI: 10.7717/peerj-cs.773/fig-4
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During error backpropagation, the gradient of the loss function with respect to the
network parameters is calculated. As shown in Fig. 6, the partial derivative of the loss
relative to each weight can be computed by using the chain rule twice:

@E
@wij

¼ @E
@yj

@yj
@netj

@netj
@wij

(5)

It is assumed that this neuron is the output neuron, which means the output of neuron
oj is the same as the output of neural network yj. Under the assumption of a logistic

Figure 5 Simplified neural network. Full-size DOI: 10.7717/peerj-cs.773/fig-5

Figure 6 The decomposition of a partial derivation. Full-size DOI: 10.7717/peerj-cs.773/fig-6
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activation function and a squared error loss, the three partial derivatives on the right-hand
side in Eq. (5) are computable using:

@E
@y1

¼ @

@y1

1
2
ðt1 � y1Þ2 ¼ y1 � t1 (6)

@yj
@netj

¼ yjð1� yjÞ (7)

@netj
@wij

¼ @

@wij

Xn
k¼1

wkjok

 !
¼ @oi

@wij
¼ oi (8)

Note that in Eq. (5), only one term in the sum netj depends on wij, which leads to Eq. (8).
If this neuron is in an inner layer of the network, the calculation of the derivative of

E with respect to output y is calculated. Considering E as a function of all neurons L =
u,v,…,w receiving their input from neuron j, Eq. (6) can be changed to:

@EðojÞ
@oj

¼ @Eðnetu; netv;…; netwÞ
@oj

(9)

A recursive expression for the derivative is obtained:

@E
@oj

¼
X
l2L

@E
@netl

@netl
@oj

� �
¼
X
l2L

@E
@ol

ol
@netl

@netl
@oj

� �
¼
X
l2L

@E
@ol

ol
@netl

wjl

� �
(10)

Then, the derivative with respect to oj can be calculated if all the derivatives with respect
to the outputs ol of the next layer in the network are computed. A general solution to the
derivative in Eq. (5) can be generated with Eqs. (6)–(8) and (10):

@E
@wij

¼ @E
@oj

@oj
@netj

@netj
@wij

¼ @E
@oj

@oj
@netj

oi ¼ oidj (11)

with

dj ¼ @E
@oj

@oj
@netj

ðoj � tjÞf ðnetjÞð1� f ðnetjÞÞ; if j is an output neuron;P
l2L

dlwljÞf ðnetj
� �

ð1� f ðnetjÞÞ; if j is an inner neuron:

8<
: (12)

After all derivatives of the loss with respect to the network parameters, and
consequently, the gradient of the error function, have been calculated, the network
parameters are updated using the gradient descent method. The basic idea of gradient
descent is to move to the opposite direction of the gradient, to find its (local) minimum.

Figure 7 shows a simplified example of using a derivative to find the direction of the
gradient descent. The weights are changed according to the following equation:

wnþ1
ij ¼ wn

ij � b
@E
@wij

(13)

in which β is called the learning rate.
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To sum up, in the forward propagation, the input data are propagated from the
input layer to the output layer and the network provides the computing results (Fig. 8).
In the backward propagation, the loss function is propagated from the output layer
to the input layer, while the weights of each neuron is updated. One iteration of the
training process ends when all weights of the network are updated. One complete
training process usually involves numerous iterations during which the weights
are updated systematically to move the network outputs closer to the expected
ground truth.

Convolutional neural networks
Convolutional neural networks (CNNs) (Krizhevsky, Sutskever & Hinton, 2012) are a
special type of artificial neural networks (ANNs), which usually include more than one
convolutional layer. CNNs are widely used in image processing (but also for example in
language processing, however, they are far less popular there), since they have superior
ability of information handling for a large amount of data. As the name describes, CNNs

Figure 7 An example of gradient descent. To find the direction on the point P, along which the loss
function f can decline, a derivative line of f along the point P is plotted. In this simple example, it gets
obvious that the value of f decreases as the value of x decreases.

Full-size DOI: 10.7717/peerj-cs.773/fig-7
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are based on convolution (shown in Figs. 9 and 10). The mathematical expression of a 2D
convolution of an image is:

gði; jÞ ¼ l � kði; jÞ ¼
Xm�1

j¼0

Xn�1

i¼0

lðm; nÞkði�m; j� nÞ; (14)

in which k(i, j) is the input image, l is the convolution or filter kernel and g(i, j) is the
convolved/filtered image. Equation (14) shows the basic form of a 2D convolution, which
can also describe the similar calculation of a 3D convolution as shown in Fig. 11.

Like traditional neural networks, a convolutional neural network consists of an
input and an output layer, as well as several hidden layers which usually consist of
convolutional layers in combination with other layer types, such as pooling layers and fully
connected layers. The input images of CNNs are usually in the size of image height × image
width × image depth. After the convolution, the images are abstracted to so-called feature
maps and passed to the next layer. A convolutional layer has the following parameters:

� The number of input and output channels;

� Convolutional kernels defined by their shape.

During the training process of CNNs, the features maps can become very large,
which results in a big amount of computational resources required. One of the methods to

Figure 8 Example of the training process for DNNs. Full-size DOI: 10.7717/peerj-cs.773/fig-8
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solve this problem is the pooling layer. Pooling layers reduce the dimensions of feature
maps from convolutional layers and pass the reduced data to the next layer. Different
functions for pooling are available, such as max pooling, average pooling and sum pooling,
where max pooling is most commonly used.

As shown in Fig. 12, with max pooling or average pooling operations, the 4 × 4 feature
map is transformed to a 2 × 2 feature. The stride controls how the pooling filter is moved
over the input volume.

At the end of a CNN, there are usually one or several fully connected layers, which
connect every neuron in the last layer to every neuron in itself. The fully connected layers
are used to concatenate the feature maps into the desired output values (e.g., using
the same example as above, the probability of an image showing a cat or a dog).

Figure 9 An example of a convolutional neural network applied for image classification. The images
are inputted to the network, propagated through several convolutional layers, pooling layers and one fully
connected layer. Finally, the possibility of the input image representing a cat or a dog is outputted
(photographer source credit: Yuan Jin). Full-size DOI: 10.7717/peerj-cs.773/fig-9

Figure 10 Example of a general 2D convolution. At first, the image is flipped for both, the rows and
columns. Then the kernel slides over the flipped image, each element is multiplied by its corresponding
pixel in the flipped image and summed up. The size of the output depends on both, the input image and
the kernel. Full-size DOI: 10.7717/peerj-cs.773/fig-10
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Currently, CNNs have been widely used in the field of imaging processing. In the
following section, a specific CNN model mainly for medical image segmentation will be
introduced.

Fully convolutional neural networks
As one of the most common tasks in medical imaging, automatic segmentation is
challenging because of the huge difference between different patients (anatomy and
pathology). In this field, however, neural networks have shown great advantages to learn
image features automatically from the medical images and corresponding ground truths
(Hesamian et al., 2019). In addition, the development of fully convolutional neural
networks (FCNs) [19] further improved the advantages of deep learning in the area of
image segmentation and particularly semantic segmentation.

Semantic segmentation is to understand what is in the image on a pixel level, which can
be also defined as to label each pixel of an image with a corresponding class. Figure 13
shows an example for a semantic segmentation. Fully convolutional neural networks were
developed by Long, Shelhamer & Darrell, 2015 based on normal convolutional neural
networks. In FCNs, the final fully connected layer of CNNs are replaced by convolutional

Figure 12 Example of max pooling and average pooling.
Full-size DOI: 10.7717/peerj-cs.773/fig-12

Figure 11 Example of a 3D convolution. It applies a 3D filter to the dataset and the filter moves in
3-direction (x, y, z) to calculate the outputs. Both input and output data are a 3D volume, which is
represented by cubes. Full-size DOI: 10.7717/peerj-cs.773/fig-11
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layers, so that the images are not downsized and the output will not be a single label as
in CNNs. Instead, a pixel-wise output can be calculated to represent each pixel in the
input image. Figure 14 shows a typical setup of an FCN for a semantic segmentation. Based
on the improvement of FCNs, there are currently many deep learning methods in
computer visions that are applied for segmentation tasks in medical imaging. Most of these
methods are based on FCNs that learn the features of spatial dimensions from the original
images.

U-Net
One of the most well known FCN models for medical image segmentation is the U-Net,
proposed by Ronneberger, Fischer & Brox (2015), using the concept of deconvolution
introduced in Zeiler & Fergus (2014). As shown in Fig. 15, this model has two main parts
for downsampling and upsampling. The downsampling part is similar to the structure of a
CNN, while the upsampling part, usually known as the expansion phase, is built of an

Figure 13 Example of a semantic segmentation. The left image (A) is the original image and the right
image (B) is the pixel-wise segmented image revealing a dog and its contour (white, photographer source
credit: Yuan Jin). Full-size DOI: 10.7717/peerj-cs.773/fig-13

Figure 14 FCNs can learn to make dense predictions for pixel-wise predictions (photographer source
credit: Yuan Jin). Full-size DOI: 10.7717/peerj-cs.773/fig-14
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upsampling layer followed by a deconvolution layer. The former enlarge the dimensions
of the feature maps that are reduced in the downsampling layer, while the latter
corresponds to the convolutional layers. One important idea of U-Net is the connection
between layers in the downsampling and upsampling parts at the same ‘‘levels’’
These connections provide high-resolution features of spatial dimensions from the
downsampling part to the upsampling part. It means that the model can be trained with
multi-scale features from different layers. This structure of deep learning model is suitable
for the automatic segmentation of large size images.

3D U-Net
Based on the main idea of the U-Net, Çiçek et al. (2016) developed the 3D version of
the U-Net model [23], which is able to learn from sparsely annotated volumetric images.
The 3D U-Net is developed by replacing all 2D operations with their 3D counterparts.
Figure 16 shows the architecture of the 3D U-Net, which is similar to the architecture of
the original 2D U-Net (Fig. 15).

There are two kind of applications for this model: (1) When semi-automatically applied,
a part of the original image is manually segmented. The network learns from these

Figure 15 U-Net architecture. Each blue box corresponds to a multi-channel feature map. The number of channels is denoted on top of the box.
White boxes represent copied feature maps. The arrows represent different operations (photographer source credit: Yuan Jin).

Full-size DOI: 10.7717/peerj-cs.773/fig-15
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segmented parts and provides a dense 3D segmentation. (2) For a fully automatic
application, a trained model is assumed to exist. The model is trained with existing data
and segments new (unseen) volumetric images.

3D U-Nets are widely used in the field of medical imaging, as there are many types
of medical imaging applications based on 3D data acquisitions. In general, 2D methods are
usually not optimal for producing 3D image labels (segmentations), because of the missing
information (and interpolations) between the single 2D slices. Manual expert
segmentations (still considered the gold standard), however, are in general done on a
slice-by-slice basis in 2D, because a 3D segmentation, handling several 2D slices
simultaneously, is mentally often too demanding for the annotator (especially in larger
structures, which need some considerable amount of time to be segmented). This often
results in a step-like effect of the manual segmentations, because an overall smoothing in
3D is missing and hard to incorporate manually (Fig. 17).

We focused in this section on the main computer vision architectures as an example,
because computer vision is currently the most crowded and popular field (and three of the
top five computer science conferences are related to computer vision, according to:
https://www.guide2research.com/topconf/), especially when taking also the medical
imaging field into account. Note that the surveys we present in this meta-survey cover over
11,000 references, which makes it impractical to introduce all deep learning-based
concepts and architectures. However, for most surveys, we outline what kind of deep
learning schemes or architectures have been reviewed and pretty much all surveys have a
background section about these in their contributions. This enables the interested reader to
dive deeper into the specific deep learning background by directly accessing the
corresponding survey.

Figure 16 3D U-Net architecture. Blue boxes represent feature maps. The number of channels is denoted above each feature map.
Full-size DOI: 10.7717/peerj-cs.773/fig-16
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DEEP LEARNING: A SURVEY SUMMARY OF SELECTED
REVIEWS ACROSS SCIENTIFIC DISCIPLINES
This section presents selected review and survey publications in deep learning. For a better
overview, the publications are arranged in four categories:

� computer vision,

� language processing,

� medical informatics,

� and additional works.

The first category introduces deep learning reviews and surveys in the field of computer
vision. Among others, this includes publications about object detection, image
segmentation, object recognition and a survey about inpainting with generative adversarial
networks. The second category presents deep learning review publications in (natural)
language processing. This covers areas like language understanding but also language
generation and answer selection. The third category presents deep learning reviews in the
medical field, thus covering reviews about different aspects of medical image processing,
medical imaging and computer-aided diagnosis. Ultimately, the last category of this
section closes with additional deep learning reviews in areas like big data, networking,
multimedia, agriculture and reviews that cover multiple scientific areas or applications.
According to these sections and sub-sections, the tables of this manuscript are divided into

Figure 17 Visualization of a manual segmentation of the lower jawbone. Because the manual seg-
mentation has been done slice-by-slice in 2D, the overall 3D segmentation shows a step-like effect
between the single 2D slices. Data and manual segmentation taken from Wallner, Mischak & Egger
(2019), visualization done with Studierfenster (www.studierfenster.at) (Wild, Weber & Egger, 2019).

Full-size DOI: 10.7717/peerj-cs.773/fig-17
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the same categories and sub-categories, and present also the current citations for every
publication according to Google Scholar (status as of mid-August 2020). Note that the
review about data augmentation is listed in the first category about computer vision topics,
because it mainly discusses approaches for images. Some review publications would fit
in more than one main category. For example, reviews about medical image analysis, could
also fit into the category computer vision. However, the final assignment and arrangement
was made also under the consideration of balancing the number of publications per
category.

The rationale behind choosing the four main categories are the underlying data
sources and their different data generation process. Computer vision deals with image and
video data, natural language processing deals with textual data, medical informatics
with medical data and the last section covers surveys that deal with image and text
(multimedia) data or span across different disciplines. Unfortunately, the boundaries
between these categories are not always clear, e.g., medical informatics connects to
both computer vision and language processing. Hence, there are various other possibilities
to structure such a meta-survey (or surveys in general), for example, by data modalities
(e.g. image vs. language), by domains, by used architectures, by time of publication, by
impact, just to name a few. But all these arrangements have their advantages and
disadvantages, and are not unique, except maybe an arrangement by time of publication or
impact (e.g. citations, which also very likely changes over time). However, the underlying
medical data is distinct to conventional image data in computer vision with its specific
characteristics. In addition, the medical field requires further knowledge on top of the
technical expertise (e.g., a medical image might require different pre-processing/deep
learning than generic images). Moreover, deep learning had a massive impact in the
medical field, as can be seen in the presented works and citations, which justifies for its
own category (also, health is a fundamental right and probably the most important aspect
in life). For illustration, a similar situation is also found for research on causality,
where similar techniques are used across multiple fields, but the medical field established
its own terminology (e.g., standardization vs. adjustment formula). Finally, the order of the
main categories also arises from the data sources, starting with computer vision and
language processing working with fundamental data like images, videos and text.
Ultimately, the survey starts with computer vision, because it is currently a more active
research field than language processing.

Note that we do not claim to provide a complete meta-survey of all existing surveys on
deep learning, which would go far beyond the scope of this contribution. We see our
meta-survey more as a sort of baseline or building block contribution for deep learning in
the computer science community, where meta-surveys are, in general, still somewhat a
rarity, in comparison to other fields, like the medical domain, where meta-surveys are quite
common. In addition, we did not find a deep learning survey for every task at the time of
publication. Hence, there are some important tasks missing in our meta-survey, e.g.
machine translation in NLP. which should to be tackled by the research community in
the near future. However, our survey tables can provide here a compact overview, which
tasks have been covered by deep learning surveys so far and which need more attention by
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the community. Our intention is to present selected works across scientific disciplines,
divided into categories according to the underlying data sources, to give an impression
about the impact deep learning has on a very broad level.

Deep learning reviews in computer vision
This sub-section deals with the deep learning reviews in the area of computer vision.
It is divided into ten sub-categories and the number of references, and citations (according
to Google Scholar and status as of mid-August 2020) for each of these categories is given in
Table 2:

� general computer vision,

� object detection,

� image segmentation,

� face recognition,

� action/motion recognition,

� biometric recognition,

� image super-resolution,

� image captioning,

� data augmentation,

� and generative adversarial networks.

Table 2 List of published reviews in deep learning in the category computer vision.

Computer vision Publications Number of references Citations (until August 2020) Preprints

General computer vision Voulodimos et al. (2018) 114 550 No

Guo et al. (2016) 216 950 No

Object detection Liu et al. (2020) 332 269 No

Zhao et al. (2019) 230 491 No

Jiao et al. (2019) 317 45 No

Image segmentation Garcia-Garcia et al. (2018) 126 127 No

Minaee et al. (2020) 172 24 Yes

Face recognition Masi et al. (2018) 81 220 No

Li & Deng (2020) 253 189 No

Wang & Deng (2018) 305 11 Yes

Action/motion recognition Herath, Harandi & Porikli (2017) 161 339 No

Wang et al. (2018b) 182 122 No

Biometric recognition Sundararajan & Woodard (2018) 176 66 No

Minaee et al. (2019) 282 8 Yes

Image super-resolution Wang, Chen & Hoi (2020) 214 74 No

Image captioning Hossain et al. (2019) 161 118 No

Data augmentation Shorten & Khoshgoftaar (2019) 140 274 No

Generative adversarial networks Wang, She & Ward (2019) 162 46 Yes

Sum – 3,624 3,923 –
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The commonality in the field of computer vision is to process and get some kind of
understanding from digital images or videos. This can be, for example, the detection or
segmentation (outlining) of people, animals or objects in images or videos. Computer
vision algorithms lead to numerous real world applications, like automatic face or licence
plate detection and recognition, or even self-driving cars, just to name a few. However,
making the algorithms reliable enough for their specific task remains challenging. A
missed person on a group photo for automatic tagging on a social network website may not
be very dramatic, but a missed pedestrian by a self-driving car can have fatal consequences.
Especially the fact that every image or video is slightly different makes it very hard for
algorithms to generalize and there is no guarantee that new (exceptional) cases will not be
missed or wrongly analysed/classified by an algorithm. To measure the performance of
computer vision algorithms, common metrics like the Dice Similarity Coefficient
(Sampat et al., 2006) or the Hausdorff distance (Huttenlocher, Klanderman & Rucklidge,
1993), e.g. for segmentation tasks, are used in the community to present their results.
However, if research groups work on own data collections, comparison to other works are
difficult and the presented metrics can be seen more like a proof of concept or common
trend towards a solution for a task. A step towards a more objective evaluation is
competing on common databases, like ImageNet, but also this course of action cannot
replace real-life scenarios. The key challenge for all computer vision algorithms is the
transition to real world applications, that work reliable in practice also for new, unseen
data without major failures.

Note that data augmentation and generative adversarial networks are actually universal
techniques that can also be used in other areas than computer vision, like language
processing. However, the two surveys we chose for our contribution review only works for
images and computer vision, hence, we present them in this first section.

General computer vision
A review about selected deep learning methods that have been used in the general
area of computer vision is presented by Voulodimos et al. (2018). They introduce
convolutional neural networks, deep Boltzmann machines, deep belief networks and
stacked denoising autoencoders, alongside with their history and application tasks they
have been used for. They conclude their review with an outlook on how future deep
learning-based methods can be designed for tasks in computer vision and the challenges
that arise in doing so.

Another general review on deep learning in computer vision comes from Guo et al.
(2016). They also start their review with a comprehensive overview of different deep
learning architectures, like CNNs, covering neural network layer types, like convolutional
layers and pooling layers, but also training strategies, like dropout, DropConnect and
pre-training/fine-tuning. For the deep learning-based architectures, they discuss
characteristics, advantages and disadvantages. They conclude their review with current
trends and challenges, and provide future directions for a theoretical understanding,
human-level vision, training with limited data, time complexity and more powerful models
in deep learning.
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Object detection
Object detection is one of the most basic, but as well challenging problems in computer
vision. Object detection deals with the localization of objects from predefined categories,
like cats, dogs, etc., in natural images. Liu et al. (2020) outline more than 300 research
contributions in their survey about object detection. In doing so, they cover many
general aspects in the field of object detection, which includes, for example, detection
frameworks, but also object feature representation and object proposal generation. On top,
they address context modelling, training strategies, and, eventually, evaluation metrics for
object detection.

A second review paper in the area of computer vision and object detection is from
Zhao et al. (2019), which first provides a short introduction on convolutional neural
networks, deep learning, and their history. They focus on typical generic object detection
architectures and briefly survey various particular tasks. These cover salient object
detection, but also pedestrian and face detection. In addition, an experimental analysis is
provided, which allows the comparison of different approaches and hence, draw
constructive conclusions amongst them.

Finally, Jiao et al. (2019) review existing approaches of general detection models and
additionally introduce a common benchmark dataset for them. The authors also outline a
comprehensive and systematic overview of numerous approaches for object detection,
which include one-stage and multi-stage object detectors. Furthermore, they list and
analyse established, as well as new, applications of object detection and its most
representative branches.

Image segmentation
Image segmentation is usually the first step in different computer vision applications, like
scene understanding, video surveillance, and robotic perception. Further applications can
be medical image analysis, augmented reality and image compression, to name a few.
Garcia-Garcia et al. (2018) provide a survey of deep learning approaches for semantic
segmentation that can be translated and applied to numerous areas. In doing so, datasets,
but also challenges, are outlined to guide researchers in the decision which method is
most suitable for their needs and aims. Subsequently, the existing approaches and
methods, like CNNs, are surveyed in the contribution. Additionally, they review common
loss functions and error metrics and provide quantitative results for the introduced
methods, but also the datasets that have been used for an evaluation.

Minaee et al. (2020) present a comprehensive review that covers a wide spectrum of
contributions in the area of semantic and instance-level segmentation. This includes fully
convolutional pixel-labelling networks and encoder-decoder architectures. Moreover,
recurrent networks, multi-scale and pyramid-based methods. Further, visual attention and
generative models in an adversarial setting. They studied the strengths and challenges
of the proposed deep learning models, but also their similarity. Finally, the authors
investigated the most commonly applied datasets and present performance results for
them.
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Face recognition
Face recognition is a significant biometric method for identity authentication that has been
applied to numerous application areas. This includes public security, daily life, military,
but also finance. Masi et al. (2018) introduce the main benefits of face recognition
with deep learning, also called deep face recognition. They focus on identification and
verification by learning representations of the face. The review gives a structured overview
of works from the past years, covering the principals and state-of-the-art in face
recognition methods.

Li & Deng (2020) provide a survey on facial expression recognition with deep learning,
including datasets and algorithms. They present datasets that are available and have been
commonly applied in previous works. Further, they outline commonly recognised data
selection and evaluation concepts that have been used for these datasets. Next, they outline
the general pipeline and workflow for a deep facial expression recognition approach,
covering the corresponding background knowledge, and finally propose, for each stage, a
feasible implementation.

Wang & Deng (2018) also provide a survey of the latest trends on deep facial expression
detection, including the design of algorithms, but also possible applications, protocols
and databases. They outline various network architectures and loss functions that have
been introduced in the general field of the deep facial expression. They categorized the face
processing approaches into two different classes: “one-to-many augmentation” and
“many-to-one normalization”. They also give a summarized overview of common
databases and compare them concerning model training and model evaluation. Finally,
they explored further scenarios for deep facial expression, like cross-factor, heterogeneous,
industrial and multiple-media.

Action and motion recognition
Understanding human actions and motions in visual data, like surveillance videos, is
closely connected to research fields like object recognition, semantic segmentation, human
dynamics and domain adaptation. Herath, Harandi & Porikli (2017) review notable steps
that have been taken towards recognizing human actions. Therefore, they start with a
discussion of first approaches that applied handcrafted representations. Subsequently, they
review deep learning-based approaches suggested in this field.

Wang et al. (2018b) give an outline of latest trends and improvements of motion
recognition in RGB-D images. They categorized the surveyed approaches into four groups.
The groups are based on the particular modality used for recognition, and can be RGB-,
skeleton, depth-, or RGB+D-based. Finally, they discuss the advantages and limitations,
with a focus on approaches that encode spatial-temporal-structural information, which is
inherent in video sequences.

Biometric recognition
Biometric recognition, or biometrics, studies the identification of people utilizing their
unique phenotypical characteristics, like fingerprints or the iris, for applications ranging
from cell phone authentication to airport security systems. Sundararajan & Woodard
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(2018) review one hundred distinct methods that study recognizing individuals with deep
learning applying different biometric modalities. They conclude that the majority of
research in biometrics based on deep learning has been conducted around face recognition
and speaker recognition so far.

Minaee et al. (2019) conduct a survey of more than 120 works on biometric recognition,
including face, fingerprint, iris, palm print, ear, voice, signature, and gait recognition.
For each biometric recognition task, they present the available datasets used in the
literature and their characteristics and outline the performance on popular public
benchmarks.

Image super-resolution

Image super-resolution is a basic task in image processing that has seen a rise in popularity
with the advent of deep learning. Image super-resolution methods and algorithms are
used to improve the resolution of (low-resolution) images and videos. Wang, Chen &
Hoi (2020) give a comprehensive overview on latest trends and advances in the field of
image super-resolution focusing on deep learning methods. They divide the existing
papers on image super-resolution methods into three main categories, namely supervised
image super-resolution, unsupervised image super-resolution and finally, domain-specific
image super-resolution. Moreover, they cover other topics in the field of image super-
resolution, like public accessible benchmark data collections and metrics for a performance
evaluation.

Image captioning
Image captioning refers to the generation of a description for an image. Therefore, their
primary objects, but also their attributes and their relationships to each other within
the image need to be recognized. Furthermore, image captioning must produce sentences
that are syntactically and semantically correct. Hossain et al. (2019) introduce a broad
survey of works for image captioning based on deep learning. They analyse their main
strengths, performances, but also their limitations. In addition, they explore the datasets
and the evaluation metrics that have been used for automatic image captioning with deep
learning.

Data augmentation
Data augmentation can be used for the expansion of (limited) datasets to obtain larger
training and evaluation sets. Shorten & Khoshgoftaar (2019) review image augmentation
algorithms that cover geometric transformations, but also colour space augmentations
and feature space augmentation. Further, techniques like kernel filters, mixing images,
random erasing, neural style transfer and meta-learning. They also cover generative
adversarial network-based augmentation methods. In addition, they explore and study
further characteristics in the area of data augmentation, like test-time augmentation,
final size of the dataset, the impact of the resolution, but also curriculum learning. Finally,
they give an overview of available approaches for meta-level decisions for implementing
data augmentation.
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Generative adversarial networks
Generative adversarial networks or GANs belong to the field of generative models in
machine learning. GANs have experienced an in-depth exploration during the last few
years with the most significant impact in the field of computer vision.Wang, She & Ward
(2019) survey three real-world problems that have been approached with GANs: the
generation of high-quality images, diversity of image generation, and stable training.
They give a detailed overview of the current state-of-the-art in generative adversarial
networks. Furthermore, they structure their review using a specific taxonomy, which they
have adopted based on variations in generative adversarial network-based architectures
and loss functions.

Going deeper: common architectures, methods, evaluations, pros, cons,
challenges and future directions in computer vision
Table 3 gives more details about the presented methods, pros, cons, evaluations and
challenges and future directions of the surveys in the category computer vision. The two
surveys about general computer vision from Voulodimos et al. (2018) and Guo et al. (2016)
introduce mainly CNNs, Boltzmann and autoencoder architectures. The authors list
several pros and cons, regarding which networks can learn features automatically,
generalize well, are computationally demanding during training, can be trained in real-
time and do not perform well on small training sets. A challenge is, that the underlying
theory of the models is not well understood, which leads to the problem of selecting
an optimal or effective architecture or algorithm for a given task and that there is no clear
understanding of what kind of architectures should perform better than other ones.
Further challenges and future directions are the training with limited data, reducing the
time complexity, the development of more powerful models and a better understanding in
evolving and optimizing CNN architectures.

The three surveys about object detection with deep learning (Liu et al., 2020; Zhao et al.,
2019; Jiao et al., 2019), all outline the main object detectors in deep learning, like R-CNN,
Fast R-CNN, Faster R-CNN, Mask R-CNN, etc. in a temporal sequence. In doing so,
showing the improvement from one detector to the other over time, which are for example
a more arcuate object detection, improved detection speed and quality, variable image
sizes, memory consumption, small-size object detection and localization, and end-to-end
training possibilities. Future common challenges are even better and more efficient
detection frameworks (e.g. the research field of generic object detection is still far from
complete), unsupervised and weakly supervised learning, network optimization and
combination, video object detection, 3D object detection and multi-domain object
detection.

The two surveys about image segmentation (Garcia-Garcia et al., 2018; Minaee et al.,
2020) review numerous deep learning architectures and variants, like CNN, AlexNet,
VGG-16, GoogLeNet, ResNet, ReNet and further custom architectures. Garcia-Garcia
et al. (2018) list the pros and cons for accuracy, efficiency, training, instance sequences,
multi-modal and 3D. Minaee et al. (2020) consider the quantitative accuracy, speed
(inference time), storage requirements (memory footprint) and further present a metrics
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Table 3 Architectures, pros, cons, evaluations, challenges and future directions in deep learning in the category computer vision.

General computer vision

Voulodimos et al. (2018)

Architectures/Methods CNN, Boltzmann (DBN and DBM), SdA

Pros/Evaluations Automatic feature learning (CNN), invariant to transformations (CNN); can work in an unsupervised fashion (DBN, DBM,
SdA); can be trained in real time (SdA)

Cons/Evaluations Needs labelled data (CNN); computationally demanding training (CNN, DBN, DBM)

Challenges and future
directions

Optimal selection of model type and structure for a given task; why specific architecture or algorithm is effective in a given task
or not

Guo et al. (2016)

Architectures/Methods CNN, RBM, AutoEncoder, Sparse coding

Pros/Evaluations Generalization (CNN, RBM, AutoEncoder, Sparse coding); Unsupervised learning (RBM, AutoEncoder, Sparse coding); Feature
learning (CNN, RBM, AutoEncoder); Real-time training (CNN, RBM); Real-time prediction (CNN, RBM, AutoEncoder,
Sparse coding); Biological understanding (Sparse coding); Theoretical justification (CNN, RBM, AutoEncoder, Sparse coding);
Invariance (CNN, Sparse coding)

Cons/Evaluations Unsupervised learning (CNN); Feature learning (Sparse coding); Real-time training (AutoEncoder, Sparse coding); Biological
understanding (CNN, RBM, AutoEncoder); Invariance (RBM, AutoEncoder); Small training set (CNN, RBM, AutoEncoder,
Sparse coding)

Challenges and future
directions

Underlying theory is not well understood; no clear understanding of which architectures should perform better than others;
training with limited data; time complexity; more powerful models; better understanding in evolving and optimizing the CNN
architectures

Object detection

Liu et al. (2020)

Architectures/Methods Region Based (Two Stage) Frameworks (RCNN, SPPNet, Fast RCNN, Faster RCNN, RPN, RFCN, Mask RCNN, Chained
Cascade Network and Cascade RCNN, Light Head RCNN), Unified (One Stage) Frameworks

Pros/Evaluations Improved detection speed and quality (Fast RCNN); end-to-end detector training (Fast RCNN); efficient and accurate
generating region proposals (Faster RCN); efficient region proposal computation (RPN); fully convolutional over the entire
image (RFCN); pixelwise object instance segmentation (Mask RCNN); simple to training (Mask RCNN); end-to-end learning
of more than two cascaded classifiers (Chained Cascade Network and Cascade RCNN); reduce the RoI computation (Light
Head RCNN); single-stage object detectors based on fully convolutional deep networks (OverFeat); uses features from an entire
image globally (YOLO); real time detection (YOLOv2); faster than YOLO (SSD); retaining high detection quality (SSD);
outperforming all previous one stage detectors (CornerNet)

Cons/Evaluations Slow and hard to optimize (RCNN); expensive in disk space and time (RCNN); Testing is slow (RCNN); slow (DetectorNet); less
accurate than RCNN (OverFeat); makes localization errors (YOLO); fail to localize small objects (YOLO); slower than SSD
(CornerNet)

Challenges and future
directions

Open world Learning; better and more efficient detection frameworks; compact and efficient CNN features; automatic neural
architecture search; object instance segmentation; weakly supervised detection; few/zero shot object detection; object detection
in other modalities; universal object detection; the research field of generic object detection is still far from complete

Zhao et al. (2019)

Architectures/Methods Region Proposal-Based Framework (R-CNN, SPP-Net, Fast R-CNN, Faster R-CNN, R-FCN, FPN, Mask R-CNN, Multitask
Learning, Multiscale Representation, and Contextual Modeling), Regression/Classification-Based Framework (Pioneer Works,
YOLO, SSD)

Pros/Evaluations Hierarchical feature representation, exponentially increased expressive capability, jointly optimize several related tasks together,
large learning capacity (CNN); mid-level representations (SPP-Net); improve the quality of candidate BBs, extract high-level
features (R-CNN); grouping and saliency cues to provide more accurate candidate boxes of arbitrary sizes quickly and to
reduce the searching space in object detection (Region Proposal Generation); high-level, semantic, and robust feature
representation for each region proposal can be obtained (CNN-Based Deep Feature Extraction); single stage training (Fast R-
CNN); saves storage space (Fast R-CNN); end-to-end training (Faster R-CNN); object detection in a fully convolutional
architecture (R-FCN); extract rich semantics from all levels and be trained end to end with all scales (FPN); predict
segmentation masks in a pixel-to-pixel manner (Mask R-CNN); representation requires fewer parameters (Mask R-CNN);
flexible and efficient framework for instance-level recognition (Mask R-CNN)

(Continued)
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Table 3 (continued)

General computer vision

Cons/Evaluations Fixed size input image (CNN); Training is a multistage pipeline (R-CNN); training is expensive in space and time (CNN);
redundant obtained region proposals (CNN); fixed-size input (SPP-Net); additional expense on storage space (SPP-Net);
alternate training algorithm is very time-consuming (Faster R-CNN); training time and memory consumption increase rapidly
(FPN); struggles in small-size object detection and localization (Mask R-CNN)

Challenges and future
directions

Multitask joint optimization and multimodal information fusion; scale adaption; spatial correlations and contextual modeling;
cascade network; unsupervised and weakly supervised learning; network optimization; 3D object detection; video object
detection

Jiao et al. (2019)

Architectures/Methods Two-Stage Detectors (R-CNN, Fast R-CNN, Faster R-CNN, Mask R-CNN), One-Stage Detectors (YOLO, YOLOv2, YOLOv3,
SSD, SSD, RetinaNet, M2Det), Latest Detectors (Relation Networks for Object Detection, DCNv2, NAS-FPN)

Pros/Evaluations One-stage end-to-end training (Fast R-CNN); efficiently predict region proposals (Faster R-CNN); accurate object detector
(Mask R-CNN); real-time detection (YOLO); improved speed and precision (YOLOv2); multi-label classification (YOLOv3);
detects small objects (YOLOv3); single-shot detector for multiple categories within one-stage (SSD); adds prediction module
and deconvolution module (DSSD); train unbalanced positive and negative examples (RetinaNet); effective feature pyramids
(M2Det); an end-to-end training (RefineDet); better predict hard detected objects (RefineDet); considers the interaction
between different targets in an image (Relation Networks for Object Detection); utilizes more deformable convolutional layers
(DCNv2); deformable layers are modulated by a learnable scalar (DCNv2); top-down and bottom-up connections to fuse
features (NAS-FPN)

Cons/Evaluations Input vectors of fixed length (CNN); no shared computation (R-CNN); worse performance on medium and larger sized objects
(YOLOv3); slower than RetinaNet800 (M2Det)

Challenges and future
directions

Combining one-stage and two-stage detectors; video object detection; efficient post-processing methods; weakly supervised
object detection methods; multi-domain object detection; 3D object detection; salient object detection; unsupervised object
detection; multi-task learning; multi-source information assistance; constructing terminal object detection system; medical
imaging and diagnosis; advanced medical biometrics; remote sensing airborne and real-time detection; GAN-based detector

Image segmentation

Garcia-Garcia et al. (2018)

Architectures/Methods Variants of CNN, AlexNet, VGG-16, GoogLeNet, ResNet, ReNet, and custom architectures

Pros/Evaluations Relatively simple (AlexNet); less parameters and easy to train (VGG); reduced numbers of parameters and operations
(GoogLeNet); addresses problem of training deep networks (ResNet); overcoming vanishing gradients (ResNet); Accuracy,
Efficiency, Training, Instance Sequences, Multi-modal, 3D

Cons/Evaluations Complex (GoogLeNet); depth (ResNet); Accuracy, Efficiency, Training, Instance Sequences, Multi-modal, 3D

Challenges and future
directions

Evaluation metrics; execution time; memory footprint; accuracy; reproducibility; 3D datasets; sequence datasets; point cloud
segmentation; context knowledge; real-time segmentation; temporal coherency on sequences; multi-view integration

Minaee et al. (2020)

Architectures/Methods Fully convolutional networks; Convolutional models with graphical models; Encoder-decoder based models; Multi-scale and
pyramid network based models; R-CNN based models (for instance segmentation); Dilated convolutional models and
DeepLab family; Recurrent neural network based models; Attention-based models; Generative models and adversarial training;
Convolutional models with active contour models; Other models

Pros/Evaluations Quantitative accuracy, speed (inference time), and storage requirements (memory footprint)

Cons/Evaluations Quantitative accuracy, speed (inference time), and storage requirements (memory footprint)

Challenges and future
directions

More challenging datasets; interpretable deep models; weakly-supervised and unsupervised learning; real-time models for
various applications; memory efficient models; 3D point cloud segmentation; application scenarios

Face recognition

Masi et al. (2018)

Architectures/Methods DCNN, Deep-Face, VGG16, ResNet-50, FacePoseNet, STN, DREAM

Pros/Evaluations Simplify classification (DREAM); reduce intra-class variance (CenterLoss); reduce the within-class variability (L2-constrained
SoftMax); huge number of subjects (Hierarchical SoftMax); training very large pool of subjects (deep metric learning); learning
deep embeddings (margin-based contrastive loss)
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Table 3 (continued)

General computer vision

Cons/Evaluations Handling pose variations (DCNN); does not explicitly minimize the intra-class variation of each subject (SoftMax layer based on
cross-entropy); unclear parameter selection (L2-constrained SoftMax); increased complexity (deep metric learning losses)

Challenges and future
directions

Automatically generated template for unknown individuals; video-based face recognition; multi-target tracking and recognition;
automatic self-organization of a large corpus of unlabeled faces; adaptation and model tuning; biases in large datasets

Li & Deng (2020)

Architectures/Methods CNN, RBM, DBN, GAN, face alignment detectors (holistic, part-based, cascaded regression, deep learning), deep FER networks
for static images, deep FER networks for dynamic image sequence, AlexNet, VGG, VGG-face, GoogleNet, frame aggregation,
expression intensity, RNN, C3D, FLT, CN, NE, others

Pros/Evaluations Real-time, speed, performance (holistic, part-based, cascaded regression, deep learning); network size, preprocessing, data
selection, additional classifier, performance (CNN, RBM, DBN, GAN); data size, spatial and temporal information, frame
length, accuracy, efficiency (frame aggregation, expression intensity, RNN, C3D, FLT, CN, NE)

Cons/Evaluations Real-time, speed, performance (holistic, part-based, cascaded regression, deep learning); network size, preprocessing, data
selection, additional classifier, performance (CNN, RBM, DBN, GAN); data size, spatial and temporal information, frame
length, accuracy, efficiency (frame aggregation, expression intensity, RNN, C3D, FLT, CN, NE)

Challenges and future
directions

Facial expression dataset (illumination variation, occlusions, non frontal head poses, identity bias and the recognition of low-
intensity expression, age, gender and ethnicity, employ crowd-sourcing models, fully automatic labeling tool); dataset bias and
imbalanced distribution (generalization on unseen test data, performance in cross-dataset settings, imbalanced class
distribution); Incorporating other affective model (capture the full repertoire of expressive behaviors, different facial muscle
action parts, dealing with continuous data, learn expression-discriminative representations); multimodal affect recognition
(multimodal sentiment analysis, processing these diverse modalities, multi-sensor data fusion methods, intra-modality and
inter-modality dynamics, infrared images, depth information from 3D face models, physiological data)

Wang & Deng (2018)

Architectures/Methods Backbone network (AlexNet, VGGNet, GoogleNet, ResNet, SENet, light-weight architectures, adaptive architectures, joint
alignment-recognition architectures), assembled networks (multipose, multipatch, multitask), DeepFace, DeepID2, DeepID3,
FaceNet, Baidu, VGGface, light-CNN, loss related

Pros/Evaluations Number of networks, training set, accuracy (DeepFace, DeepID2, DeepID3, FaceNet, Baidu, VGGface, light-CNN, loss related)

Cons/Evaluations Number of networks, training set, accuracy (DeepFace, DeepID2, DeepID3, FaceNet, Baidu, VGGface, light-CNN, loss related)

Challenges and future
directions

Security issues; privacy-preserving face recognition; understanding deep face recognition; remaining challenges defined by non-
saturated benchmark datasets; ubiquitous face recognition across applications and scenes; pursuit of extreme accuracy and
efficiency; Fusion issues

Action/motion
recognition

Herath, Harandi & Porikli
(2017)

Architectures/Methods Spatiotemporal networks, multiple stream networks, deep generative networks, temporal coherency networks, VGG, Decaf,
RNN, LSTM, LRCN, Dynencoder, autoencoder, adversarial models, Siamese Networks, others

Pros/Evaluations Accuracy on seven challenging action datasets (CNN, ClarifaiNet, GoogLeNet, VGG, others)

Cons/Evaluations Accuracy on seven challenging action datasets (CNN, ClarifaiNet, GoogLeNet, VGG, others)

Challenges and future
directions

Training video data; knowledge transfer; heterogeneous domain adaptation; boost the performance; generic form of deep
architectures for spatiotemporal learning; carefully engineered approaches; data augmentation techniques; foveated
architecture; distinct frame sampling strategies; more realistic activities; real-life scenarios; deeper understanding in action
recognition

Wang et al. (2018b)

Architectures/Methods CNN, LSTM, RNN, Autoencoder, DDNN, IDMM, others

Pros/Evaluations Accuracy, Jaccard Index, cross-subject setting, cross-view setting (CNN, LSTM, RNN, Autoencoder, DDNN, IDMM, others)

Cons/Evaluations Accuracy, Jaccard Index, cross-subject setting, cross-view setting (CNN, LSTM, RNN, Autoencoder, DDNN, IDMM, others)

(Continued)
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Table 3 (continued)

General computer vision

Challenges and future
directions

Better results on large complex dataset; practical intelligent recognition systems; encoding temporal information; Small training
data; viewpoint variation and occlusion; execution rate variation and repetition; cross-datasets; online motion recognition;
action prediction; hybrid networks; simultaneous exploitation of spatial-temporal-structural information; fusion of multiple
modalities; large-scale datasets; zero/one-shot learning; outdoor practical scenarios; unsupervised learning/self-learning; online
motion recognition and prediction

Biometric recognition

Sundararajan & Woodard
(2018)

Architectures/Methods Deep Boltzmann Machines, Restricted Boltzmann Machines, Deep Belief Networks, Autoencoders, CNN, RNN

Pros/Evaluations (recognition) accuracy, Equal Error Rate, Mean Absolute Error, False Alarm Rate, False Rejection Rate (CNN, DNN, DBN,
RNN, others)

Cons/Evaluations (recognition) accuracy, Equal Error Rate, Mean Absolute Error, False Alarm Rate, False Rejection Rate (CNN, DNN, DBN,
RNN, others)

Challenges and future
directions

Real-world applicability; beyond face and voice recognition; scaling up in terms of identification; large-scale datasets; dataset
quality; computing resources; training speed-up; large-scale identification; behavioral biometrics; robust to data noise;
modeling biometric aging; biometric segmentation; fusion of multiple modalities

Minaee et al. (2019)

Architectures/Methods CNN, AlexNet, VGGNet, GoogleNet, ResNet, SphereFace, FingerNet, SCNN, RSM, variants

Pros/Evaluations Equal Error Rate, accuracy (Rank1 identification, verification accuracy), performance (accuracy, Equal Error Rate, R1-ACC)

Cons/Evaluations Equal Error Rate, accuracy (Rank1 identification, verification accuracy), performance (accuracy, Equal Error Rate, R1-ACC)

Challenges and future
directions

More challenging datasets; interpretable deep models; few shot learning, and self-supervised learning; biometric fusion; real-time
models for various applications; memory efficient models; security and privacy issues

Image super-resolution

Wang, Chen & Hoi (2020)

Architectures/Methods SRCNN, DRCN, FSRCNN, ESPCN, LapSRN, DRRN, SRResNe, SRGAN, EDSR, EnhanceNet, MemNet, SRDenseNet, DBPN,
DSRN, RDN, CARN, MSRN, RCAN, ESRGAN, RNAN, Meta-RDN, SAN, SRFBN

Pros/Evaluations Performance, PSNR (FSRCNN, LapSR, SRCNN, CARN-M, FALSR-B, FALSR-C, BTSRN, CARN, FALSR-A, OISR-RK2-s,
OISR-LF-s, VDSR, MemNet, MSRN, OISR-RK2, MDSR, DBPN, RDN, SAN, RCAN, DRRN, DRCN, EDSR, OISR-RK3)

Cons/Evaluations Performance, PSNR (FSRCNN, LapSR, SRCNN, CARN-M, FALSR-B, FALSR-C, BTSRN, CARN, FALSR-A, OISR-RK2-s,
OISR-LF-s, VDSR, MemNet, MSRN, OISR-RK2, MDSR, DBPN, RDN, SAN, RCAN, DRRN, DRCN, EDSR, OISR-RK3)

Challenges and future
directions

Combining local and global information; combining low- and high-level information; context-specific attention; more efficient
architectures; upsampling methods; learning strategies; more accurate metrics; blind IQA methods; unsupervised super-
resolution; towards real-world scenarios; dealing with various degradation; domain-specific applications

Image captioning

Hossain et al. (2019)

Architectures/Methods Image encoder (AlexNet, VGGNet, GoogLeNet, ResNet, Inception-V3), Language model (LBL, LSTM, SC-NLM, RNN, DTR,
MELM, Language CNN)

Pros/Evaluations BLEU, PPLX, R@K, mrank, METEOR, CIDEr, PPLX, AP, IoU, PPL, Human Evaluation, E-NGAN, E-GAN, SPICE, SPIDEr

Cons/Evaluations BLEU, PPLX, R@K, mrank, METEOR, CIDEr, PPLX, AP, IoU, PPL, Human Evaluation, E-NGAN, E-GAN, SPICE, SPIDEr

Challenges and future
directions

Detect prominent objects and attributes and their relationships; generating accurate and multiple captions; open-domain
dataset; generate high-quality captions; adding external knowledge; generate attractive image captions; supervised learning
needs a large amount of labeled training data; focus on unsupervised learning and reinforcement learning

Data augmentation

Shorten & Khoshgoftaar
(2019)

Architectures/Methods Deep Learning-based (adversarial training, neural style transfer, GAN data augmentation), CNN, LeNet-5, AlexNet, GAN, NAS,
DCGAN, CycleGAN, Progressively-Growing GAN, WGAN, variants
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evaluation for pixel accuracy/mean pixel accuracy (MPA), intersection over union
(IoU)/Jaccard Index and Dice coefficient. Both surveys see future challenges in more
memory efficient models, real-time segmentations and diverse datasets, like 3D datasets,
sequence datasets, and in general more challenging datasets. Both also point out point
cloud segmentation. Further challenges are for example execution time, accuracy,
reproducibility and weakly-supervised and unsupervised learning.

The three surveys in face recognition (Masi et al., 2018; Li & Deng, 2020;Wang & Deng,
2018) have all a strong focus on datasets and loss functions. A reason for that is that

Table 3 (continued)

General computer vision

Pros/Evaluations C10, C10+, C100, C100+, SVHN (ResNetl8, ResNet18, WideResNet, Shake-shake regularization); accuracy (original testing data,
FGSM, PGD); Visual Turing Test (DCGAN, WGAN); validation accuracy (None, Traditional, GAN, Neural, Neural + loss,
Control); AutoAugmen, ARS (Wide-ResNet, Shake-Shake, AmoebaNet, PyramidNet); Rank, score, class (Deep Image)

Cons/Evaluations C10, C10+, C100, C100+, SVHN (ResNetl8, ResNet18, WideResNet, Shake-shake regularization); accuracy (original testing data,
FGSM, PGD); Visual Turing Test (DCGAN, WGAN); validation accuracy (None, Traditional, GAN, Neural, Neural + loss,
Control); AutoAugmen, ARS (Wide-ResNet, Shake-Shake, AmoebaNet, PyramidNet); Rank, score, class (Deep Image)

Challenges and future
directions

Establishing a taxonomy of augmentation techniques; improving the quality of GAN samples; combine meta-learning and data
augmentation; explore relationships between data augmentation and classifier architecture; extending data augmentation
principles to other data types; impact on video data; translation to text, bioinformatics, tabular records; establish benchmarks
for different levels of limited data; super-resolution networks; test-time augmentation; meta-learning GAN architectures;
practical integration of data augmentation into deep learning software tools; common data augmentation APIs

Generative adversarial
networks

Wang, She & Ward (2019)

Architectures/Methods FCGAN, SGAN, BiGAN, CGAN, InfoGAN, AC-GAN, LAPGAN, DCGAN, BEGAN, PROGAN, SAGAN, BigGAN, rGANs,
YLG, AutoGAN, MSG-GAN, Loss-Variant GANs, WGAN, WGAN-GP, LSGAN, f-GAN, UGAN, LS-GAN, MRGAN,
Geometric GAN, RGAN, SN-GAN, RealnessGAN, Sphere GAN, SS-GAN, variants

Pros/Evaluations Fast sample generation, handles sharp probability distribution (FCGAN); mode diversity, stabilizes training (MRGAN); unified
framework (f-GAN); solves vanishing gradient, image quality, solves mode collapse (WGAN); converges fast, stable model
training, complex functions (WGAN-GP); vanishing gradient, stabilized training, mode diversity, easy implementation
(LSGAN); vanishing gradient, mode collapse (LS-GAN); mode collapse, stable training, converges to Nash equilibrium
(Geometric GAN); mode collapse, high order gradient information, training stability (Unrolled GAN); vanishing gradient,
unified framework (IPM GANs), mode collapse (RGAN); computationally light, easy implementation, image quality, mode
collapse, stable training, vanishing gradient (SN-GAN); stable training, accurate results, no additional constraints (Sphere
GAN); self-supervision, competitive results (SS-GAN); discriminator distribution as a measure of realness, image quality
(RealnessGAN); time (DCGAN, BEGAN, PROGAN, RFACE); accuracy (DCGAN, BEGAN, PROGAN); score (DCGAN,
BEGAN, PROGAN); performance (FCGAN, BEGAN, PROGAN, LSGAN, DCGAN, WGAN-GP, SN-GAN, Geometric GAN,
RGAN, AC-GAN, BigGAN, RealnessGAN, MSG-GAN, SS-GAN, YLG, Sphere GAN)

Cons/Evaluations Vanishing gradient for G, mode collapse, low image resolution (FCGAN); low image resolution, vanishing gradient for G,
limited testing (MRGAN); stability (f-GAN); convergence time, vanishing gradient, complex learning hard to converge
(WGAN); no batch normalization (WGAN-GP); image quality (LSGAN); difficult implementation, image quality (LS-GAN);
vanishing gradient, limited testing (Geometric GAN); image quaility (Unrolled GAN); added relativism, performance
comparison (RGAN); limited testing (SN-GAN); limited investigation (Sphere GAN); self-supervised architecture (SS-GAN);
model diversity (RealnessGAN); time (DCGAN, BEGAN, PROGAN, RFACE); accuracy (DCGAN, BEGAN, PROGAN); score
(DCGAN, BEGAN, PROGAN); performance (FCGAN, BEGAN, PROGAN, LSGAN, DCGAN, WGAN-GP, SN-GAN,
Geometric GAN, RGAN, AC-GAN, BigGAN, RealnessGAN, MSG-GAN, SS-GAN, YLG, Sphere GAN)

Challenges and future
directions

Limited GAN research in other non-computer vision areas; GANs are hard to apply to the natural language application field;
generating comments to live streaming (NLP); significant impact on neuroscience by tackling privacy issues; limited
exploration of time-series data generation; lack of efficient evaluation metrics in some areas; society, safety concerns, e.g.
generation of tampered videos; detector for AI-generated images; GPU memory problems for large batched images; loss
functions important for stable training; video application is still limited
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there exist many large public facial databases, which make comparable evaluations
among the methods feasible. In this regard, Li & Deng (2020) focus on databases and
evaluations specifically for Facial Expression Recognition (FER) in their survey. However,
the surveys see the common challenges in boarded databases, handling biases in large
datasets, like ethnicity, gender, age or other factors, having more non-saturated benchmark
datasets and ubiquitous face recognition across applications and scenes. Further open
challenges are privacy and security issues, pursuing extreme accuracy and efficiency,
understanding deep face recognition and fusion issues. Finally, Masi et al. (2018) state
reducing intra-class variance and increasing the margin between classes while training as
two main challenges, and that video processing and clustering are currently the next
frontiers for face recognition.

Table 3 presents two surveys in Action/motion recognition (Herath, Harandi & Porikli,
2017; Wang et al., 2018b), the latter one specific on RGB-D-based human motion
recognition with deep learning. Both surveys present numerous deep learning-based
methods, like VGG, Decaf, RNN, LSTM, LRCN, autoencoder, adversarial models and
others, and present accuracy evaluations on numerous public available benchmark
datasets. Common challenges of the surveys point out the need for practical (carefully
engineered) systems that can handle more realistic activities and (outdoor) real-life
scenarios. Further challenges are the development of more generic architectures that can
handle also multiple modalities, have a better performance and can better train video data.
Moreover, the surveys point out a deeper understanding in action recognition, better
results on smaller training data, but also better results on large complex datasets, solutions
for online motion recognition and prediction, and zero/one-shot learning.

In the sub-category biometric recognition, we present two surveys (Sundararajan &
Woodard, 2018; Minaee et al., 2019). Both survey publications are dominated by CNN
architectures and variants. Sundararajan & Woodard (2018) divide their survey by
biometric modalities, namely physiological biometrics (face, fingerprint, palmprint, and
iris) and behavioral biometrics (voice, signature, gait, and keystroke), and present
evaluation results on public and private datasets. Minaee et al. (2019) arrange their survey
by the following biometric recognitions: fingerprint, iris, palmprint, ear, voice, signature
and gait. However, Sundararajan & Woodard (2018) conclude, that deep learning in
biometrics has so far been very little explored beyond face and speaker recognition.
Among others, Sundararajan & Woodard (2018) point out that future challenges are
computing resources and training speed-up, also in regards to large-scale identification.
Furthermore, there is a need for models that are more robust, the modeling of biometric
aging and the fusion of multiple modalities. Minaee et al. (2019) see future directions,
for example, in more challenging datasets, interpretable deep learning models, few shot
and self-supervised learning, real-time and memory efficient models, and the dealing with
security and privacy issues.

Wang, Chen & Hoi (2020) present in their survey specific deep learning architecture
and methods, like SRCNN, DRCN, FSRCNN, ESPCN, LapSRN, DRRN, SRResNe, that
have been developed for the field of super-resolution. For evaluation, they show the
performance (PSNR) of various models like FSRCNN, LapSR, SRCNN, CARN-M, FALSR-
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B, FALSR-C, BTSRN, CARN, on four benchmark datasets. They see one future challenge
in more efficient architectures and better learning strategies in regards to loss functions
and normalization, but also unsupervised super-resolution. Further, they state that the
evaluation metrics need more exploration, specifically they want to see more accurate
metrics and the development of blind IQA methods in the field of super-resolution.
Moreover, they request for combining low- and high-level information, but also
combining local and global information. Final challenges concern real-world scenarios
dealing with various degradation and domain-specific applications.

A survey about image captioning with deep learning is presented by Hossain et al.
(2019). In doing so, they survey image encoder methods, like AlexNet, VGGNet,
GoogLeNet, ResNet, Inception-V3, and language models, like LBL, LSTM, SC-NLM, RNN,
DTR, MELM, Language CNN, in the field of image captioning. They also list the used
evaluation metrics applied in the survey publications for most commonly and public
benchmark datasets in that field, like +BLEU, PPLX, R@K, mrank, METEOR, CIDEr,
PPLX, AP, IoU, PPL, Human Evaluation, E-NGAN, E-GAN, SPICE, SPIDEr. The authors
see future challenges in detecting prominent objects and attributes, and their relationships,
and generating accurate and multiple captions. They also point out that open-domain
datasets are needed. Future directions are the generation of high-quality captions,
adding external knowledge and the generation of attractive image captions. Finally, they
state that supervised learning needs a large amount of labeled training data, so the focus
will be on unsupervised learning and reinforcement learning in image captioning.

Shorten & Khoshgoftaar (2019) present a survey on data augmentation for deep
learning. Thereby, dividing deep Learning-based methods in adversarial training, neural
style transfer and GAN data augmentation. They introduce several deep learning
architectures in the field of data augmentation, like CNN, LeNet-5, AlexNet, GAN, NAS,
DCGAN, CycleGAN, Progressively-Growing GAN, WGAN and variants. Evaluation of
the data augmentation methods are outlined for a wide range of tasks and datasets
with the task specific metrics and scores, like (validation) accuracy, visual Turing test,
ARS, C10, C10+, C100, C100+, SVHN, rank, class, etc. Future works are seen in
establishing a taxonomy of augmentation techniques. Further, improving the quality of
GAN samples, combing meta-learning and data augmentation, exploring the relationships
between data augmentation and classifier architectures. Moreover, extending the data
augmentation principles to other data types, identify the impact on video data and a
translation to text, bioinformatics, and tabular records. Finally, the authors call for a
practical integration of data augmentation into deep learning software tools and common
data augmentation APIs.

In their survey,Wang, She & Ward (2019) give a comprehensive overview of generative
adversarial networks, like FCGAN, SGAN, BiGAN, CGAN, InfoGAN, AC-GAN,
LAPGAN, DCGAN, BEGAN, PROGAN, SAGAN, BigGAN, rGANs, YLG, AutoGAN,
MSG-GAN, Loss-Variant GANs, WGAN,WGAN-GP, LSGAN, f-GAN, UGAN, LS-GAN,
MRGAN, Geometric GAN, RGAN, SN-GAN, RealnessGAN, Sphere GAN, SS-GAN,
variants. They also provide a compact overview of the pros and cons of different
GAN-based methods, outlining which methods can, for example, handle the vanishing
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gradient problem, generate low quality images, have not been tested or investigated
enough, and which are easy or hard to implement. In addition, they present several
evaluation tables and images, about time performance (DCGAN, BEGAN, PROGAN,
RFACE), accuracy (DCGAN, BEGAN, PROGAN), scoring (DCGAN, BEGAN,
PROGAN) and further performances (FCGAN, BEGAN, PROGAN, LSGAN, DCGAN,
WGAN-GP, SN-GAN, Geometric GAN, RGAN, AC-GAN, BigGAN, RealnessGAN,
MSG-GAN, SS-GAN, YLG, Sphere GAN). The authors conclude, that GAN-based
research is still limited in other non-computer vision areas and that GANs are hard to
apply to the natural language application field. However, GANs could be used in NLP
for generating comments to live streaming. They also state that GANs could have a
significant impact on neuroscience by tackling privacy issues. On the other hand, they
outline society and safety concerns when tampered videos are generated with GANs.
Hence, a future challenge is to develop detectors for AI-generated images. Future
directions are solving the lack of efficient evaluation metrics in some areas, GPU
memory problems for large batched images and video application are in general still
under-researched.

To conclude this section, most of the surveys reviewed in this category have also a
similar structure: starting with a general introduction of machine/deep learning
techniques followed by a discussion of the reviewed publications categorized using
different strategies, among which task- or application-based categorization is the most
widely used. The works usually conclude by stating challenges and future directions of
deep learning in their fields from a high-level point of view. The future challenges are
very broad depending on the field and application. However, despite the successes and
advances of deep learning in the field of computer vision, there is still research needed to
make them more reliable for real world applications.

Deep learning reviews about natural language processing
This sub-section deals with the deep learning reviews in the area of natural language
processing. It is divided into eight sub-categories and the number of references, and
citations (according to Google Scholar and status as of mid-August 2020) for each of these
categories is given in Table 4:

� general language processing,

� language generation and conversation,

� named entity recognition,

� sentiment analysis,

� text summarization,

� answer selection,

� word embedding,

� and financial forecasting.

The commonality in the field of natural language processing is to analyse and
understand natural language data. Examples include text on documents or actual spoken
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language. Real-world application can be optical character recognition (OCR), which
tries to determine the text printed on an image, or a smartphone that can perform
instructions by processing voice commands. Again, the major challenge in natural
language processing is generalization. Every voice, handwriting or pronunciation is at least
slightly different, which makes it difficult to generalize for algorithms. Equivalent to
objective evaluations in computer vision, common scores are used to evaluate natural
language processing algorithms, like the percentage of the text that has been correctly
determined with an OCR approach.

Natural language processing
In general, natural language processing is a theory-inspired variety of computational
methods and algorithms for the automatic studying of the human language that can be
used, for example, for voice commands in all kind of applications. Young et al. (2018)
survey several important deep learning-based approaches that have been utilized for
various tasks of natural language processing. They provide a walk-through of their
evolution during the last years and overview, compare and contrast the numerous models.
Finally, they provide an in-depth overview of the past, the present and future role of deep
learning in natural language processing.

Language generation and conversation

A task of natural language processing is the generation (NLG) of text or speech from a
non-linguistic input. This can be the generation of new texts from (often human-written)
existing ones from one language to another language by machine translation, or a
summarization and fusion of texts with the goal to make them more concise. Gatt &
Krahmer (2018) provide an overview of the published research in common NLG tasks and
the corresponding neural architectures. They explore common research areas between

Table 4 List of published reviews in deep learning in the category language processing.

Language processing Publications Number of references Citations (until August 2020) Preprints

General language processing Young et al. (2018) 164 922 No

Language generation and conversation Gatt & Krahmer (2018) 548 270 No

Santhanam & Shaikh (2019) 137 8 Yes

Gao, Galley & Li (2018) 20 215 No

Chen et al. (2017) 111 202 No

Named entity recognition Li et al. (2020) 211 43 No

Yadav & Bethard (2019) 83 145 Yes

Sentiment analysis Zhang, Wang & Liu (2018) 150 398 No

Do et al. (2019) 135 86 No

Text summarization Shi et al. (2018) 131 30 Yes

Answer selection Lai, Bui & Li, 2018 56 33 No

Word embedding Zhang et al. (2016) 187 27 Yes

Almeida & Xexéo (2019) 48 18 Yes

Financial forecasting Xing, Cambria & Welsch (2018) 128 93 No

Sum – 2,109 2,490 –
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NLG and general artificial intelligence and outline the particular challenges in evaluation
in the field.

Santhanam & Shaikh (2019) provide an overview of classical methods, statistical
methods, and methods that utilize deep neural networks and review publications on open
domain dialogue systems. Thereby, they recognize three further research directions for the
development of more effective dialogue systems. These are incorporating conversation
context and world knowledge, but also including larger contexts. Further, they highlight
the problem of generic or dull responses and mention ways to improve the quality of
NLG systems, for example by incorporating personae or personality information. Gao,
Galley & Li (2018) present a tutorial that surveys neural approaches to conversational
artificial intelligence and arrange conversational systems into three different categories.
These are agents for question-answering, task-oriented dialogues and social bots. For each
of these categories, they introduce the state-of-the-art overview of neural methods, but
also make connections between these methods and classical methods. Finally, they outline
the current progress in this field and present the remaining challenges by applying certain
models and systems in case studies.

Chen et al. (2017) propose a survey overview of the current progress in the area of
dialogue systems from different angles and explore future research areas and topics.
Established dialogue systems are grouped by the authors into two model categories:
Task-oriented and non-task-oriented. Then, they outline how deep learning-based
approaches can support these with specific algorithms. Finally, they highlight several
further research areas, which can support and advance the field of dialogue-systems.

Named entity recognition
Named entity recognition deals with the identification of named entities (for example
real-world objects, like persons or locations) and furthermore, their classification into
specific categories. It functions as foundation for natural language approaches, like the
summarization of text, answering questions or machine translation. Li et al. (2020) provide
a large panoramic of established deep learning-based approaches for named entity
recognition. They introduce named entity recognition resources, including tagged
named entity recognition corpora, and further off-the-shelf named entity recognition
applications. Available works are systematically arranged, depending on a taxonomy
along three axes, namely the distributed representations for the input, the context encoder,
and the tag decoder. Finally, they review the main approaches for deep learning-based
techniques that have recently been applied and outline the particular challenges for named
entity recognition systems in their contribution.

Yadav & Bethard (2019) present a broad overview of deep neural network approaches
for the field of named entity recognition. They compare them with existing methods for
named entity recognition that use feature engineering and further supervised or semi-
supervised learning methods. Finally, they outline the advantages that have been gained by
neural networks and depict how including specific works on feature-based named entity
recognition systems can yield further improvements.
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Sentiment analysis
Sentiment analysis is the (automatic) recognition and analysis of people’s opinions,
sentiments, emotions and appraisals. This can be used in data mining applications for the
exploration of this subjective information source and, therefore, opinions of specific
entities, like products, events or services, but also topics, individuals or organizations.
In their contribution, Zhang, Wang & Liu (2018) start with an introduction of deep
learning, then they provide an extensive review of its recent sentiment analysis
applications. They divide the area of recent sentiment analysis in different sub-categories,
like a sentiment classification on a document-level, sentence-level and aspect-level, and a
further opinion expression extraction.

Do et al. (2019) wrote a comprehensive and context-based overview of deep learning
methods that have been used in aspect-based sentiment analysis. For their review
contribution, they categorised and summarised 40 approaches by their main deep learning
architecture and their specific classification tasks. The review works consisting of general,
but also adaptions of common convolutional neural networks, long-short term memory
methods, and gated recurrent units.

Text summarization
Text summarization targets the summarization of (long) documents into shorter ones
while, at the same time, keeping the key meaning and information of the original text
documents. Shi et al. (2018) give a broad technical literature review on various seq2seq
(sequence-to-sequence learning) methods for the summarization of text from the angle
of training strategies, network structures and summary generation methods. In addition to
the review, they implemented an open-source library, called the Neural Abstractive Text
Summarizer (NATS) toolkit, which can be used for abstractive text summarization.
Further, they conducted a set of experiments on the common CNN/Daily Mail dataset
to evaluate the capabilities and results of diverse neural network components. They
conclude by benchmarking two implemented NATS methods on the Newsroom and
Bytecup datasets.

Answer selection
The aim of (automatic) answer selection is identifying correct (and incorrect) answers.
For example, for a given question and a number of possible candidate answers, answer
selection identifies which of the candidates answered the question correctly (and,
concurrently, which of the candidates do not). In their survey, Lai, Bui & Li (2018)
outline an extensive, systematic analysis of numerous deep learning-based approaches for
answer selection along two main dimensions: (1) neural network architectures, such as
attentive architecture, siamese architecture and compare-aggregate architecture, and
(2) learning strategies, such as listwise, pairwise, and pointwise. Moreover, they examined
the most common datasets for answer selection and their evaluation metrics, and present
various possible research directions for the future in this field.
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Word embedding
Word embedding, or short embedding, covers feature learning and modelling strategies for
representing words or phrases as numbers or vectors. In their work, Zhang et al. (2016)
review the state-of-the-art of neural information retrieval research, with a focus on the
usage of queries and document representations that have been learned, like neural
embeddings. In doing so, they outline the achievements in the field of neural information
retrieval, but also point out limitations for a broader usage, and conclude by proposing
possible and favourable future research directions.

The survey contribution of Almeida & Xexéo (2019) depicts and delineates the main
recent strategies in the field of word embedding. The authors introduce two main
categories for word embeddings and the corresponding publications: prediction-based
models and count-based models.

Financial forecasting
Financial forecasting tries to (automatically) predict financial market trends, like stock
market predictions. Financial forecasting can, for example, be based on financial
statements and reports, but also news articles and press releases, with the goal to keep a
competitive business advantage. Xing, Cambria & Welsch (2018) present in their work the
scope of natural language-based financial forecasting (NLFF) research by arranging
and organizing the methods and approaches from the reviewed works. Their review
publication targets on providing a greater knowledge of the advancements and NLFF
hotspots.

Going deeper: architectures, evaluations, pros, cons, challenges and future

directions in language processing
Table 5 provides more details about the presented methods, pros, cons, evaluations and
challenges and future directions of the surveys in the category language processing.

General language processing is covered by Young et al. (2018), where at first word and
character embeddings are described, highlighting the challenge of out of vocabulary
(OOV) words, which are partly addressed by character embeddings. Still, for embeddings
it has been found to be limited in terms of perceptual understanding, which could motivate
grounded learning. For CNNs the limitation of capturing long distance dependencies
has been noted, which also motivated the development of dynamic convolutional neural
networks and Recurrent Neural Networks. The survey also mentions the role of the
pooling layer, where in the case of max pooling an information loss can be observed,
calling for modified techniques, such as dynamic multi-pooling CNNs. The fixed size
representation of traditional Sequence-to-Sequence models can be overcome by means of
the Attention Mechanism. Memory-augmented networks capture a similar intuition to
model the complex dependencies and relationships in text. Finally, the survey provides a
good overview of the performance of a range of approaches on various tasks, including
POS tagging, Semantic Role Labelling, and Sentiment Classification. In general, recurrent
network architectures, like LSTMs, are ranked among the highest across the tasks.
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Table 5 Architectures, pros, cons, evaluations, challenges and future directions in deep learning in the category language processing.

General language processing

Young et al. (2018)

Architectures/Methods Word and character embeddings (e.g., word2vec); CNN (including temporal windows, custom pooling methods),
LSTM, GRU; Attention Mechanism; Recursive NN; VAE; Deep Reinforcement Learning; Memory-Augmented NN

Pros/Evaluations Generalization via distributed representation (e.g., word2vec); ability to summarize sentences (Recurrent Neural
Networks); improved performance over traditional RNNs (LSTM, GRU); modelling of the structure of text
(Recursive Neural Networks)

Cons/Evaluations Out of vacabulary words (word embeddings); not suitable for long distance relationships (CNN), max-pooling to
restrictive (CNN); vanishing gradients (traditional RNN); fixed sized vector (Seq2Seq models)

Challenges and future
directions

Lack of labelled data limits supervised learning; expect to see more Reinforcement Learning in NLP; expect to see
more models with internal memory; combination of symbolic and sub-symbolic AI

Language generation and
conversation

Gatt & Krahmer (2018)

Architectures/Methods LSTM, Encoder-Decoder Architectures, Sequence-to-Sequence, Evaluation measures (BLUE, NIST, ROUGE,
METEOR, GTM, CIDEr, WMD, Edit Distance, TER, TERP, TERPA, DICE, JACCARD, MASI, PYRAMID, SPICE).

Pros/Evaluations Suitable for machine translation (Sequence-to-Sequence); modelling long-ranging dependencies (LSTM); efficiency
(of data-driven approaches over rule-based)

Cons/Evaluations Limited suitability in commercial application (data-driven methods); limited availability of data (data-driven
methods)

Challenges and future
directions

Stylistic control, social media data, situated language generation, generation from structured knowledge bases and
ontologies

Santhanam & Shaikh (2019)

Architectures/Methods MLP, LSTM, GRU, Encoder-Decoder Architecture, Memory Networks, Transformer, evaluation measures (BLEU,
METERO, Perplexity, Distinct, Word Error Rate, F1-Score)

Pros/Evaluations Well researched model (Sequence-to-Sequence)

Cons/Evaluations Bottleneck of fixes size vector (Encoder-Decoder networks); not mature (transformer architectures for open domain
dialogue systems)

Challenges and future
directions

Encoding contextual information (e.g., from knowledge bases), incorporating personality, dull and generic responses;
cognitive architectures, encoding emotional content

Chen et al. (2017)

Architectures/Methods LSTM, GRU, CNN, Encoder-Decoder, Sequence-to-Sequence, Attention mechanism, End-to-End systems, key-value
memory networks, evaluation measures (BLUE, METEOR, ROUGE)

Pros/Evaluations Allow to sample from distribution to avoid generic responses (VAE), make use of large amounts of data (deep
learning)

Cons/Evaluations No information about uncertainty (query-based systems), not differential (query-based systems)

Challenges and future
directions

Trivial and generic answers, inconsistencies in the training data due to multiple speakers, warm-up for new domains,
privacy-preservation

Named entity recognition

Li et al. (2020)

Architectures/Methods Word-level and character level representations, CNN, RNN, LSTM, CRF-based neural system, ELMo, BERT,
Recursive Neural Networks, Transformer, GPT, Pointer Networks

Pros/Evaluations Rule-base system perform well (if lexicon is exhaustive); effective use of past and future information (bidirectional
RNNs); promising performance of traditional embeddings and language model embedding; Transformer encoder is
better suited than LSTMs

Cons/Evaluations Later words influence the representation more (RNNs); external knowledge is labour intensive; external knowledge
hurts generality of DL-bases systems; pointer networks and RNNs (due to greedy decoding); computationally
expensive (CRF, for many entity classes)

(Continued)
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Table 5 (continued)

General language processing

Challenges and future
directions

Multiple languages (including transfer learning between languages), data annotation (quality and consistency of
annotations), informal text and unseen entities, scaleability of DL-based NER

Yadav & Bethard (2019)

Architectures/Methods NER datasets, NER evaluation measures (e.g., relaxed, strict F1), word level and character level architectures, CNN,
LSTM, GRU, BRAT, Sequence-to-Sequence

Pros/Evaluations Feature-inferring systems outperform feature-engineered systems; word+character-based systems perform better
than word or character-based systems,

Cons/Evaluations Need of domain experts (for constructing and maintaining knowledge resources for knowledge-based systems)

Challenges and future
directions

Taking insights from past approaches into developing DL-based approaches (e.g., usage of affix features)

Sentiment analysis

Zhang, Wang & Liu (2018)

Architectures/Methods Word Embeddings, (Denoising) Autoencoder, CNN, RNN, LSTM, Attention Mechanism, Memory Networks,
Recursive Neural Networks

Pros/Evaluations Recurrent attention network (capture sentiment of complicated contexts); RecNN (capture aspects of
compositionality of language)

Cons/Evaluations Bag-of-Word representation (no word sequence, lack of encoding of semantics of words)

Challenges and future
directions

Multimodal data (e.g., acoustic data, visual sentiment detection), research on resource-poor languages

Do et al. (2019)

Architectures/Methods Word embeddings (word2vec, GloVe), CNN, RNN (including bidirectional), LSTM, GRU, RecNN, Hybrid Models,
Attention, MemNet

Pros/Evaluations Extraction of local patterns (CNN); LSTMs superior to CNNs (same performance with fewer training data)

Cons/Evaluations Key phrases need to be of limited length (CNN); large training data required (CNN); unable to capture broader
contextual information or sentence dependencies (CNN, due to fixed size of hidden layer); heavily dependent on
parser (RecNN)

Challenges and future
directions

Domain adaptation (most of work on customer reviews); multilingual application (especially variation in languages);
technical challenges (training data sets, computational resources); linguistic complications (ambigious semantics,
implicit aspects)

Text summarization

Shi et al. (2018)

Architectures/Methods RNN, Sequence-to-Sequence, Pointer-Generator Networks, Encoder-Decoder Architecture, LSTM, CNN, Attention

Pros/Evaluations Copy OOV words (Pointer-Generator Networks); computational complexity, i.e., can be parallelized, fixed input
sequence hence upper bound for computation, short path between input and output (CNN); handling of long
documents (hierarchical attention)

Cons/Evaluations Cannot handle salient information, OOV words, suffer from repetitions (abstractive text summarization); exposure
bias, inconsistency of training and testing measurements (Sequence-to-Sequence models), exploding gradients
(RNN, incl. LSTM), cannot be parallelized (RNN); lack in diversity (beam-search-based approaches)

Challenges and future
directions

Large transformers, reinforcement learning, summary generation (i.e., language generation), more diverse datasets,
improved evaluation (e.g., measures)

Answer selection

Lai, Bui & Li (2018)

Architectures/Methods Word Embeddings (e.g., GloVe); Siamese architecture: CNN, (bidirectional) LSTM; Attentive architecture:
(bidirectional) LSTM; Compare-Aggregate Architecture: BiMPM (bidirectional LSTM)

Pros/Evaluations Improved performance for Transfer Learning; treats task as prediction of list of answers (listwise approach);
improved performance (listwise approach over pointwise and pairwise approaches)
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For machine translation the generic encoder-decoder architecture has been mentioned
to be well suited (Gatt & Krahmer, 2018). In particular, Sequence-to-Sequence models
are considered to provide good performance on this task. Another important point raised
is in relation to suitability in practical settings, as the availability of data is often limited.
Hence, the application of data-driven methods, especially deep learning, is limited in
relation to rule-based approaches. The task of open domain dialogue systems is
highlighted by Santhanam & Shaikh (2019). Here Sequence-to-Sequence models are a
popular choice. Making use of the attention mechanism enhanced the performance.

Table 5 (continued)

General language processing

Cons/Evaluations Do not consider answer selection as a prediction task on list of candidate answers (pointwise and pairwise
approaches); no interaction between input sentences (Siamese architecture); limited interaction between input
sentences (Attension architecture); improved performance (Compare-Aggregate architecture over Siamese
architecture, Attentive architecture)

Challenges and future
directions

Potential for further Transfer Learning approaches; Connection to other tasks, such as open domain question
answering and community question answering; Application to real-world applications, e.g. in the context of truth
discovery methods

Word embedding

Zhang et al. (2016)

Architectures/Methods Word2vec (CBOW, skip-gram), Latent Semantic Indexing, HAL, Neural Language Translation Model, Dual
Embedding Space Model (DESM); query-log embeddings

Pros/Evaluations Query language models outperform embedding-based document models; Sigmoid for transforming similarity values
(instead of directly using cosine or Euclidean distance); increased expressiveness and improved performance for
larger context window and embeddings dimensions

Cons/Evaluations Poor ranking model for larger sets of document (DESM); computational costs of local embeddings during query time

Challenges and future
directions

Consider word order for embeddings; selection of suitable datasets for computing embeddings

Almeida & Xexéo (2019)

Architectures/Methods Prediction-based methods: Hierarchical Softmax, Log-linear models, Negative sampling; Count-based methods: Pre-
DL methods (e.g., SVD, LSA, HAL, LR-MVL), GloVe

Pros/Evaluations Good performance of word2vec (skip-gram with negative sampling); embeddings good for composition (n-gram-
based, hierarchical softmax); improved performance over other count-based and word2vec models (GloVe)

Cons/Evaluations High dimensionality in combination with discrete joint distributions (early n-gram language models)

Challenges and future
directions

Adapting embeddings for task-specific work; combination of prediction-based and count-based; composition of word
embeddings for higher-levels entities

Financial forecasting

Xing, Cambria & Welsch
(2018)

Architectures/Methods Representations (semantic, seniment, event representation), word embeddings; traditional ML methods (e.g., SVM,
SVR); Recurrent Neural Networks, deep believe networks (DBN), self-organizing fuzzy neural networks (SOFNN),
adaptive neuro-fuzzy inference system (ANFIS), neural tensor network (NTN), CNN; evaluation measures
(accuracy, closeness, trading simulation)

Pros/Evaluations SOFNN are faster than ANFIS networks

Cons/Evaluations SVM paying only attention to classification accuracy (in practice the loss needs to be taken in consideration); Social
media text contains a lot of noise (corporate disclosures and financial reports are better-structured)

Challenges and future
directions

Domain-specific resource building (including ontologies); online predictive models (e.g., fuzzy rules for
interpretability); comprehensive evaluation measures (unification of measures to allow comparisons)
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As key challenges they identified the encoding of contextual information and the
incorporation of personality into the text generation. They mention the risk of generating
dull and generic responses. As future directions they foresee taking insights from
cognition into account and ways to encode emotional content. In Chen et al. (2017) a
difference is made between task-oriented and non-task-oriented dialogue systems.
For task-oriented systems, often external knowledge bases are queried. Such procedure
has two main downsides. First, there is no information about the uncertainty, and second,
such approaches are not differential. As a response, techniques like key-value memory
networks might address these issues. It has been noted that trivial responses is one of the
key challenges, which can be tackled via improved objective functions. Another
noteworthy approach being mentioned are hybrid methods, combining the strength of
multiple approaches. Challenges for future research include shortening the warm-up phase
required to adapt to novel domains. A deeper understanding of learning should also
facilitate improved dialogue systems. Finally, protecting the privacy of users should be a
relevant aspect of future systems.

For Named Entity Recognition, Li et al. (2020) point out the importance of the
input representation. When using language model embeddings (e.g., Transformer), the
performance of NER systems improved. Also, leveraging external knowledge improves
performance. Yadav & Bethard (2019) highlights that feature-inferring systems
outperform systems that rely on feature engineering. Using a combination of word
embedding and character embedding performs better than each of them individually.
What exact architecture to choose depends on the data and domain. If large datasets
are available, learning RNNs from scratch is an viable option. For cases where data is
scarce, transfer learning is a promising approach, with fine tuning on the target domain is
often an effective way. Crucially, the manual annotations are required to be of high
accuracy and consistency. Taking insights from traditional approaches and lifting them
into contemporary DL-based approaches may improve the current state of the art.
Fine-grained NER will be of more importance in the future, as well as jointly solving
NER and Entity Linking as one combined task.

For sentiment analysis, Zhang, Wang & Liu (2018) highlights the downsides of
following a Bag-of-Words representation, including their inability to represent sequence
information and the lack of semantic encoding. In Do et al. (2019) the usage and
importance of word embeddings for sentiment detection is being covered. They
found that CNNs require more training data in contrast to recursive neural networks.
Furthermore, CNNs lack the ability to capture broader contextual information.
Recursive Neural Networks, at the other hand, are well suited to capture the complex
relationships found in text, which are required to capture opinions, emotions and
sentiment. Challenges include changes in the domain and languages, where under-
resourced languages with different structure are less well researched. As for future
trends, the surveys identified multimodal data, including acoustic and visual data, and a
stronger focus on resource-poor languages.

For the task of text summarization in Shi et al. (2018) most of the presented
approaches are also known to be used for other tasks, for example sentiment detection.
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A prominent exception is the development of Pointer-Generator Networks, where
the input is directly copied to the output, which is particularity interesting for the
challenge of Out-of-Vocabulary words. This challenge is relevant for all abstractive text
summarization approaches, which also suffer from repetitions and insufficient handling of
salient information. In terms of computation, recurrent neural networks cannot easily
be parallelized. Here, CNNs have the advantage of a fixed size input and a short path
between the input and output. As challenges and future work for the task of text
summarization the survey mentions large transformers, reinforcement learning schemes,
the generation of summaries via language generation, the adoption of more diverse
datasets and improvements in evaluation, for example via improved evaluation measures.

The task of answer selection is covered by Lai, Bui & Li (2018). First, three learning
approaches are compared. It is found that the listwise approach outperformed the
pointwise, as well as the pairwise approach. As explanation it is mentioned that the listwise
approach considered the task as a list of candidates, instead of considering all candidates in
isolation. Next, multiple architectures are presented. Here the Compare-aggregate
architecture has been mentioned to provide improved performance over the Siamese and
Attentive architectures. This can be explained by the ability of this architecture to capture
interactions between the input sentences. As future research, synergies between closely
related tasks have been mentioned, for example open domain question answering and
community question answering. Furthermore, it is expected that answer selection will find
its way into real-world approaches, for example applications related to truth discovery.

Word embedding is studied as a standalone task in Almeida & Xexéo (2019) and in the
context of information retrieval in Zhang et al. (2016). Both surveys shed light on a
number of approaches that precede word embeddings, which share the motivation of
exploiting the distributional semantics. A difference is being made between prediction-
based and count-based methods, with word2vec being the most prominent example for
the first and GloVe the most popular for the second. It has been mentioned that GloVe is
able to outperform many other count-based approaches, as well as prediction-based
methods. In the context of information retrieval, a noteworthy approach is the
computation of local embeddings, based on the query. While there is a performance
improvement associated with such approach, the computational complexity is high and
the embeddings need to be computed at query time. As future work, word embeddings are
expected to get more rich and integrate more contextual information, for example the
word order.

In the domain of financial forecasting Xing, Cambria & Welsch (2018) the temporal
aspect is being stressed. Hence, approaches including recurrent neural networks have been
applied in this domain. Interestingly, the usage of self-organizing networks has been
researched, also for the task of event embeddings. Self-organizing fuzzy neural network
have been found to be faster than similar approaches like adaptive neuro-fuzzy inference
system (ANFIS). Similar to other surveys one of the challenges are domain-specific
datasets and resources, including knowledge bases and ontologies. The need for improved
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evaluation measures is another common topic for future research. Furthermore, the ability
to interpret the model is an added benefit in the financial forecasting domain and will
attract more research in the future.

To conclude the majority of surveys in this section highlight the importance and
contribution of word embeddings to wide variety of tasks. Currently, there does not appear
to exist a consensus, if CNN-based or LSTM-based approaches are better suited for the
majority of NLP problems. Dedicated architectures, such as attention-based, encoder-
decoders, and especially the transformer architecture gained a lot of popularity recently.
Another common emphasis of many surveys is the topic of evaluation measures. Currently
used measures were considered to only partly reflect the true performance in relation to the
target tasks, with novel measures being considered one of the future research topics.
Similarly, there is an emphasis on need of more datasets, especially for dedicated domains
and resource-poor languages.

Deep learning reviews in medical informatics
This sub-section deals with the deep learning reviews in the medical field. It is divided
into nine sub-categories and the number of references, and citations (according to
Google Scholar and status as of mid-August 2020) for each of these categories is given in
Table 6:

� health informatics,

� medical image analysis,

� medical imaging,

� health-record analysis,

� cancer detection and diagnosis,

� bioinformatics,

Table 6 List of published reviews in deep learning in the category medical informatics.

Medical informatics Publications Number of references Citations (until August 2020) Preprints

Health informatics Ravì et al. (2016) 145 700 No

Medical image analysis Litjens et al. (2017) 439 3696 No

Shen, Wu & Suk (2017) 117 1,200 No

Xing et al. (2017) 207 94 No

Haskins, Kruger & Yan (2020) 122 49 No

Medical imaging Lundervold & Lundervold (2019) 359 199 No

Health-record analysis Shickel et al. (2017) 63 366 No

Cancer detection and diagnosis Hu et al. (2018) 144 108 No

Bioinformatics Lan et al. (2018) 127 85 No

Radiotherapy Meyer et al. (2018) 234 84 No

Pharmacogenomics Kalinin et al. (2018) 128 44 No

Radiology Mazurowski et al. (2019) 125 97 No

Sum – 2,210 6,722 –
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� radiotherapy,

� pharmacogenomics,

� and radiology.

In the field of medical informatics, processing and gaining information from all sorts of
medical data, e.g. for treatment decisions or predictions, is the main task. A classic
example is to process medical image acquisitions from patients to automatically detect a
pathology, like a tumour, or the automatic processing and analysis of health-records.
These examples show that the medical informatics field and its data link to the fields of
computer vision and natural language processing and its algorithms. In fact, most
algorithmic concepts are overtaken from the field of computer vision and have been
adapted for medical imaging data, although there are also examples in the other direction,
like the U-Net, which was developed for medical image segmentation and has since
inspired countless architectures for other applications. Health data, however, has its
very own characteristics. For example, computed tomography scans always produce
grey value images in a specific range. Similar to images in computer vision, every patient
and every possible pathology is at least slightly different, which makes it difficult to
generalize for algorithms in medical informatics. For objective evaluations in medical
informatics, common scores like the Dice Similarity Coefficient or the Hausdorff distance
are used. In contrast to computer vision, however, the collection of data is much more
difficult, because of privacy concerns. A trend over the years in medical informatics, are
challenges for specific medical tasks, where algorithms compete against each other in
performing a certain task, e.g. on the Grand Challenge platform (https://grand-challenge.
org/), like our recent challenge towards the automatization of cranial implant
design in cranioplasty (https://autoimplant.grand-challenge.org/ and the successor
https://autoimplant2021.grand-challenge.org/) (Li & Egger, 2020; Li et al. (2021)).
However, designing algorithms that work reliably in clinical practice for the targeted
medical scenario is challenging, and examples of successful clinical translation are scarce.
This is amplified by the dramatic consequences a misclassification in the medical domain
can have on the patients’lives.

Health informatics

Health or healthcare informatics is the field that applies informatics to the medical domain
with the aim to improve health care. Ravì et al. (2016) provide a broad overview about
the application of deep learning for health informatics and cover the areas medical
informatics, sensing, bioinformatics, imaging and public health, also listing the
application, input data and underlying base method. They start their review with a
comprehensive background about deep learning architectures like deep neural networks,
deep autoencoder and deep belief networks. They conclude their work by discussing the
limitations and challenges of deep learning in healthcare.

Medical image analysis
Medical image analysis is the task of automatically or semi-automatically extracting
information from (patient-specific) medical images. For example, this could be an
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automatic determination of the tumour volume from a patient’s magnetic resonance
imaging scan with the aim to choose a therapy strategy. The publication of Litjens et al.
(2017) gives an overview of main deep learning techniques in regard to medical image
analysis. It presents over 300 works in that area and reviews the application of deep
learning in topics like organ or disease detection, image classification, segmentation,
registration, and further tasks. Furthermore, compact outlines of studies are presented by
the application areas: abdominal, breast, cardiac, digital pathology, musculoskeletal, neuro,
pulmonary and retinal. Finally, they summarize recent works at that time and discuss
remaining challenges and areas for future research work.

Shen, Wu & Suk (2017) present the basics of deep learning-based approaches and
analyse the reported results in fields like medical image registration, tissue segmentation,
anatomical and cell structure detection, computer-aided disease diagnosis and prognosis.
They conclude their work by raising remaining research questions and proposing
future research directions for additional improvements in the field of medical image
analysis.

Xing et al. (2017) give an overview about microscopy image analysis. They start with a
brief introduction of common deep neural networks and provide a compact outline of
recent deep learning successes in numerous applications, including detection, classification
and segmentation in the area of microscopy image analysis. They present the background
of (fully) convolutional neural networks, deep belief networks, recurrent neural
networks and stacked autoencoders, and connect their basic principles and modelling to
certain application in different microscopy images. They conclude by discussing remaining
research challenges and outline possible directions for future research in deep learning-
based microscopy image analysis.

The review ofHaskins, Kruger & Yan (2020) present the progress of deep learning-based
approaches for the field of medical image registration by outlining research challenges, but
also significant advancement in the last years. They divide their article in three main
categories, namely unsupervised transformation estimation, supervised transformation
estimation and deep iterative registration. Each main category is then divided again in
sub-categories. They conclude with surveying highlights of future research directions in
this field.

Medical imaging

Medical imaging deals with the acquisition of human and animal images from cellular to
body scale. Common examples include computed tomography (CT) and magnetic
resonance imaging (MRI), which allow to acquire images at vascular and organ level for
diagnostic and therapeutic reasons (Pepe et al., 2019; Gsaxner et al., 2019a; Gsaxner et al.,
2018). In this context, Lundervold & Lundervold (2019) provide an analysis of deep
learning-based methods in medical imaging with a focus on MRI acquisitions. The goal of
their review is threefold: First, they provide a compact background introduction of
deep learning and its main contributions. Then, they outline how deep learning-based
methods have been used for the whole MRI workflow from image acquisition to diagnosis,
and give a starting point for researchers in the area of deep learning-based medical
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imaging. Finally, they point to open-source code repositories, educational resources, and
further related data sources that are of interest for medical imaging.

Health record analysis
Health record analysis explores the digital information stored in electronic health
records. Originally intended to archive patient information and performing administrative
tasks in healthcare, such as billing, researchers starred to utilize these records also for
numerous other applications in clinical informatics. Shickel et al. (2017) survey the
applications of deep learning for the analysis of health-record data. They report several
deep learning-based methods and techniques that have been used for different clinical
applications, such as information extraction, outcome prediction, representation learning,
but also de-identification and phenotyping. In their review, they identify a number
of limitations for the current research regarding the data heterogeneity, model
interpretability, but also missing universal benchmarks. They conclude their review by
outlining the field and proposing directions for upcoming deep health-record analysis
research.

Cancer detection and diagnosis
As previously mentioned, medical image acquisitions, like MRI or CT, can be used for
the diagnosis of pathologies, such as tumours, and internal injuries like bone fractures.
However, the manual processing of these images can be cumbersome and time-
consuming, even for experts (Hahn et al., 2020). This led to the investigation of
automatic approaches. Hu et al. (2018) review deep learning-based applications for cancer
detection and diagnosis. In their survey, they start with a background on deep learning and
common architectures applied to the detection and diagnosis of cancer. They focus on
four common architectures in deep learning, such as (fully) convolutional neural networks,
deep belief networks, but also auto-encoders. Additionally, they present a review on studies
that exploit deep learning for cancer detection and diagnosis, grouped by cancer type.
Finally, they provide a summary and personal comments to the reviewed works and
suggest future research directions.

Bioinformatics
Bioinformatics is an interdisciplinary field developing approaches and software tools
for the understanding of biological data with a strong focus on large and complex data
sets. Lan et al. (2018) concentrate on the review of research contributions using deep
learning and data mining approaches for the analysis of domain-specific knowledge in
bioinformatics. Their review article provides a summary of several data mining methods
that have been utilized for pre-processing, classification and clustering along with different
optimized neural network architectures and deep learning methods. Furthermore, they
present the advantages and disadvantages of such methods in practical applications,
discuss, and compare them in terms of their industrial usage.
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Radiotherapy
Radiotherapy can be used, for example, to treat cancer patients. However, planning and
delivering radiotherapy treatment is a complicated procedure, which artificial intelligence
tries to automate and therefore facilitate. In their review, Meyer et al. (2018) introduce
the basics of deep learning and its position in the overall context of machine learning.
They introduce popular neural architectures with a particular emphasis on classic
convolutional neural networks. Subsequently, they give an overview of contributions on
deep learning-based methods that can be utilized for radiotherapy. Thereby, they classify
them into seven different categories in regards to the overall patient workflow.

Pharmacogenomics
Pharmacogenomics (pharmaco- + genomics) is an interdisciplinary field between
pharmacology and genomics that studies the role of the genome in drug response. In their
review, Kalinin et al. (2018) introduce recent works and future applications for deep
learning in the area of pharmacogenomics. This includes the exploration of new
regulatory variants situated in noncoding genomic regions and their role not only in
pharmacoepigenomics, but also in patient stratification from clinical records. They aim at
the application of deep learning for the prediction of patient-specific drug responses to
optimize the process of drug selection and dosing. This process is automated by applying
data-driven deep learning algorithms on large and complex data collections, which can
provide different sets of information, ranging from the micro- to the macroscopic level,
such as from molecular to epidemiological and from clinical to demographic domains.

Radiology
Radiology is the medical field that deals with the extraction of useful information from
images, like CT or MRI patient acquisitions, for diagnosis and treatment of humans and
animals. Mazurowski et al. (2019) give an overview of the common fields of radiology
and present options and chances for deep learning-based approaches there. They also
present fundamental deep learning concepts, such as convolutional neural networks before
presenting research contributions focused on deep learning and its application to
radiology. The reviewed works are grouped by application task. They conclude their work
discussing opportunities and challenges for the inclusion of deep learning-based
approaches into the clinical practice.

Going deeper: architectures, evaluations, pros, cons, challenges and future
directions in medical informatics
Table 7 gives more details about the presented methods, pros, cons, evaluations and
challenges and future directions of the surveys in the category medical informatics. Ravì
et al. (2016) presented a review on using deep learning in health informatics, where the
authors specifically focused on applications in translational bioinformatics (e.g., genomics,
pharmacogenomics, epigenomics), medical imaging (CT, X-Ray, MRI, fMRI, positron
emission tomography (PET)), pervasive sensing (signal abnormality detection (e.g., ECG,
EEG), assistive device for physically impaired patient and energy and activity
monitoring for obesity prevention), medical informatics (aggregated medical data such
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Table 7 Architectures, pros, cons, evaluations, challenges and future directions in deep learning in the category medical informatics.

Health informatics

Ravì et al. (2016)

Architectures/Methods DNN, DAE, DBN, DBM, RNN, CNN, LSTM, RNN

Pros/Evaluations Widely adopted in medical domain; unsupervised learning (DAE); can deal with sequential data (RNN); many variants
available for different tasks (DAE, CNN).

Cons/Evaluations Require large quantity of labelled data (CNN); computationally expensive.

Challenges and future directions A deep learning model remains to be a black box and uninterpretable to humans, which is undesirable especially in
medical domains; for rare diseases, it remains difficult and sometimes impossible to collect enough data for training
deep learning models. It is costly to collect and label medical data; the parameter tuning (e.g., hyper parameters) of
deep learning models remains to be experience and task dependent; small deviations added to the input could alter
the output of deep learning models completely, making deep learning models unreliable and susceptible to
manipulations; future directions: interactive deep learning (human-machine collaboration); multi-modality/multi-
source health informatics data fusion.

Medical image analysis

Litjens et al. (2017)

Architectures/Methods MLP: Multi-layer perceptron CNN, RNN, Auto-encoders (AEs) and Stacked AE (SAEs), RBM: Restricted Boltzmann
Machine, DBN, VAE: Variational Auto-encoder, GAN: Generative Adversarial Network

Pros/Evaluations End to end training (CNN); freely available pre-trained deep learning models

Cons/Evaluations Hyper-parameter tuning remains to be empirical; medical image annotation is subjective and susceptible to inter-
annotator variability and uncertainty

Challenges and future directions Challenges: medical image annotation remains to be time-consuming and expensive; future directions: task-specific
pre-processing and data augmentation techniques; incorporating prior knowledge of the specific domain into the
training of deep learning models, radiological reports (by radiologists) could be utilized for the efficient annotation of
medical imagesl learning from limited data and sparse annotation; leverage non-expert annotation through crowd-
sourcing, unsupervised learning (e.g., VAE) using unlabeled data in medical image analysis; interpretable deep
learning in medical image analysis

Shen, Wu & Suk (2017)

Architectures/Methods SAE: Stacked Auto-encoder, DBN: Deep Belief Network, DBM: Deep Boltzmann Machine, CNN: Convolutional
neural network

Pros/Evaluations Compared to traditional machine learning algorithms, where image features are handcrafted and domain knowledge is
required, a deep learning network can learn features through labelled data by itself, allowing experts outside of medial
domain to use the algorithms to tackle medical problems easily.

Cons/Evaluations Overfitting due to limited training samples.

Challenges and future directions Image features learnt by deep learning are difficult to understand and interpret; future directions: building a medical
equivalent of ImageNet to facilitate the training of deep learning networks; incorporating domain-specific knowledge
in the design and/or training of deep learning networks; develop a universal algorithmic technique that is compatible
with various image scanning protocols and modalities.

Xing et al. (2017)

Architectures/Methods CNN, FCN: fully convolutional network, RNN: recurrent neural network, SAE: stacked autoencoder

Pros/Evaluations Can be trained in an unsupervised manner (SAE); the input size of FCN is not fixed and can be arbitrary; the training of
a CNN can be easily parallelized.

Cons/Evaluations Obtaining large number of annotated microscopy images is expensive; NN requires a fixed input size

Challenges and future directions It is difficult to interpret the results and behavior of deep neural networks, which could be an issue in medical domains;
processing high volumes of medical data requires computational (algorithmic, hardware) acceleration; future
directions: develop deep learning-based methods for WSI (whole slide imaging) image analysis; use a patch-based
strategy for high dimensional microscopy image analysis to reduce computational expenses; fusing different types of
patients’ data (images, diagnostic reports) as the input of deep neural networks is promising for the analysis of
microscopy images; design task-specific deep learning architecture based on domain knowledge by, e.g., combining
learnt and handcrafted features together; develop unsupervised or semi-supervised learning algorithms in order to
make best use of the large quantities of unlabeled data available.

(Continued)
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Table 7 (continued)

Health informatics

Haskins, Kruger & Yan (2020)

Architectures/Methods Deep iterative registration, supervised (including partially/weakly supervised) transformation estimation,
unsupervised transformation estimation, Reinforcement learning

Pros/Evaluations Deep reinforcement learning based registration methods are intuitive to understand; supervised transformation-based
methods are fast and can work in real-time; weakly/partially supervised transformation-based methods rely less on
the ground truth, while maintaining high registration accuracy; unsupervised image registration are independent
from the need of large number of labeled data.

Cons/Evaluations Iterative registration techniques are difficult to be used in real-time registration; the labeling of the ground truth for
supervised transformation estimation requires expertise and thus the ground truth is difficult to obtain; unsupervised
registration is in generally limited to the unimodal case.

Challenges and future directions If synthetic ground truth was used for supervised transformation estimation, the synthetic data has to be closely similar
to real data; future directions: deep reinforcement leaning and generative adversarial network (GAN) based
registration will be gaining more attention in the near future; extend the unsupervised transformation methods to
multimodal registration.

Medical imaging

Lundervold & Lundervold (2019)

Architectures/Methods ANNs: Artificial neural networks, CNNs: Convolutional neural networks

Pros/Evaluations Deep learning has been successfully used in the whole MRI processing chain, including acquisition, reconstruction,
registration, segmentation, etc.

Cons/Evaluations processing high-dimensional medical images using CNN requires ample computational powers; edical data used for
research are usually of high quality while real-world clinical data tend to be messy, the performance of deep learning
models is expected to drop in a production environment.

Challenges and future directions the privacy and protection of medical data makes it difficult for deep learning models to be trained and openly
deployed; the problem of incorporating deep learning models into already well-established clinical practice has not
been fully addressed; future directions: more focus should be put on the reproducibility of machine learning for
medical imaging researches, e.g., through data and code sharing; the current established peer-review system cannot
keep up with the fast development of machine learning in medical imaging researches. To tackle the issue, posting
papers to arXiv for fast publication and open-sourcing codes and dataset is a direction worthy of exploring;
biomedical challenges/competitions held publicly should be encouraged; ederated learning and differential privacy

Health-record analysis

Shickel et al. (2017)

Architectures/Methods MLP: Multilayer Perceptron, CNN: Convolutional Neural Networks, RNN: Recurrent Neural Networks, AE:
Autoencoders, RBM: Restricted Boltzmann Machine

Pros/Evaluations LSMT, RNNs and their variants are able to process sequential data, which is desirable for tasks involving EHR dataset
processing.

Cons/Evaluations Deep learning models lack transparency and are difficult to be interpreted, which is undesirable in clinical domain.

Challenges and future directions the data from electronic health record (EHR) are heterogeneous; extracting information from Clinical notes are
challenging, due to the various writing styles of the authors/clinicians; current deep EHR researches lack
reproducibility and no universal benchmark datasets are available for inter-institution; future directions: including
robust mechanism to handle the EHR irregularity is worthy of exploration for future deep learning researches;
clinical notes contain essential information about the patients, which are however not made good use of. Natural
language processing (NLP) techniques (e.g., LSTM, RNN) should be focused more on the clinical notes for future
researches; various types of patients’ data should be considered as a whole and converted to a unified representation;
patient deidentification using deep learning is another area of research in the future; future deep learning research
should be focused on increasing the model interpretability, which is of utmost importance for clinical applications
including EHR analysis.

Cancer detection and diagnosis

Hu et al. (2018)

Architectures/Methods FCNs: fully convolutional networks, AEs: Auto-Encoders, DBNs: Deep belief networks
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Table 7 (continued)

Health informatics

Pros/Evaluations Deep learning-based approaches automate feature engineering, compared to traditional machine learning techniques
where image features are usually hand-crafted based on domain knowledge.

Cons/Evaluations large quantities of data are needed to train deep learning models. For rare cancers, it is difficult to collect enough
images for training; the training of deep learning models are time and computation-consuming; deep learning
models are black boxes and hard to be interpreted.

Challenges and future directions Even though large quantities of image data are accumulated in the PACS in hospitals, more efforts are needed to make
these datasets publicly available for research purposes; there lacks a common large cancer dataset, based on which
various deep learning related cancer image analysis studies can be compared and evaluated directly; the datasets are
usually imbalanced, with the negative (non-cancer) cases far exceeding positive cases; the trained deep learning
models on cancer image analysis cannot generalize well across institutions; future directions: increase the detection
and diagnosis accuracy when it comes to blurry and low sign-to-noise ratio images; multi-modality information
could be utilized for cancer detection.

Bioinformatics

Lan et al. (2018)

Architectures/Methods KNN: K nearest neighbor, Naïve Bayes, decision tree, SVM: support vector machine, (Deep) neural networks,
clustering, CNN: convolutional neural networks, SAEs: Stacked auto-encoders, DBN: Deep belief network, RNN:
Recurrent neural network

Pros/Evaluations Deep learning is able to learn knowledge from massive amount of data automatically.

Cons/Evaluations Deep learning requires large datasets for training and is dependent on high-end hardware; compared to traditional
machine learning algorithms, deep learning models lack interpretability.

Challenges and future directions Data imbalance is prevalent in medical domain; future directions: aggregation of different machine learning algorithms
and fusion of data from different modalities; development of semi-supervised and reinforcement learning algorithms.

Radiotherapy

Meyer et al. (2018)

Architectures/Methods DNN: Deep neural network, RNN: Recurrent neural network, AE: Auto-encoder, CNN: Convolutional neural network

Pros/Evaluations the availability of large amount of training data and the increasing power of graphics processing unit (GPU)
contributed to the success of deep learning in many field, including the medical domain.

Cons/Evaluations Deep learning theories are mostly empirically and experimentally obtained, which induces criticism; small noise,
imperceptible to humans, added to the input could alter the output completely, which makes the reliability of deep
learning models questioned.

Challenges and future directions building coherent, large and balanced medical datasets that represent real-world scenarios for deep learning algorithms
remains to be challenging; the interpretation of deep learning models is difficult

Pharmacogenomics

Kalinin et al. (2018)

Architectures/Methods Deep learning in general

Pros/Evaluations Deep learning can take the advantage of ever-increasing amount of medical data available.

Cons/Evaluations Current deep learning algorithms are dependent on large datasets; when the dataset is small, deep learning models are
susceptible to overfitting; deep learning models lack interpretability.

Challenges and future directions Future directions: In pharmacogenomics, deep learning will revolutionize from ‘prediction’ to ‘prescription’.

Radiology

Mazurowski et al. (2019)

Architectures/Methods ANNs: Artificial neural networks, CNN: convolutional neural network

Pros/Evaluations Deep learning-based methods have been verified effective in many radiological tasks such as medical image
classification, segmentation, detection, reconstruction and registration and become the state of the art.

Cons/Evaluations Within the large realm of radiology, current deep learning models have reported to outperform human experts in only
a minority of radiological tasks; introducing deep learning models in clinical practice will induce legal and ethical
issues.

(Continued)
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as Electronic health records (EHR)) and public health (e.g., pandemic disease control and
surveillance, social public behavior modelling). In each of the categories covered, the
authors reviewed the representative publications for each specific task such as using
deep learning for RNA binding protein prediction, myocardium identification, calorie
measurement using CNN and EEG anomaly detection based on a deep belief network
(DBF). Where applicable, the limitations of the reviewed publications and methods for
the respective tasks are briefly analyzed. The survey is concluded by presenting the
limitations and challenges of using deep learning in healthcare and future perspectives.
For example, iterative deep learning that enabled the collaboration between human experts
and the machine would benefit the health informatics field, which would at the same time
overcome the shortcomings of deep learning models such as lack of reliability and
interpretability.

Four surveys were included in the ‘Medical image analysis’ category, where two of them
(Litjens et al., 2017; Shen, Wu & Suk, 2017) specifically used ‘deep learning in medical
image analysis’ as the titles and the survey from Xing et al. (2017) focused on the analysis of
microscopy images, and Haskins, Kruger & Yan (2020) focused on medical image
registration. In Litjens et al. (2017), the reviewed publications were grouped/categorized by
two means: First, by different medical tasks such as classification (e.g., image, lesion),
detection (e.g., organ, landmark, lesion), segmentation (e.g., organ, lesion), registration
and other medical tasks (image retrieval, generation, enhancement, medical reports).
Second, by anatomical areas such as brain, eye, chest, breast, cardiac, etc. Different
medical tasks and anatomical areas constitute the subcategories of the survey. For each
subcategory, the authors selected and reviewed the corresponding publications, providing
information, if available, about the deep learning architecture used, image modalities
and the limitations of the respective studies. The authors concluded the survey by
summarizing the challenges and outlook of deep learning in medical image analysis and
the desirable properties deep learning models should have in medical tasks. Shen, Wu &
Suk (2017) used a similar task-based grouping strategy to that of Litjens et al. (2017),
where the authors reviewed deep learning methods that were applied to structure detection
(e.g., organ, body part, cell), image segmentation, computer-aided detection (CADe)
and computer-aided diagnosis (CADx). Xing et al. (2017) also grouped the reviewed
publications by applications in microscopy images, such as detection (e.g., mitosis
detection in histology images, cell and nuclei detection), segmentation (e.g., nucleus, cell,
neural membrane segmentation) and classification (e.g., human epithelial-2 cell images
classification). Due to that microscopy images are distinct from other medical image

Table 7 (continued)

Health informatics

Challenges and future directions Compared to natural images, medical datasets are smaller and often imbalanced (in case of rare diseases), which can
lead to suboptimal training of deep learning models; proper clinical validation of a deep learning model is essential
for its clinical usability, which is however often overlooked in medical deep learning researches; future directions:
more studies are needed in the future to optimally incorporate deep learning models in existent radiology workflow,
so that the current radiological practice can be improved.
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modalities such as CT and MRI, tailored pre/post-processing methods and sometime
network architectures were involved. Haskins, Kruger & Yan (2020) divided the reviewed
publications based on the registration techniques (iterative registration, supervised and
unsupervised transformation estimation) used. High expense of obtaining the training
data and the labels have been identified as the most prevalent challenges of using deep
learning for medical image analysis.

The survey from Lundervold & Lundervold (2019) specifically focused on the
application of deep learning in magnetic resonance imaging (MRI), from the acquisition
and reconstruction of rawMRI data to the registration, restoration, synthesis, retrieval and
segmentation of MRI images. Limited data availability, difficulty of interpreting deep
learning models and integrating deep learning models into existent clinical workflows has
been identified by the authors as the main challenges of deep learning in MR image
analysis.

Shickel et al. (2017) reviewed the recent development of electronic heath record (EHR)
analysis using deep learning, which is a relatively new and less touched area compared to
image-based deep learning applications. Due to the distinct characteristics of EHR, LSTM,
RNNs and their variants (mostly NLP techniques) are among the most widely used
deep learning architectures in this field, compared to medical image analysis where CNNs
were prevalently adopted. The survey starts by reviewing techniques regarding the
representation learning of EHR, which is fundamental for all deep learning-based EHR
applications. Then, the survey goes into application-specific publications such as outcome
prediction and the deidentification of clinical data. The authors concluded the survey
by pointing out aspects specific to EHR data, such as data heterogeneity and irregular
measures worthy of future investigation. Challenges in this field are, for example, the
EHR data even present greater heterogeneity compared to other well-structured and
standardized medical data such as CT and MRI, making the learning of their
representation using deep learning more challenging.

The survey byHu et al. (2018) is focused on the detection and diagnosis of cancers based
on medical images. The reviewed publications in this survey are grouped according to the
areas where the cancer occurs, such as breast cancer, lung cancer, skin cancer, prostate
cancer, brain cancer, colonial cancer and other types of cancers. For each type of
cancer, the deep learning-based methods used, including the architectures like FCN
and AE were discussed. The authors pointed out that, even though large amount of
imaging data of cancers has been accumulated over the years, it is still a challenge to make
these valuable datasets publicly available for the development of deep learning models.

Lan et al. (2018) reviewed data mining and deep learning techniques that can be used
in bioinformatics. Unlike previous surveys, which are built upon publications about
specific medical applications, the survey from Lan et al. (2018) focused more on the
introduction of the data mining and deep learning methodologies, such as traditional
machine learning algorithms (e.g., nearest neighbor, decision tree, clustering) and
various deep learning structures and compositions (CNN, SAE, DBN, RNN). Another
large part of the overall content in the survey is about a comparison between data mining
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and deep learning. Class imbalance is common in many medical datasets, which is pointed
out to be one of the main challenges.

Meyer et al. (2018) focused on a specific application—radiotherapy used for cancer
treatment. They have identified the common steps in the radiology workflow including
patient consultation, image acquisition, target structure segmentation, treatment planning
and delivery and follow-up. The deep learning methods that have been applied in
these steps were reviewed and discussed. These include, for example, that some researchers
have used CNNs to reduce the artifacts on CT images acquired from limited angles
and some researchers used a CNN to reconstruct MRI images at 7T fidelity level given
an image taken under 3T. Building coherent, large and balanced medical datasets is
identified by the authors as the main challenges, which should be paid more attention to in
the future.

Kalinin et al. (2018) restrict their survey to pharmacogenomics. The publications in the
survey were grouped by area of applications such as drug discovery, patient stratification,
toxicology. The authors stated that when the dataset used for training deep learning
models is small, deep learning is susceptible to overfitting. Lack of interpretability of the
deep learning models is identified as another limitation of deep learning based
methods in pharmacogenomics. The authors envisaged that future deep learning
in pharmacogenomics will revolutionize from ‘prediction’ to ‘prescription’.

Mazurowski et al. (2019) gave an overview of deep learning in radiology, where the
imaging modality is restricted to MRI. Like the survey from Lundervold & Lundervold
(2019),Mazurowski et al. (2019) grouped the reviewed papers in terms of their applications
including classification, segmentation, detection, registration, reconstruction, etc. For
classification of radiological data, the most adopted classifier is composed of several
convolutional layers, followed by a fully connected layer. For segmentation fully
convolutional neural network (FCNN) is a popular choice. The survey concludes by
stating challenges and outlooks of deep learning in radiology. For example, the authors
pointed out that more studies are needed in the future to seamlessly integrate deep learning
models in existent radiology workflows, so that the current radiology practice can be
improved. Another challenge is that medical image datasets are usually much smaller than
natural image datasets and training on small datasets could lead to overtraining. Class
imbalance (healthy cases far outnumber pathological cases) in medical image datasets
is another factor that could lead to suboptimal training of deep learning models.

To conclude, most of the surveys reviewed in this category followed a similar structure:
a general introduction of machine/deep learning techniques followed by the discussion
of the publications categorized using different strategies, among which task- or
application-based categorization is the most widely used. The surveys usually conclude by
stating challenges and future perspective of deep learning in the medical field from a high
level. It should be noted that, the topics in subcategories ‘health informatics’, ‘medical
image analysis’, ‘medical imaging’ and ‘radiology’, are highly overlapping and too
broad, such that the respective surveys are unable to provide ample low-level details
regarding the deep learning models. Some surveys such as the work of Shickel et al. (2017),
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focused on a very specific and narrow topic (Electronic Health-record analysis), so that
they can provide some low-level insights of deep learning usage for the task.

Additional deep learning reviews
This sub-section deals with additional deep learning reviews, which were not covered
within the other categories. It is divided into eleven sub-categories and the number of
references, and citations (according to Google Scholar and status as of mid-August 2020)
for each of these categories is given in Table 8:

� big data,

� reinforcement learning,

� mobile and wireless networking,

� mobile multimedia,

� multimodal learning,

� remote sensing,

� graphs,

� anomaly detection,

� recommender systems,

� agriculture,

� and multiple areas

Table 8 List of published reviews in deep learning in the category additional works.

Additional works Publications Number of references Citations (until August 2020) Preprints

Big data Zhang et al. (2018) 102 383 No

Mohammadi et al. (2018) 229 340 No

Emmert-Streib et al. (2020) 154 3 No

Reinforcement learning Mousavi, Schukat & Howley (2016) 45 57 No

Li (2017) 604 463 Yes

Arulkumaran et al. (2017) 100 438 No

Mobile and wireless networking Zhang, Patras & Haddadi (2019) 574 372 No

Mobile multimedia Ota et al. (2017) 111 70 No

Multimodal learning Ramachandram & Taylor (2017) 103 114 No

Remote sensing Ball, Anderson & Chan (2017) 419 184 No

Graphs Zhang, Cui & Zhu (2020) 170 142 No

Anomaly detection Kwon et al. (2019) 45 196 No

Recommender systems Zhang et al. (2019) 210 583 No

Agriculture Kamilaris & Prenafeta-Boldú (2018) 72 612 No

Multiple areas Pouyanfar et al. (2018) 181 188 No

Dargan et al. (2019) 87 22 No

Raghu & Schmidt (2020) 275 4 Yes

Sum – 3,481 4,171 –
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These additional works did not fit precisely into one of the three previous main sections,
because they are from a completely different field, like agriculture, or span over several
fields and data sources. Multimedia data, for example, can consist of images and text,
which means it connects to computer vision and natural language processing. However, we
still wanted to present these works, because of their influences and to show how widely
deep learning has already been applied. At this position, the interested reader is referred
to the comprehensive and interdisciplinary monograph by Deng & Yu (2014), which
provides an in-depth overview of deep learning in computer vision and language
processing.

Note that reinforcement learning, equivalent to data augmentation and generative
adversarial networks, is actually a universal technique that can also be used in several areas,
like computer vision and language processing. However, the presented surveys review
deep reinforcement learning in the context of common deep learning architectures, with a
wide range of applications like images, text or robotics. Hence, we present them in this
additional section and not in a specific one, like computer vision.

Big data
Big data is the field that analyses data that is too comprehensive, or too complex, to handle
using classic data-processing tools. The aim of big data is to systematically extract
information from large and complex data sets. Application areas include e-commerce,
industrial control, and precision medicine. Zhang et al. (2018) review in their contribution
the works on emerging deep learning models for feature learning with big data. They
review deep learning-based methods and models that have been used with large data
collections, heterogeneous data, but also real-time and low-quality data.

Mohammadi et al. (2018) give an overview on deep learning-based approaches that
have been used to support the learning and analytics in the domain of internet of
things (IoT). They begin with the characteristics of IoT data, but also the treatments of IoT
data, namely the analytics and streaming of big data in the domain of IoT. Next, they
review the promising aspects of deep learning-based methods for getting certain results in
analytics regarding these data types’ applications. In addition, they outline the potential of
upcoming deep learning-based methods for data analytics in the IoT domain. Besides a
comprehensive background on different deep learning methods, they review further
research efforts, which affected the IoT domain by applying deep learning. Furthermore,
they state how smart IoT devices have incorporated deep learning and review methods for
fog computing and cloud computing in aiding IoT approaches.

Emmert-Streib et al. (2020) start their contribution with a background analysis in deep
learning-based methods, like convolutional neural networks, deep feed-forward neural
networks, but also deep belief networks, long short-term memory networks and
autoencoders, because, according to the authors, these are currently the most commonly
used architectures. Additionally, they introduce related concepts such as restricted
Boltzmann machines and resilient backpropagation and discuss the differences when
dealing with big data vs. small data and specific data types. They state that the adaptiveness
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of these (network) architectures enables a “Lego-like” generation of countless new neural
networks.

Reinforcement learning
Reinforcement learning is an algorithmic learning strategy where the algorithm tries to
maximize an agent’s performance via rewards, based on observations within the task
environment. Reinforcement learning-based approaches have proven to be successful in
numerous fields, like the robotics domain. The article of Mousavi, Schukat & Howley
(2016) surveys the recent advances in supervised and unsupervised deep reinforcement
learning, putting an emphasis on most commonly applied deep architectures, like
convolutional neural networks, recurrent neural networks, but also autoencoders that have
effectively been incorporated within reinforcement learning-based frameworks. They
structure their review in three main categories, these are: supervised reinforcement
learning, unsupervised reinforcement learning, and deep reinforcement learning in
environments that allow to observe parts of the process as Markov decisions.

Li (2017) gives also an overview of deep reinforcement learning strategies, discussing six
main elements, six significant mechanisms, but also twelve related applications. After
presenting the fundaments of machine and deep learning, he also introduces the main
elements of reinforcement learning, such as value function, policy, reward, and exploration
strategies. Afterwards, the mechanisms, including attention and memory, transfer
learning, unsupervised learning, multiagent reinforcement learning, but also hierarchical
reinforcement learning and learning to learn, are presented. Finally, numerous possible
applications are outlined, such as games (like AlphaGo), natural language processing,
covering dialogue systems, text generation, machine translation, but also computer vision,
robotics, finance, business management, education, healthcare, Industry 4.0, intelligent
transportation systems, smart grids and further computer systems.

Arulkumaran et al. (2017) start their review by giving a general overview of the
reinforcement learning field and continuing afterwards to the central areas of value-based
methods, but also policy-based methods. The review covers the main approaches and
methods in the field of deep reinforcement learning, such as deep q-networks,
asynchronous advantage actor critic and trust region policy optimization. Additionally,
they outline the main benefits of deep neural networks, in particular on visual
understanding, with reinforcement learning.

Mobile and wireless networking

Mobile and wireless networking, or short networking, has rapidly evolved during the last
years, thanks to the spread of mobile devices and mobile applications (Bevilacqua et al.,
2015; Labini et al., 2019). In addition, the recently released 5G technology is expected
to massively increase the mobile traffic volumes. Zhang, Patras & Haddadi (2019) present
a comprehensive survey in deep learning-based research in mobile and wireless
networking. They start with an introduction about fundamentals on deep learning-based
methods that could lead to networking applications and review certain approaches and
platforms with the potential to promote the progression of mobile systems using deep
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learning. Next, they give an overview on deep learning-based research in mobile and
wireless networking, by categorizing it in several domains.

Mobile multimedia
Mobile multimedia refers to various applications that can be accessed or created by
portable devices, like smartphones (Karner et al., 2020). This includes mobile applications
such as audio and video players, games and e-healthcare. Ota et al. (2017) introduce
the basics of deep learning for multimedia, thereby focusing on the core parts of deep
learning in regard to mobile environments, namely low-complexity deep learning
methods, software tools and frameworks for mobile and other resource-constrained
environments, but also specific hardware available in mobile devices, which can be used
to facilitate the computationally intensive training and inference of deep networks.
In addition, they present numerous deep learning-based, mobile applications to show
possible real-life scenarios for such a technology.

Multimodal learning
Multimodal learning uses data of different modalities in a learning strategy. An example
for data from different modalities are the acquisitions from positron emission
tomography-computed tomography (PET-CT) scanners, where the tissue data from the
CT and metabolically active regions from the PET are acquired from a patient
(Gsaxner et al., 2019b). In their survey, Ramachandram & Taylor (2017) first classify the
architectures for deep multimodal learning. Afterwards, they introduce certain methods to
combine multimodal representations that have been learned with these deep learning-
based architectures. In particular, they outline two main research fields for potential
upcoming works, namely regularization methods and strategies that learn and optimize
structures in the domain of multimodal fusion.

Remote sensing
Remote sensing covers technologies for the remote analysis of objects or scenes. Examples
are satellite-based imaging, aerial imaging, crowdsourcing (such as tweets or phone
imagery), but also advanced driver-assistance systems and unmanned aerial vehicles. Ball,
Anderson & Chan (2017) provide a compact analysis of recent deep learning-based
research in the domain of remote sensing. They introduce the theories and tools, but
also challenges within the remote sensing field. Thereafter, they present remaining
research questions and opportunities, like modelling physical phenomena with human-
understandable solutions, inadequate data sets and big data. Furthermore, they focus on
specific non-traditional data sources that are heterogeneous, deep learning-based
architectures and algorithms to learn spatial, spectral and temporal data, but also transfer
learning. Further, they provide a fundamental insight into deep learning-based systems,
and outline obstacles for training, but also optimizing deep learning-based methods.

Graphs
Graphs are representations of objects and of their relationships with other objects.
Common examples include social networks, traffic networks, e-commerce networks, but
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also biological networks. Zhang, Cui & Zhu (2020) provide a survey on various types of
deep learning-based approaches on graphs. They split the existing approaches into five
different categories in regards to the underlying model architectures, but also training
strategies, namely graph convolutional networks, graph recurrent neural networks,
graph reinforcement learning, graph autoencoders and graph adversarial methods. They
propose a systematic outline of these techniques, mostly by following the historical
appearance and review the structures and differences. They conclude their review by
outlining the applications in this area.

Anomaly detection
Anomaly detection is a strategy used to detect unexpected events or items in data sets.
It can be used in areas like signal processing, statistics, finance, manufacturing,
econometrics, networking, but also data mining. Kwon et al. (2019) propose an outline of
deep learning-based methods, covering deep neural networks, restricted Bolzmann
machine-based deep belief networks and recurrent neural networks. They also cover
machine learning techniques that are related to network anomaly detection. Furthermore,
they present the latest work from the literature that used deep learning-based techniques
with an emphasis on network anomaly detection. Finally, they outline their own results
with deep learning-based methods for the analysis of network traffic.

Recommender systems
Recommender systems are utilized to predict the preferences of a user, for example, to
provide web users with personalized information about products and services, like movies,
insurances, or restaurants. Zhang et al. (2019) propose a survey of latest deep learning-
based research for recommender systems. They formulate and introduce a deep learning-
based taxonomy for recommendation models, together with an outlining of recent
contributions from the literature. They conclude their contribution by outlining current
trends and propose new perspectives in regard to the development in the field.

Agriculture
Agriculture is the scientific process that deals with the cultivation of plants and livestock to
produce products like food, feed and fibres. Kamilaris & Prenafeta-Boldú (2018) review
40 research works in deep learning, which have been used for numerous agricultural,
but also food production problems. For each problem, they explored the specific
agricultural challenge, the frameworks and models that have been used, but also the data
source, data nature and data pre-processing methods. They also report and present the
overall performance results for the selected metrics. In addition, they survey the
comparison of deep learning-based approaches with other existing commonmethods, with
a focus on the differences in the performances for classification and regression.

Multiple areas

At last, this sub-section presents deep learning review contribution that span over multiple
disciplines and applications with no main focus on a specific area. Pouyanfar et al. (2018)
present a more general review in the field of deep learning-based algorithms and
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techniques, but also their applications. Their survey proposes an in-depth analysis of
historical, but also novel methods in visual processing, audio processing, and text
processing, but also the analysis of social networks, and further the processing of
natural language. Next, they provide a comprehensive review on improvements in deep
learning-based approaches and survey deep learning challenges, like unsupervised learning
and online learning, but also black-box models, and show how these remaining demands
may be addressed in the upcoming works.

Dargan et al. (2019) focus in their contribution on common deep learning concepts,
including fundamental and more sophisticated architectures, characteristics, techniques,
limitations and motivational aspects. They introduce several main differences amongst
classical machine learning, deep learning and approaches in conventional learning, but
also main challenges that still need to be solved. They chronologically analyse and conduct
an extensive review of significant deep learning-based applications, thereby including
numerous fields, techniques, methods and architectures that have been applied, and
discuss the works of their application for usage in a real world scenario.

In their review of deep learning-based scientific discovery, Raghu & Schmidt (2020)
provide an analysis of several deep learning-based models that have been applied to topics
like sequential, visual, but also graph structured data. Further, they present related
tasks and varying training approaches, together with methods that enable the usage of deep
learning-based methods for sparse data, and how to get a better understanding of
complex models. They also give different outlines of overall design processes, hints for
implementations, and point to tutorials, open-sourced pipelines in deep learning,
research summaries, but also pretrained models that have been implemented within the
community, with the aim to speed up the application of deep learning-based approaches
across multiple scientific fields and domains.

Going deeper: architectures, evaluations, pros, cons, challenges and future
directions in additional works
Table 9 provides more details about the presented methods, pros, cons, evaluations and
challenges and future directions of the surveys in the category additional works. The three
surveys about big data from Zhang et al. (2018), Mohammadi et al. (2018) and
Emmert-Streib et al. (2020) introduce common architectures, like DBN, CNN, RNN,
AutoEncoders, whereby Mohammadi et al. (2018) and Emmert-Streib et al. (2020)
introduced further models and variants, like LSTM. Zhang et al. (2018) and Mohammadi
et al. (2018) have also a focus on real-time data. Zhang et al. (2018) andMohammadi et al.
(2018) make a complexity analysis, which includes for both works the forward passes.
Emmert-Streib et al. (2020) do not perform such an analysis, but extract the pros and cons
when going over the different deep learning models, for example that CNN can easily
process high-dimensional input and is good at extracting local information. On the
downside CNN can overfit, be hard to train and has the vanishing gradient problem. RNNs
can be used for problems with sequential data, but have problems with long-term
dependencies. ResNets can be used to tackle the degradation problem. A property of
AutoEncoder is that the input and output layer have the same size and they can be used
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Table 9 Architectures, pros, cons, evaluations, challenges and future directions in deep learning in the category additional works.

Big data

Zhang et al. (2018)

Architectures/Methods DBN, CNN, RNN, AutoEncoder

Pros/Evaluations Computational complexity, storage complexity (FC forward pass, TT forward pass, FC backward pass, TT backward
pass)

Cons/Evaluations Computational complexity, storage complexity (FC forward pass, TT forward pass, FC backward pass, TT backward
pass)

Challenges and future
directions

Large-scale deep learning models for huge amount of data; multi-modal deep learning models; new learning frameworks
and computing infrastructures; compress the large-scale deep learning models; current multi-modal deep learning
models only bi-modal data; exploring effective fusion methods; reduce the computational complexity of deep
computation models; optimize the network structures; reliable deep learning models for low-quality data

Mohammadi et al. (2018)

Architectures/Methods AutoEncoder, RNN, RBM, DBN, LSTM, CNN, VAE, GAN, Ladder Net, variants

Pros/Evaluations Sizes and complexities in different applications (LSTM, RNN, RBM)

Cons/Evaluations Sizes and complexities in different applications (LSTM, RNN, RBM)

Challenges and future
directions

Service discovery; model and task distribution; design factors for fog environments; energy management of mobile edge
devices; mobile edge computing environments

Emmert-Streib et al. (2020)

Architectures/Methods FNNN, RNN, Hopfield Network, DBM, RBM, CNN, AutoEncoder, LSTM, variants

Pros/Evaluations Can easily process high-dimensional input (CNN); good at extracting local information (CNN); outperformed other
methods for predicting the toxicity of drugs (D-FFNN); used for problems with sequential data (RNN); degradation
problem (ResNet); same size of the input and output layer (AutoEncoder); dimensionality reduction (AutoEncoder);
long-term dependencies (LSTM)

Cons/Evaluations Overfitting (CNN); hard to train (CNN); vanishing gradient (CNN); adequate amount of data (AutoEncoder); long-
term dependencies (RNN)

Challenges and future
directions

Finding the right application for a deep learning model; understandable decisions (non black boxes); small data sizes;
transfer of knowledge between such models; exploring further advanced models (reinforcement learning, graph CNN,
VAE)

Reinforcement learning

Mousavi, Schukat & Howley
(2016)

Architectures/Methods AutoEncoder, CNN, RBM, RNN, FNN, LSTM, DQN, MDRNN, DFQ, DRQN, combinations and variants

Pros/Evaluations Target output of the network is the same of the input (AutoEncoder); could outperform state of the art algorithms in
pattern recognition (CNN); useful for applications, which have temporal and sequential data (RNN); learn very long-
term dependencies (LSTM); very fast supervised leaning method (NFQ); learning optimal policy (DQN); better
stability (DQN); can play a variety of games (MDRNN+LSTM); vanishing gradient problem (MDRNN+LSTM);
predict action-conditional frames (CNN+RNN+RL); continuous grid-world tasks (DFQ); noisy and incomplete data
(LSTM+DQN); can have better performance (DRQN)

Cons/Evaluations Large amount of data (CNN); high performance computing power (CNN); correlation between temporally long-term
events (RNN); some stability issues (model-free reinforcement learning algorithms, like Q-learning); needs sufficient
data (DQN); vanishing gradient problem (RNN); real world applications (Markov assumption); not always significant
superiority (DRQN)

Challenges and future
directions

Learn optimal control policies in problems with raw visual input; still challenges in real application such as robotics;
investigating deep architectures for end to end leaning and deep state representation; end to end learning in real world
applications; transfer learning

Li (2017)

Architectures/Methods MLP, CNN, ResNets, RNN, AlexNet, Seq2Seq, DQN, D-DQN, combinations and variants

(Continued)
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Table 9 (continued)

Big data

Pros/Evaluations Can outperform DQN (PGQ); stability of policy gradients (Q-Prop); stabilized the learning (DQN); achieved
outstanding results (DQN); end-to-end RL approach (DQN); perform well on many different tasks (DQN); tackle
over-estimate (D-DQN); better policies on Atari games (D-DQN); faster converge (dueling network architecture);
avoids the optimization of action at every time step (DDPG); fully differentiable CNN (VIN)

Cons/Evaluations Reinforcement learning vs deep reinforcement learning; unstable training of action value function approximation
(CNN); over-estimate (DQN); policies on Atari games (DQN)

Challenges and future
directions

Better understanding of how deep learning works; investigate comments/criticisms, e.g., from cognitive science;
considering perspectives of government, academia and industry; few products so far; need products and market
validation

Arulkumaran et al. (2017)

Architectures/Methods DQN, NFQ, CNN, model-free DRL, model-based DRL, combinations and variants

Pros/Evaluations High-dimensional problems (DRL); powerful function approximation properties (DRL); learn directly from raw, high-
dimensional visual inputs (CNN); comparable to professional video games tester (DQN); compactly represent both
high-dimensional observations and the Q-function (DQN); addresses instability problem (DQN); easier-to-learn
relative values (duelling DQN)

Cons/Evaluations Black box optimization methods (DRL); difficult policy search (DRL); suffer from severe local minima (DRL); require
many samples (DNN); cannot adapt to new situations (ALVINN); can be unable to recover from situations (ALVINN)

Challenges and future
directions

Improving the data efficiency of neural networks; not yet ready for complex real-world problems; deeper integration
with other traditional AI approaches; better sample complexity, generalization, and interpretability; better
understanding

Mobile and wireless
networking

Zhang, Patras & Haddadi
(2019)

Architectures/Methods MLP, RBM, AutoEncoder, CNN, RNN, LSTM, GAN, DRL, tailored Deep Learning methods for Mobile Networks

Pros/Evaluations Naïve structure and straightforward to build (MLP); can generate virtual samples (RBM); powerful and effective
unsupervised learning (AutoEncoder); weight sharing, affine invariance (CNN); expertise in capturing temporal
dependencies (RNN); can produce lifelike artifacts from a target distribution (GAN); ideal for high-dimensional
environment modeling (DRL)

Cons/Evaluations High complexity, modest performance and slow convergence (MLP); difficult to train well (RBM); expensive to pretrain
with big data (AutoEncoder); high computational cost, challenging to find optimal hyper-parameters, requires deep
structure for complex tasks (CNN); high model complexity, gradient vanishing and exploding problems (RNN);
training process is unstable (convergence difficult) (GAN); slow in terms of convergence (DRL)

Challenges and future
directions

Serving deep learning with massive high-quality data; deep learning for spatio-temporal mobile data mining; deep
learning for geometric mobile data mining; deep unsupervised learning in mobile networks; deep reinforcement
learning for mobile network control

Mobile multimedia

Ota et al. (2017)

Architectures/Methods CNN, DBN, RCN, NMT, GNMT, variants

Pros/Evaluations Performance, energy consumption and cost (GPU, FPGA, ASIC, VPU, Distributed Computing, High Performance
Computing)

Cons/Evaluations Performance, energy consumption and cost (GPU, FPGA, ASIC, VPU, Distributed Computing, High Performance
Computing)

Challenges and future
directions

Resource-constrained mobile platforms; optimizing techniques for mobile deep learning-based architectures by
“compressing”; developing new hardware for mobile deep learning architectures; energy constraints in the mobile
world; coupling deep network architectures and the mobile computing capabilities

Multimodal learning
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Table 9 (continued)

Big data

Ramachandram & Taylor
(2017)

Architectures/Methods Sparse RBM, DBN, DBM, FCNN, CNN, RNN, AutoEncoders, MLP, LSTM, variants

Pros/Evaluations Multiple modalities into the learning problem almost always results in much better performance; deep learning methods
facilitate a flexible intermediate-fusion approach; makes it simpler to fuse modality-wise representations and learn a
joint representation; allows multimodal fusion at various depths in the architecture

Cons/Evaluations Deep learning-based architectures still involve a great deal of manual design for multimodal learning; architecture
learning can be extremely compute-intensive in multimodal learning

Challenges and future
directions

Full exploration of fusion architectures; truly generic learning methods, with minimal or no human intervention; take
advantage of advances in hardware acceleration and distributed deep learning; few multimodal medical data sets; small
medical data sets, involving only between ten and 50 subjects; high class imbalances (normal vs abnormal cases); make
data sets publicly available

Remote sensing

Ball, Anderson & Chan
(2017)

Architectures/Methods AutoEncoder, DBN, RNN, CNN, variants

Pros/Evaluations Overall accuracy results in percent for hyperspectral images (Indian Pines, Kennedy Space Center, Pavia City Center,
Pavia University, Salinas, Washington DC Mall)

Cons/Evaluations Overall accuracy results in percent for hyperspectral images (Indian Pines, Kennedy Space Center, Pavia City Center,
Pavia University, Salinas, Washington DC Mall)

Challenges and future
directions

Inadequate data sets; human-understandable solutions for modeling physical phenomena; big data; nontraditional
heterogeneous data sources; deep learning-based architectures and learning algorithms for spectral, spatial, and
temporal data; transfer learning; an improved theoretical understanding of deep learning-based systems; high barriers
to entry; training and optimizing the deep learning approaches

Graphs

Zhang, Cui & Zhu (2020)

Architectures/Methods Graph recurrent neural networks, graph convolutional networks, graph autoencoders, graph reinforcement learning,
graph adversarial methods

Pros/Evaluations Time complexity (Graph RNN, GCN, GAE, Graph Reinforcement Learning, Graph Adversarial Methods)

Cons/Evaluations Time complexity (Graph RNN, GCN, GAE, Graph Reinforcement Learning, Graph Adversarial Methods)

Challenges and future
directions

New models for unstudied graph structures; compositionality of existing models; dynamic graphs; interpretability and
robustness

Anomaly detection

Kwon et al. (2019)

Architectures/Methods RBM, DBM, DBN, DNN, AutoEncoder, RNN, variants

Pros/Evaluations Accuracy, precision, recall, F1-score (FCN); FCN has improved detection accuracy when compared to SVM, random
forest, and Adaboosting

Cons/Evaluations Accuracy, precision, recall, F1-score (FCN)

Challenges and future
directions

New deep learning techniques, like GANs, need to be studied for anomaly detection; train missing data through
prediction with the reinforced learning algorithms in the GAN model; GAN can work with machine learning to
generate multi-modal outputs; improved performance for network anomaly detection with greater accuracy

Recommender systems

Zhang et al. (2019)

Architectures/Methods Recommendation with Neural Building Blocks (MLP, AutoEncoder, CNN, RNN, RBM, Neural Autoregressive
Distribution Estimation, Attentional Models, Adversarial Network, Deep Reinforcement Learning); Recommendation
with Deep Hybrid Models (RNN+CNN, AutoEncoder+CNN, RNN+AutoEncoder, etc.)

(Continued)
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Table 9 (continued)

Big data

Pros/Evaluations Approximate any measurable function to any desired degree of accuracy, widely used in many areas (MLP); almost all
the AutoEncoder variants can be applied to the recommendation tasks; powerful in processing unstructured
multimedia data (CNN); suitable for sequential data processing (RNN); can be easy to design (RBM); can process long
and noisy inputs (Attentional Models); can outperform CNN and RNN (Attentional Models); tractable (NADE);
personalized recommendation (DRL); performance in real-world applications (DRL); personalized citation
recommendation task (GAN); significantly improve performance (GAN)

Cons/Evaluations Might not be as expressive as AutoEncoder, CNN, and RNN (MLP); fails to deal with non-integer ratings and can lead to
worse prediction accuracy (AutoEncoder); only slightly performance improvement (CNN); trivial methods can
achieve the same or even better accuracy results (RNN); can be limited to binary values and not be tractable (RBM);
sparsity (NADE)

Challenges and future
directions

Joint representation learning from user and item content information; explainable recommendation with deep learning;
going deeper for recommendation; machine reasoning for recommendation; cross domain recommendation with deep
neural networks; deep multi-task learning for recommendation; scalability of deep neural networks for
recommendation; better, more unified and harder evaluation

Agriculture

Kamilaris & Prenafeta-
Boldú (2018)

Architectures/Methods CNN, AlexNet, VGG16, ResNet, DRNN, LSTM, DBN, AutoEncoder, variants

Pros/Evaluations Classification Accuracy, Precision, Recall, F1 score, LifeCLEF metric, Quality Measure, Mean Square Error, Root Mean
Square Error, Mean Relative Error, Ratio of total fruits counted, L2 error, Intersection over Union, combined scores

Cons/Evaluations Classification Accuracy, Precision, Recall, F1 score, LifeCLEF metric, Quality Measure, Mean Square Error, Root Mean
Square Error, Mean Relative Error, Ratio of total fruits counted, L2 error, Intersection over Union, combined scores

Challenges and future
directions

Need of large datasets; data augmentation techniques with label-preserving transformations; low variation among the
different classes; need for experts in order to annotate input images; experts or volunteers are susceptible to errors
during data labeling; cannot generalize beyond the “boundaries of the dataset’s expressiveness”; difficulty in detecting
heavily occluded and distant objects; not many publicly available datasets; some agricultural-related problems are
under-researched; usage of aerial imagery; higher performance classification or prediction; combining hand-crafted
features with automatic features; demonstrating the ability of the models to generalize to various real-world situations;
researchers should make their datasets publicly available; commercial usage in the future

Multiple areas

Pouyanfar et al. (2018)

Architectures/Methods DNN, RvNN, RNN, CNN, DBN, DBM, GAN, VAE, variants

Pros/Evaluations Is able to generate very high-level data representations frommassive volumes of raw data (DNN); solution to many real-
world applications (DNN); major breakthroughs in different applications (DNN); scalable architecture (DLAU)

Cons/Evaluations Black box machines that inhibit development at a fundamental level (DNN); no decision understanding (DNN); weak
statistical interpretability (DNN); needs extensive datasets (DNN); majority of the existing implementations are
supervised algorithms (DNN); require considerable amounts of computational resources (DNN); no FPGA test beds
(DNN)

Challenges and future
directions

Interpretability needs to be investigated; modeling multiple complex data modalities at the same time; one-shot learning
and zero-shot learning needs to be further explored; more unsupervised and semi-supervised learning to handle real-
world data without the need of manual human labels; many applications are still under-researched, e.g. disaster
information management and finance; reduction of dimensionality without losing critical information; more research
in deep reinforcement learning; handling noisy and messy data

Dargan et al. (2019)

Architectures/Methods DNN, AutoEncoder, CNN, RBM, LSTM, RNN, GAN, variants
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for dimensionality reduction. On the downside AutoEncoder often need an adequate
amount of data. LSTM, for example, can handle long-term dependencies. Zhang et al.
(2018) see future challenges in the development of large-scale deep learning models for
huge amount of data and multi-modal deep learning models. They state that the gain
in computational performance is lagging far behind the growth rate of big data.
Further challenges are the development of new learning frameworks and computing
infrastructures, compressing the large-scale deep learning models and the focus on more
than two modalities, exploring effective fusion models, reduce the computational
complexity, optimize network structures and reliable deep learning models for low-quality.
Mohammadi et al. (2018) see the main challenges in: (1) Service discovery; (2) Model and
task distribution; (3) Design factors for fog environments; (4) Energy management of
mobile edge devices; and (5) mobile edge computing environments. Emmert-Streib et al.
(2020) see future works in finding the right application for a deep learning model, but also
understand the decisions of deep learning models (black boxes), especially for the
healthcare domain. Further challenges are small data sizes, the transfer of knowledge
between models and exploring more advanced models, like reinforcement learning, graph
CNN and VAE.

Mousavi, Schukat & Howley (2016), Li (2017) and Arulkumaran et al. (2017) present all
surveys about deep reinforcement learning. They also have in common that all three
surveys cover various types of input data like, images, videos, text and language, for a range

Table 9 (continued)

Big data

Pros/Evaluations Most effective, supervised, time and cost efficient machine learning approach (DNN); not a restricted learning approach
(DNN); learns the illustrative and differential features in a very stratified way (DNN); appreciable performance in a
wide variety of applications (DNN); powerful tool in many fields (DNN); strong learning ability (DNN); learn feature
extraction methods from the data (DNN); little engineering by hand (DNN); optimized results (DNN); solve highly
computational tasks (DNN); do not rely on prior data and knowledge (DNN); high-level abstraction (DNN)

Cons/Evaluations Large amount of data (DNN); requires hardware with very high performance (DNN); creates new features by its own
processes and techniques (DNN); difficult to understand (DNN); high training requirement (DNN); need high-end
graphical processing units (DNN)

Challenges and future
directions

Manage input data continuously; transparency of the conclusion; demanding resources; improved methods for big data
analytics; needs very high computation power; suffer from local minima; needs large amount of data; no strong
theoretical foundation; difficult to find the topology and training parameters; handle noisy input; raising the
performance; unsupervised learning; maintenance of wide repository of data; fully autonomous driving

Raghu & Schmidt (2020)

Architectures/Methods CNN, Graph Neural Networks, Neural Networks for Sequence Data, RNN, LSTM, GAN, VAE, variants

Pros/Evaluations Fundamental breakthroughs in core problems in machine learning (DNN); supervised learning highly successful
(DNN); end-to-end system (DNN); encapsulates complex functions (DNN); efficient analysis and automated
processing of complex data (DNN); enormous number of resources developed and shared by the community (DNN);
open sourced code (DNN)

Cons/Evaluations Determine the scientific problems (DNN); where to start (DNN); breadth and diversity of different techniques (DNN);
which combination of methods is most promising (DNN); supervised learning dependence on large amounts of
labelled data (DNN); interpretation (DNN); not always the best technique for a problem (DNN)

Challenges and future
directions

Black box; determining how the neural network model makes a specific prediction
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of applications, like natural language processing or robotics. The contributions go over
classic concepts in reinforcement learning, like Q-learning, policy search and actor critic,
and how these have been handled in deep reinforcement learning, thereby introducing
deep learning methods, like CNN, AutoEncoder, RBM, RNN, LSTM, and their
combinations with classic reinforcement learning concepts, resulting in deep
reinforcement learning methods and concepts, like DQN, DFQ, DRQN, or DRQN. All
surveys also introduce and discuss the performance of deep reinforcement learning
methods in playing Atari games, which seems to be one of the main benchmarks for
evaluating (deep) reinforcement learning methods. Beside pros and cons from classic
deep learning methods, Mousavi, Schukat & Howley (2016) identified several pros and
cons in deep reinforcement learning, like DQN can learn an optimal policy and can have a
good stability, but needs sufficient data. They also state that model-free reinforcement
learning algorithms, like Q-learning, can have stability issues and DRQN can have better
performance for some tasks. They also extract several pros for combined methods, for
example MDRNN+LSTM can play a variety of games, MDRNN+LSTM tackles, the
vanishing gradient problem, CNN+RNN+RL can predict action-conditional frames, and
LSTM+DQN can handle noisy and incomplete data. Li (2017) identified several pros and
cons in deep reinforcement learning, e.g. that DQN stabilized the learning, achieved
outstanding results, is an end-to-end RL approach and performs well on many different
tasks. However, Li (2017) also states that PGQ can outperform DQN. D-DQN on the other
hand can tackle the problem of over-estimation in DQN and have better policies on
Atari games than DQN. The author further states, that some specific extensions, like
dueling network architectures can converge faster, but also that DDPG can avoid the
optimization of action at every time step, or that VIN are fully differentiable CNN.
A mature con is that deep reinforcement learning is a black box compared to many classic
reinforcement learning techniques. Arulkumaran et al. (2017) also state that DRL are black
box optimization methods. However, they can handle high-dimensional problems and
have powerful function approximation properties. On the downside, the policy search can
be difficult, they can suffer from severe local minima and DNN require in general many
samples. They find that DQNs are comparable to professional video games tester, can
compactly represent both high-dimensional observations and the Q-function, and address
the instability problem. Further duelling DQNs are able to easier-to-learn relative values,
Finally, ALVINN cannot adapt to new situations and can be unable to recover from
specific situations they ran into. Mousavi, Schukat & Howley (2016) see future challenges
in learning optimal control policies in problems with raw visual input, investigating
deep architectures for end to end leaning and deep state representation and transfer
learning. They also see challenges in real application such as robotics and end to end
learning in real world applications. Future challenges of Li (2017) are a better
understanding of how deep learning works and the investigation of comments/criticisms,
e.g., from cognitive science, also considering perspectives of government, academia and
industry. Li (2017) states that there are only a few products so far and there is a need
for products and market validation. Arulkumaran et al. (2017) see future challenges in
improving the data efficiency of neural networks and that they are not yet ready for
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complex real-world problems. Further open issues are a deeper integration with other
traditional AI approaches for a better sample complexity, generalization, and
interpretability. Finally, they hope for a better theoretical understanding of neural
networks within deep reinforcement learning. Note, that the survey of Li (2017) seems to
be unfinished.

Zhang, Patras & Haddadi (2019) give a comprehensive survey in the domain of deep
learning for mobile and wireless networking. In doing so, they introduce common
deep learning architectures used in this field, like MLP, RBM, AutoEncoder, CNN, RNN,
LSTM, GAN, DRL, but also tailored deep learning methods for mobile networks.
They provide a compact overview of the pros and cons of these architectures, e.g. if
they are straightforward to build, can generate virtual samples, if they are ideal for
high-dimensional environment modeling or which architectures have modest
performance, slow convergence, are difficult to train or expensive to pretrain with big data,
to name a few. In this regards, they also state the learning scenarios: supervised,
unsupervised, reinforcement, and suitable problems, like modeling data with simple
correlation or extracting robust representations. They conclude their survey by listing
five main and important remaining research issues that should be addressed in the future
in mobile and wireless networking: (1) Serving deep learning with massive high-quality
data, for example high-quality and large-scale labeled datasets still lack for mobile network
applications; (2) Deep learning for spatio-temporal mobile data mining, by means of
spatio-temporal distribution of mobile traffic and application popularity are difficult to
understand; (3) Deep learning for geometric mobile data mining, because of inherent
complexities of representations in mobile and wireless networking, traditional machine
learning tools can struggle to interpret geometric data and make reliable inferences;
(4) Deep unsupervised learning in mobile networks, because data labeling is costly and
requires domain-specific knowledge, hence unsupervised learning becomes essential in
extracting insights from unlabeled data; (5) Deep reinforcement learning for mobile
network control by making no strong assumptions (e.g. about the objective functions, like
function convexity, or data distribution, like Gaussian or Poisson distributed) about the
target system and employ function approximation.

Ota et al. (2017) went through the basics of deep learning for multimedia, focusing on
the main components of deep learning for mobile environments, namely the low-
complexity deep learning algorithms, the software frameworks that are optimized for
mobile and resource constrained environments, and the specific hardware for mobile
devices supporting the computationally expensive processes of training deep networks and
inference. They also highlight several mobile deep learning applications and give an
overview of real-life usage in this field. In doing so, the authors introduce several deep
learning-based architectures, like CNN, DBN, RCN, NMT, GNMT and variants. Because
of the hardware constraints of mobile devices, the authors focus on different hardware
acceleration solutions for DNNs (GPU, FPGA, ASIC, VPU, Distributed Computing, High
Performance Computing) in the mobile domain and provide the pros and cons for
performance, energy consumption and cost. Future challenges are the resource-
constrained mobile platforms and the development of techniques for optimizing such

Egger et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.773 65/83

http://dx.doi.org/10.7717/peerj-cs.773
https://peerj.com/computer-science/


architectures by “compressing” them and further developing new hardware that can
optimally cater to the needs of deep learning-based architectures. Further challenges are
the energy constraints that exist in the mobile world and coupling deep network-based
architectures and the mobile computing capabilities in an optimal way. They foresee that
more and more mobile applications can run deep learning-based engines, as mobile
devices becomemore powerful, resulting in a new world of possibilities where we have seen
only the tip of the iceberg so far.

Ramachandram & Taylor (2017) survey deep learning in the area of multimodal
learning. Therefore, they introduce various deep learning-based architectures, like Sparse
RBM, DBN, DBM, FCNN, CNN, RNN, AutoEncoder, MLP, and LSTM. In their
contribution, they have a strong focus on multimodal fusion, namely, intermediate and late
fusion, being implemented with deep architectures. They state that incorporating multiple
modalities into the learning problem almost always results in much better performance.
Further, they state that deep learning methods facilitate a flexible intermediate-fusion
approach, but also that they make it simpler to fuse modality-wise representations and
learn a joint representation. Finally, they allow multimodal fusion at various depths in the
architecture. As downside, the authors see the involvement of a great deal of manual design
for multimodal learning with deep learning-based architectures. In addition, that
architecture learning can be extremely compute-intensive in multimodal learning.
Future challenges are a full exploration of fusion architectures and truly generic learning
methods with minimal or no human intervention. Moreover, taking advantage of advances
in hardware acceleration and distributed deep learning. Specifically for the medical
domain, they see future challenges in (1) the relatively few multimodal medical data set
collections that are available and in addition (2) the relatively small medical data set sizes,
involving only between ten and 50 subjects, and on top (3) a high class imbalances
(normal vs abnormal cases). Hence, they encourage researches in the medical domain to
make data sets publicly available in the future.

Ball, Anderson & Chan (2017) provide a comprehensive survey of state-of-the-art
remote sensing deep learning research. Thereby, they introduced the most commonly used
deep learning architectures in remote sensing, like AutoEncoder, DBN, RNN, CNN and
variants of them. They also list some popular deep learning tools, like Caffe and Keras,
and the subject areas of deep learning works in remote sensing, like human detection,
animal detection or vehicle detection/recognition. For evaluation, the authors focus on the
overall accuracy results in percent for hyperspectral images of common open-source data
sets (Indian Pines, Kennedy Space Center, Pavia City Center, Pavia University, Salinas,
Washington DC Mall). Supplemental material from the authors, in form of more
detailed tables, can be found online. According to the authors, the main unsolved
challenges and opportunities in remote sensing are: (1) inadequate data sets;
(2) human-understandable solutions for modeling physical phenomena; (3) big data; (4)
nontraditional heterogeneous data sources; (5) deep learning-based architectures and
learning algorithms for spectral, spatial, and temporal data; (6) transfer learning; (7) an
improved theoretical understanding of deep learning-based systems, (8) high barriers to
entry; and (9) training and optimizing the deep learning approaches.
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Zhang, Cui & Zhu (2020) provide a deep learning survey on graphs, more specific on
deep learning for graph data with its unique characteristics. In doing so, they divide the
existing methods into five categories based on their deep learning-based architectures
and training strategies, namely graph recurrent neural networks, graph convolutional
networks, graph autoencoders, graph reinforcement learning and graph adversarial
methods. For evaluation, the authors focus on the time complexity, divided into tables for
Graph RNN, GCN, GAE, Graph Reinforcement Learning, and Graph Adversarial
Methods. The author identified the following main future challenges for deep learning on
graphs: (1) new models for unstudied graph structures, because the existing methods
are not suitable for all graph structures due to the extremely diverse structures of graph
data; (2) compositionality of existing models, by means of incorporating interdisciplinary
knowledge in a more general way, in contrast to a case-by-case basis remains an open
problem; (3) most methods focus on static graphs rather than dynamic graphs, however,
many real graphs are dynamic in nature, because their nodes, edges, and features can
change over time; (4) interpretability and robustness is also a future challenge, because
interpreting deep learning-based results on graphs is critical in decision-making problems,
for example in the medical domain or disease-related tasks.

Kwon et al. (2019) present a survey about anomaly detection with deep learning-based
methods. In doing so, they give a general overview about deep learning architectures, like
RBM, DBM, DBN, DNN, AutoEncoder, and RNN, but also briefly discuss the classification
techniques supervised learning, unsupervised learning and semi-supervised learning.
For evaluation, they focus on their own FCN model applying it to the public NSL-KDD
dataset. They present the accuracy, precision, recall and F1-score for their experiments.
They conclude that the FCN model has an improved detection accuracy when
compared to conventional machine learning techniques, like SVM, random forest, and
Adaboosting. The authors see future challenges in studying other deep learning
techniques, like GANs, for anomaly detection. They foresee that missing data can be
trained through prediction with the reinforced learning algorithms in the GAN model.
Further, they foresee that GANs can work with machine learning to generate multi-modal
outputs, which may lead to an improved performance for network anomaly detection with
greater accuracy.

Zhang et al. (2019) give a survey on deep learning for recommender systems. Thereby,
dividing deep learning-based recommendation models into the following two main
categories: (1) Recommendation with Neural Building Blocks (MLP, AutoEncoder,
CNN, RNN, RBM, Neural Autoregressive Distribution Estimation, Attentional Models,
Adversarial Network, Deep Reinforcement Learning); (2) Recommendation with Deep
Hybrid Models (RNN+CNN, AutoEncoder+CNN, RNN+AutoEncoder, etc.). By going
over these models, they discuss the pros and cons addressing specific recommender
task-related problems. For example, MLP can approximate any measurable function to any
desired degree of accuracy and has been widely used in many areas, but might not be as
expressive as AutoEncoders, CNNs, or RNNs. The authors identified that almost all
AutoEncoder variants can be applied to the recommendation tasks and CNNs are
powerful in processing unstructured multimedia data. On the downside, AutoEncoder can
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fail to deal with non-integer ratings and can lead to worse prediction accuracy and
CNN can sometimes have only slightly performance improvements over other methods.
RNN are suitable for sequential data processing, but trivial methods can sometimes
achieve the same or even better accuracy results. RBMs can be easy to design but can also
be limited to binary values and are not tractable in contrast to NADE, which however, have
problems with sparse data. Attentional models can process long and noisy inputs and
outperform CNNs and RNNs. DRL can have advantages in personalized recommendation
and in the performance of real-world applications. Finally, GANs can have advantages in
personalized citation recommendation tasks and sometimes significantly improve
performance. They conclude that existing works have already established a solid
foundation for deep recommender systems, but identified the following open issues:
(1) Joint representation learning from user and item content information; (2) Explainable
recommendation with deep learning; (3) Going deeper (more than three to four layers)
for recommendation; (4) Machine reasoning for recommendation; (5) Cross domain
recommendation with deep neural networks; (6) Deep multi-task learning for
recommendation; (7) Scalability of deep neural networks for recommendation; (8) and
finally, they state that the recommender field needs a better, more unified and harder
evaluation of the methods.

Kamilaris & Prenafeta-Boldú (2018) survey deep learning methods in the domain of
agriculture. Thereby, giving a summary of the most commonly used methods and
architectures, like CNN, AlexNet, VGG16, ResNet, DRNN, LSTM, DBN, AutoEncoder
and further variants of these. For a comparison and evaluation of the surveyed works,
they focus on metrics like Classification Accuracy, Precision, Recall, F1 score, LifeCLEF
metric, Quality Measure, Mean Square Error, Root Mean Square Error, Mean Relative
Error, Ratio of total fruits counted, L2 error, Intersection over Union and combined scores.
Future challenges they see in the need of large datasets and data augmentation techniques
with label-preserving transformations. Other challenges are the low variation among
the different classes, the need for experts in order to annotate input images and that experts
or volunteers are susceptible to errors during data labeling. They state also that current
methods cannot generalize beyond the “boundaries of the dataset’s expressiveness”
have difficulties in detecting heavily occluded and distant objects and that there are not
many publicly available datasets for researchers in the domain of agriculture. Further,
they state that some agricultural-related problems are under-researched, such as seeds
identification. Future directions they see in the usage of aerial imagery (i.e. by means of
drones), higher performance classification or prediction, like a growth estimation of plants,
trees, etc., combining hand-crafted features with automatic features, and demonstrating
the ability of the models to generalize to various real-world situations. Finally, they
encourage researchers to make their datasets publicly available and that some works
can already be used commercially in the near future, e.g. for automatic robots that collect
crops, and overall conclude and encourage that deep learning can be used towards smarter,
more sustainable farming and more secure food production.

The surveys from Pouyanfar et al. (2018), Dargan et al. (2019) and Raghu & Schmidt
(2020) span over multiple areas and various applications in the context of deep learning
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Figure 18 Publication pyramid: our meta-survey contribution based on over 60 surveys, which are
based on over 11,000 original works (note that surveys can also reference other surveys or further
publications that are not reviewed within the surveys). Full-size DOI: 10.7717/peerj-cs.773/fig-18

Figure 19 Network visualization (VOSviewer) for the survey articles supplied keywords from the category computer vision.
Full-size DOI: 10.7717/peerj-cs.773/fig-19
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and provide a broad overview. In doing so, they all survey over numerous domains
and fields, like visual, audio, and text processing, natural language processing, and
applications, like sentiment analysis, social network analysis, parking systems, smart
city, stock market analysis, pose estimation, answer selection, etc., and how they been
tackled with deep learning. All works cover the main deep learning architecture and
techniques and some variants and combinations, including DNN, RvNN, RNN, CNN,
DBN, DBM, GAN, VAE. By going over the different deep learning techniques and
methods, Dargan et al. (2019) make a direct comparison to methods from classic machine
learning. Raghu & Schmidt (2020) introduce an overall general workflow to design and
work with deep learning, starting with the data, over the learning to a validation and
analysis of the results, and provide an implementation guideline pointing out to even
further resources, like tutorials. They also provide specific sections for transfer learning,
domain adaptation, multitask learning and weak supervision (distant supervision).
Furthermore, they go over several learning and training strategies, like self-supervised
learning, semi-supervised learning, self-training (bootstrapping), co-training, also in

Figure 20 Network visualization (VOSviewer) for the survey articles supplied keywords from the category language processing.
Full-size DOI: 10.7717/peerj-cs.773/fig-20
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combination, like self-supervision with semi-supervised learning, for different data types
and domains, like images and NLP, and discuss data augmentation for image data and
sequence data. Because of the broadness of the topics, the authors also provide more high
level pros and cons in the area of deep learning. Examples are, that they all agree that deep
learning had major breakthroughs in different applications and provides solution to many
real-world application, and state that it is the most effective, supervised, time and cost
efficient machine learning approach. Further pros in deep learning are that it can solve
highly computational tasks, does not rely on prior data and knowledge, requires little
engineering by hand, and that there is a lot of open sourced code from the community. All
criticize that deep learning is a black box approach, which is difficult to understand
(decision understanding and weak statistical interpretability), and that deep learning-
based approaches need massive data and computational hardware resources to work well.
Moreover, it is hard to know where to start with deep learning, by means of how to
determine the optimal method for a scientific problem, because of the breadth and
diversity of different techniques, and furthermore which combination of methods may
be the most promising. It was also stated that deep learning is not always the best technique
for a problem. All surveys discuss deep reinforcement learning and Dargan et al.
(2019) state that deep reinforcement kind of learning will be the future direction.
Other challenges are the large amount of data, on one hand handling these efficiently, on

Figure 21 Network visualization (VOSviewer) for the survey articles supplied keywords from the category medical informatics.
Full-size DOI: 10.7717/peerj-cs.773/fig-21
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the other hand developing unsupervised methods to avoid the need of manual human
labels. Raghu & Schmidt (2020) do not provide a section about future challenges, but state
the difficulty of determining how the neural network model makes a specific prediction.
Hence, all surveys agree that a future challenge lies in enlighten the black box behavior of
deep learning.

To conclude this section, most of the surveys reviewed in this category have also a
similar structure: a general introduction of machine/deep learning techniques followed by
a discussion of the reviewed publications categorized using different strategies, among
which task- or application-based categorization is the most widely used. The surveys
usually conclude by stating challenges and future perspectives of deep learning in their
fields from a high level. The main challenge amongst the majority of the surveys is seen in
deep learning being a black box approach, which makes it hard to understand how results

Figure 22 Network visualization (VOSviewer) for the survey articles supplied keywords from the category additional works.
Full-size DOI: 10.7717/peerj-cs.773/fig-22
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and decisions have been achieved. A further common challenge is seen in the lack of
(annotated) data, to train deep learning approaches more reliable.

CONCLUSION AND DISCUSSION
In this contribution, selected reviews and surveys on deep learning have been presented in
a compact categorized meta-survey. A search has been performed in common libraries and
search engines, like in IEEE Xplore Digital Library, Scopus, DBLP, PubMed, Web of
Science and Google Scholar, which resulted in over 60 review publications for this meta-
survey contribution about deep learning during the last three to 4 years (status as of August
2020). In addition to the identified review publications, which have been arranged in
different categories and sub-categories according to their data sources, the references
and citations of these reviews have been retrieved and are presented. The over 60 surveys
we present in our contribution reference themselves over 11,000 works, and can therefore
be seen as a good starting point, especially for unfamiliar researchers, to obtain a first
high-level overview of the related topic (Fig. 18).

To get a high-level overview about the commonalities and trends for the four
subsections, we extracted and mapped the survey keywords. For the network extraction,
we used the VOSviewer (https://www.vosviewer.com/), which is a software tool for
constructing and visualizing bibliometric networks, including publication keywords. In
summary, we used the text mining functionalities of the VOSviewer to construct and
visualize the co-occurrence networks of the publication-provided keywords that have been
extracted from the surveys.

Figure 19 shows a network visualization for the survey articles supplied keywords in the
category computer vision. The visualization reveals the keyword “deep learning” with its
connections as the main cluster. Further, main keyword clusters are “classification”,
“representation” and “object detection”, which also reveal the main commonalities and
trends for the surveys in computer vision. The left side shows several smaller categories
that all belong to “activity” and “motion recognition” and connect mainly to the main
clusters “classification” and “representation”. The main cluster “object detection” connects
mainly to “localization”, “image classification”, “optimization”, “tracking” and “feature
extraction”. On the right side, we see a cluster around “computer vision” connecting to
“image-captioning”, “cnn”, “applications” and “challenges”. Interestingly, there is an own
cluster for “face recognition” and “autoencoders” on the right side of the main “deep
learning” cluster. Finally, there is a smaller cluster around “big data” and a “database”
cluster connecting to “recognition”.

As the network visualization in Fig. 20 shows, the keyword “models” is the main cluster
for the category natural language processing. Smaller clusters of “perceptions”, “automatic
generation”, “preferences” and “constrains” are directly derived from it. The keyword
“neural networks” forms a larger sub-cluster, encapsulating the smaller categories “aspect
extraction” and “embeddings”. The cluster with most sub-categories is “prediction”. It
contains, amongst others, “textual analysis”, “financial forecasting” and “computational
finance”, “news”, “text mining” and “microblogging data”, which outlines important
applications of deep learning in natural language processing. Deriving from both the
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“models” and “prediction” clusters are “sentiment analysis” and “natural language
processing”, which contain the larger sub-categories “classification” and “data mining”.

Figure 21 shows a network visualization for the survey articles supplied keywords in the
category medical informatics. The visualization reveals the keywords “classification” and
“convolutional-neural-network(s)” with their connections as the main clusters, and
hence the overall commonalities and trends for the surveys in this area. Further, larger
isolated clusters are “brain-tumour segmentation”, “model” and “big data”, which shows
the main sub-commonalities and trends for the surveys. Additional sub-clusters center on
“radio- and radiation therapy”, “diabetic-retinopathy”, “computer-aided diagnosis” and
“networks” for “dna” and “4d nucleome”. The network visualization also reveals that the
sub-clusters “ct”, “segmentation and automatic segmentation”, “artificial intelligence”,
“architecture”, “computer-aided detection” and “mitosis detection” are isolated and
connect to several main and sub-cluster. Another smaller cluster centers on “clustering-
algorithm” and “classifier” connecting mainly to the topic “model” and “big data”.

‘‘Deep learning’’ is also the biggest keyword cluster for the category additional works, as
visualized in Fig. 22. Around it, several loosely connected sub-clusters around the
keywords “survey”, “convolutional neural networks”, and “classification” were extracted,
as well as some smaller clusters, amongst others, “deep belief networks”, “food systems”,
“agriculture”, “deep neural networks”, “intrusion detection” and “recommender systems”.
The two largest sub-clusters in this category are “neural-networks”, encapsulating the
keywords “fusion”, “recognition”, “challenges” and “algorithms”, just to name a few, as
well as “big data”, which is mainly connected to the sub-cluster “belief networks” and
some smaller groups, for example “hyperspectral”, “computer vision” and “feature-
extraction”. “Machine learning”, with sub-clusters containing terms like “artificial neural-
network”, “channel estimation” and “5G systems and networks”, forms a smaller sub-
cluster to the main “deep learning” topic, as does “neural networks”, which is connected to,
e.g., “model” and “network” keywords. This network visualization underlines the broad
variety of topics covered in the additional works category.

Even if deep learning is still a relatively young scientific field and technology, there
have been already a few hundred review and survey contributions within the last years,
which can be seen as indicator for the number of breakthroughs that have been achieved
with these methods. This categorized meta-survey shows that, based on the selected works
of this contribution, on average more than one deep learning review per month was
published during this time period, and it can be expected that these numbers will
increase in the near future. Moreover, the number of references (>11,000) and citations
(>17,000) of the selected works can be seen as an indicator for the current importance
of deep learning. Apparently, the medical field has currently the overall highest amount of
citations (>6,000), but interestingly, also the second lowest number of overall references
(~2,000) included in the reviews (note also that for the medical category the least number
of reviews was selected).

A reason for the massive research activities in deep learning is probably also given by
the relatively easy usage and extension of these approaches: Comprehensive and user-
friendly libraries and toolkits, like TensorFlow (Abadi et al., 2016) or PyTorch (Paszke
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et al., 2017), do not necessarily require an in-depth education in computer science
anymore. This was not the case in the years preceding the diffusion of deep learning,
when very good technical skills and programming experience, like C or C++, were
necessary to implement efficient algorithms with a reasonable runtime. Additionally,
nowadays, many researchers share their source code using online repositories, like GitHub,
making it available to the research community. Following this trend, some publication
venues started to require that the source code should be made available alongside with
the publication of the paper. On top of that, most deep learning libraries and toolkits are
built for Python, a high-level programming language with a faster learning curve
compared to languages like C++ or Java.

The widespread of graphic processing units (GPUs) also contributed to the raise and
impact of deep learning: Most deep learning libraries and toolkits support the training and
execution of deep learning on GPUs, which strongly speed up the computation time
thanks to their parallel architecture. Additionally, GPUs became less expensive during the
last years and GPU clusters are more and more common in universities, research centers,
and companies. Moreover, private corporate companies, like Google, Microsoft, and
Amazon, offer online cloud computing services for little to no cost for private users or
students.

Deep learning certainly has already had a massive impact in the daily life of most
people via the countless applications that are based on this technique. It will be interesting
to see what the future brings for us in the area of deep learning. However, deep
learning is not perfect, as seen in tragic real life incidents, like car accidents, racist miss-
classification of images, or the machine learning bot Tay from Microsoft (Hong, 2020;
Kohl et al., 2018; Hong, Choi & Williams, 2020). In addition, tasks that claim to have
outperformed humans with deep learning are often performed under so-called laboratory
conditions, which means that a specific sample set for testing is used, but real-life tests are
lacking, or have other shortcomings (Liu et al. (2019)). There exist of course specific
scenarios, where machine learning has undoubtable outperformed humans, like in games
with Deep Blue (Campbell, Hoane & Hsu, 2002) and AlphaGo (Chen, 2016). Here,
algorithms were able to surpass the best known living human players. However, these
games have fixed rules and strong restrictions, within players/algorithms have to operate.
This stands in strong contrast to scenarios and tasks with almost unlimited possibilities.
A human face, a spoken sentence, a driving scenario, or a pathology, are always
distinct and at least slightly different, which makes it harder to predict. In chess, an
algorithm can rely on the fact that the king can only move one block and will not jump
over the “chessboard cliff”.

In principle, deep learning is trying to imitate the human brain and how it functions
and learns, although on a very basic level (Fan et al., 2020). This course of action can be
seen as a blessing and a curse at the same time, because equivalent to the fact that we
cannot take a look into someone’s brain, the behavior of a trained deep neural network,
with millions of neurons, connections and weights, is not fully understandable in every
detail. This, on the other hand, makes it hard to predict exceptions and failures. As a
consequence, deep learning is seen as a black box approach and this is often difficult to
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accept (and beforehand get it certified in applications that make critical decisions, like
diagnosis decision in a diagnostic system or moral decisions of self-driving cars in
unexpected traffic situations (Kallioinen et al., 2019)), especially when not all behaviors are
foreseeable and there remains uncertainty. Thus, not everyone may feel comfortable in a
self-driving car.

We can agree that deep learning is an exciting and relatively new machine learning
technique, which has already brought a lot of influence and has infiltrated the life of most
humans, like through virtual personal assistants (Amazon’s Alexa, Apple’s Siri, Google
Now, etc.) or automatic number-plate recognition for toll roads, parking garages or law
enforcement, just to name a few. On the other hand, like most new technologies with
such a fast and massive impact, deep learning is not free of failures and controversies.
We hope, however, that this very first meta-survey of deep learning provides a quick
and comprehensive reference for interested readers. Thereby, readers should gain a high-
level overview and a stimulus of this overwhelming field. Summarized, the contribution of
this meta-survey covered:

� an overview of current deep learning reviews from various scientific domains;

� a categorized arrangement of the works according to their data sources, for a domain-
specific and historical picture;

� an extraction of referenced works and citations to show the research influence of deep
learning within these domains;

� the common architectures, methods, pros, cons, evaluations, challenges and future
directions for every sub-category;

� a conclusion and critical discussion of past and future directions for deep learning.
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