A Semantic Federated Search Engine For Domain-Specific
Document Retrieval

Mauro Dragoni
Fondazione Bruno Kessler
Trento, Italy
dragoni@fbk.eu

ABSTRACT

Retrieval of domain-specific documents became attractive for the
Semantic Web community due to the possibility of integrating clas-
sic Information Retrieval (IR) techniques with semantic knowledge.
Unfortunately, the gap between the construction of a full seman-
tic search engine and the possibility of exploiting a repository of
ontologies covering all possible domains is far from being filled.
Recent solutions focused on the aggregation of different domain-
specific repositories managed by third-parties. In this paper, we
present a semantic federated search engine developed in the con-
text of the EEXCESS EU project. Through the developed platform,
users are able to perform federated queries over repositories in a
transparent way, i.e. without knowing how their original queries are
transformed before being actually submitted. The platform imple-
ments a facility for plugging new repositories and for creating, with
the support of general purpose knowledge bases, knowledge graphs
describing the content of each connected repository. Such knowl-
edge graphs are then exploited for enriching queries performed by
users.

CCS Concepts

eInformation systems — Web services; Information retrieval
query processing; Combination, fusion and federated search;

Keywords

Information Retrieval, Semantic Web, Federated Search, Knowledge-

based Query Expansion

1. INTRODUCTION

The adoption of semantic approaches in the field of information re-
trieval becoming quite common in the last decade. This research
direction has been supported by the development of tools and re-
sources fostering the creation of information layers containing se-
mantic structured data coming from external resources. In partic-
ular, the creation of ontologies, knowledge bases, and algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SAC 2017,April 03-07, 2017, Marrakech, Morocco
Copyright 2017 ACM 978-1-4503-4486-9/17/04. .. $15.00
http://dx.doi.org/10.1145/3019612.3019833

303

Andi Rexha, Hermann Ziak,
Roman Kern
Know-Center GmbH Graz, Austria
{arexha, hziak, rkern}@know-center.at

fostering the annotation of natural language documents by exploit-
ing conceptual knowledge, pushed the development of semantic in-
formation retrieval systems [1]. From a research perspective, sev-
eral works demonstrated the suitability of these approaches [13].
Unfortunately, some limitations occur when these solutions have
to be integrated within real-world information retrieval systems.
In case the requirement is the implementation of a single-domain
retrieval system, the implementation can be done by integrating
domain-specific ontologies and ad-hoc annotation tools. On the
contrary, the implementation of a general purpose solution suffers
from the lack of knowledge for describing, with a high level of
detail, all possible domains that can be contained in the retrieval
system.

In this paper, we present a solution placed in the middle of these
scenarios. Our goal is to develop an architecture able to connect,
in a federated way, several domain-specific retrieval services man-
aged by third-parties. This platform has been created within the
EEXCESS EU-project !, where it was required the implementation
of a semantic-bases search engine supporting the possibility of ex-
panding the retrieval capability of the system to several domains
without affecting the efficiency and the effectiveness of the entire
system. The core module is the federated search component which
roles are: (i) given a query, it is in charge of detecting the domain of
the query and, consequently, to enrich it with semantic information
coming from knowledge graphs describing that domain; and (ii) to
operate without affecting the general performance of the system in
order to hide the distributed retrieval activity to users.

The paper is structured as follows. Section 2 contains a brief overview
of federated search platform deployed in real-world environments.
Section 3 describes the general architecture on the system and presents
the main components involved in the management of the federated
semantic search. In Section 4, we evaluate the impact of the feder-
ated search component within the platform and, finally, Section 5
concludes the paper.

2. RELATED WORK

Federated search is the task of distributing a query to multiple search
engines and combining results into a single, consolidated search
result. Thus, for users it appears as their were interacting with a
single search instance. Such techniques originated in the field of
Web search, often aiming of improving the quality and to reduce
unwanted content [3]. Here multiple Web search engines are com-
bined for a single result list, where the results typically represent

'All information about the project can be found at http://eexcess.
eu/

Web pages. In such a scenario the results are homogeneous, shar-
ing the same characteristics and available meta-data.

The term federated search has become increasingly popular to de-
scribe systems, that search over multiple document collection si-
multaneously [12]. Here the fact, that these document collections
are stored separately is stressed. In cases, where the type of re-
sults from different search engines differ, the term vertical search
is commonly used. Due to the different nature of the results, the
individual result lists are no longer aggregated, but the results from
the different underlying search engines are display separately. For
example, there might be relevant images, as well as textual docu-
ment for a given query, which are appear in different parts of the
user interface.

The term aggregated search is used to indicate that multiple search
results are combined into a single one [6], even if the results might
be generated from sources of varying types. Such systems are also
called multi domain meta search engines [9]. In such a context one
can distinguish between a so called cooperative setting and an un-
cooperative setting. In the latter case the underlying search engines
cannot be modified and their corpora are not accessible from the
outside. The EEXCESS federated search component falls into this
categories, as the behaviour of the connected services can only be
steered via manipulating the query.

According to the literature [7], the three main challenges that ag-
gregated search faces are: i) the selection of the appropriate sources
that best represent the user’s information need, ii) the so called col-
lection representation problem, i.e. inferring the key characteristics
of a knowledge base while keeping the effort minimal iii) the ag-
gregation of the results returned by the different sources.

An important aspect in an uncooperative setting is the query pro-
cessing aspect. Here problems may arise due to short queries,
where the user information need is represented only by few words.
For such short queries one approach is to expand the query via re-
lated terms [10]. At the opposite end of the spectrum are queries
consisting of many terms. In such case queries are long and may
consists of multiple distinctive concepts. Hence the idea is to split
a single query into segment, which are themselves coherent [4].

3. PLATFORM ARCHITECTURE

In this section, we present the architecture implemented in the EEX-
CESS project specifically addressing the federated search aspect. A
diagram of such an architecture is shown in Figure 1.

In this Section, we describe how we have supported the two main
processes shown in Figure 1: (i) the connection of a new service to
the platform with the creation of the knowledge graph describing
its content, and (ii) the management of the queries performed by
users, from the enrichment of the provided natural language text,
to the aggregation of the results provided by the services actually
queried.

Below, we provide the description of these two processes by high-
lighting the role of Semantic Web technologies in achieving the
goal of creating an effective, and also efficient, semantic federated
search engine.

3.1 Service Connection and Knowledge Graphs

Building

The connection of a new retrieval service consists in analyzing the

documents contained in its repository and to create a knowledge
graph describing its content. The created knowledge graphs are
used for supporting the detection of the domain targeted by the
queries provided by the users and for enriching performed queries
with the aim of improving the effectiveness of the retrieval task.
Each knowledge graph contains a set of interconnected knowledge
objects that, in turn, are composed by two layers: (i) a linguistic
layer built from the key terms extracted from a document (lemma,
part-of-speech, multilinguality, etc.), and (ii) a semantic layer con-
taining structured data, represented with triples, related to named
entities associated with the linguistic terms, relationships of inter-
est for that particular key term, etc. These facilities are placed on
the right side of Figure 1 and grouped under the “Finger Printer”
package.

3.1.1 Libraries

The “Finger Printer” includes two libraries that are used also in
other components of the platform.

The first library is the C4 2 (SCientific and Cultural Content in
Context) one. C4 has been developed with goals broader than the
sole extraction of key terms from sentences or paragraphs of text.
Indeed, the full capabilities of C4 include also the disambiguation
task and the log of users while they perform queries by supporting
the construction of their interests profiles. Concerning the platform
presented in this paper, the C4 library has been used for supporting
the construction of the language model describing the content of
each service repository, and for associating users’ queries with the
right domain.

The second library is DoSeR * (Disambiguation of Semantic Re-
sources), used for named entity disambiguation and category as-
signment. Given a natural language text and a knowledge base,
DoSeR creates annotations by creating links between natural lan-
guage expressions and entities defined in the knowledge base.

Beside the two libraries described above, others, that are out of the
scope of this paper, have been developed and can be found on the
Github repository of the project *.

3.1.2 Metadata Extraction and Named Entity Anno-
tation

Once a service is connected to the platform, the first performed
task is the construction of the knowledge graph in order to profile
the content of the documents contained in the service repository.

In analyzing the connected repository, we might encounter two pos-
sible scenarios: (i) the service provides documents that have been
annotated early, therefore, from such annotations we are already
able to build the knowledge graph, or (ii) the service provides doc-
uments in raw format only and they have to be annotated before to
build the knowledge graph.

The first scenario is not very common due to the effort required by
service curators for managing all annotations. However, in some
cases documents can be automatically (or exceptionally manually)

annotated by exploiting domain-specific ontologies or metadata schemata.

An example is the medical domain, where papers published on the
PubMed ° portal are always annotated by the authors with concepts

Zhttps://github.com/EEXCESS/c4
3http://purl.org/eexcess/components/research/doser
“https://github.com/EEXCESS/
Shttp://www.ncbi.nlm.nih.gov/pubmed

Web Users

4

/Query Submission

Core
Platform

Domain Mapper

Rank Builder] i Query Enricher

Data Aggregator

l Query Runner }

Y
AN
/ \

Knowledge
Graphs

Finger Printer

Language Model
Constructor

ey

.
®

Service To Add

DoSeR

Metadata
Extraction

e
|

Iy

External Knowledge Bases

[/ v
> Y

R
\HE%J

% Connected Services

Figure 1: The diagram of the architecture implemented for the EEXCESS project.

contained in the UMLS Knowledge Base ®. In this case, each anno-
tation is automatically translated in a knowledge object and inserted
into the knowledge graph.

In the second scenario documents are provided in a natural lan-
guage format without annotations. In this case, knowledge bases
(general purpose or domain specific) are exploited for creating an-
notations. Given the content of a document, the “Metadata Ex-
tractor” module analyzes the text, extracts concepts and entities by
using the DoSeR library, and defines the links between such entities
and the ones contained in used knowledge bases. In the EEXCESS
project implementation, the “Metadata Extractor” component ex-
ploits general purpose knowledge bases like DBpedia ’, Freebase ®,
and YAGO °; while the use of domain-specific knowledge bases has
been planned as future work for extending platform functionalities.

As mentioned early, we adopted the disambiguation algorithm con-
tained in the DoSeR library. The evaluation of the DoSeR library
provided in [14] reveals that the strategy integrated into DoSeR at-
tained the best disambiguation results.

The result of this task is a set of knowledge objects, connected be-
tween them, injected into the knowledge graph. Each knowledge
object includes: (i) the labels of the entity identified in the text; (ii)
a weight computed by considering the frequency of the entity in the
entire service repository; and (iii) a set of relationships with further
entities or data.

3.1.3 Language Model Construction

This task is in charge of building the linguistic layer of knowledge
objects. The linguistic layer is exploited during query execution
for computing the “belonging degree” of a query to a particular

®https://www.nlm.nih.gov/research/umls/
"http://wiki.dbpedia.org/
8https://www.freebase.com/

*https://www.mpi-inf.mpg.de/departments/databases-and-
information-systems/research/yago-naga/yago/

305

domain.

The building process is done in two phases. In the first phase, we
apply a keyword extraction algorithm for detecting the most signif-
icant terms contained in each document.

The extraction of the keywords from a given text is demanded to an
algorithm integrating a Doc2vec-based approach. Generally based
on Word2Vec [11], Doc2Vec produces a vector given a sentence or
a document. For each paragraph contained in a document, we infer
a representative vector given a Doc2Vec model created on a cor-
pus containing all Wikipedia pages. We compare this vector with
the ones computed on each Wikipedia page by adopting the cosine
similarity measure. The Wikipedia page with the highest similarity
with the input paragraph represents the main topic of the paragraph.
From the two vectors, we extract the matching keywords and we
create, for each keyword, a new node in the knowledge graph. The
creation of the node is done only if such a node does not exist yet.
The node will contain the keyword itself and the set of its transla-
tions, where available.

After this step, we perform a further keyword extraction task with
the aim of extracting general categories describing document con-
tent. In the previous subsection, we stated that we annotate the
entities found in each documents. From such annotated entities,
we are able to create statistics of categories associated with them.
After the extraction of all categories, we create a distribution given
all categories of the identified entities. The top five categories are
inserted in the knowledge graph by creating a dedicated knowledge
object like happens for keywords. The rationale behind the choice
of the top five categories is to have a trade-off between inserting
categories that are distinctive with respect to the document content
and avoiding too much noise given categories that are less signifi-
cant.

3.2 Query Manager

The second supported process is the execution of queries over the

services that are connected to the platform. Here, users provide
natural language queries that are executed in a distributed way by
keeping the tasks of domain detection, enrichment, federated ex-
ecution, and results aggregation completely transparent from the
user perspective. The pipeline of the query manager process is re-
ported on the left side of Figure 1.

The aim of this process is to infer the context of each query and
to enrich them before giving them as input to the federated search
component. In accordance with the user-based information seeking
model presented in [8], the process follows these steps: (i) to iden-
tify the relevant context; (ii) to recognize the information need; and
(iii) to express this information need in terms of an enriched query
given as input to the federated search component.

3.2.1 Domain Mapper

When a new query is performed, the first step consists in detect-
ing the query domain in order to redirect the system to the right
repository for executing it.

Achieving high classification accuracy on the domain detection task
often relies on expressive representations for words. Word2Vec
word representations, estimated from large text corpora, improve
the accuracy on many natural language processing tasks through
their high-quality features. As described early in this Section, this
kind of approach has been used for creating the language model
describing each domain.

Here, we implemented a domain-matching approach based on the
similarity between the terms contained in the query and the linguis-
tic layer of the knowledge objects contained in knowledge graphs.
For each query term, we check if a knowledge object containing
such a term as label exists. If yes, the knowledge object is “turned
on”’; otherwise, the algorithm looks for nodes containing synonyms,
or related terms, of the query term. We perform this operation for
all terms contained in the query on all knowledge graphs (one for
each repository connected to the platform) stored in the system.
At the end of this matching operation, relationships between the
query and one or more domains are created by checking how many
knowledge objects have been turned on by the query terms.

It is important to highlight two aspects: (i) the system may be con-
nected to different retrieval services belonging to the same domain,
and that (ii) more than one domains would be selected. In both
cases, the implemented strategy consists in exploiting the similar-
ity values as weights used for multiplying scores computed on the
retrieved documents. A more in depth analysis of the implemented
approach and the design of possible alternatives are part of future
work.

3.2.2 Query Enricher

The second step consists in the enrichment of the performed queries.

The enrichment task exploits the output of the domain mapping
by using only the knowledge graphs belonging to the selected do-
main. Above, we mentioned that knowledge objects contained in
the knowledge graph of the mapped domain are “turned on” when
they match with the content (or meaning) of query terms. By start-
ing from such knowledge objects, we build different information
layers that are used for representing the final query sent to the select
services. In particular, the query will be composed by the following
layers:

e Keyword layer: contains the original terms of the query pro-

306

vided by users.

e Conceptual layer: contains labels of the concepts that are
directly connected with the knowledge object of the original
terms.

e Entity layer: contains the named entities detected in the query
(by using the DoSeR library) or that are directly connected
with the knowledge object of the original terms.

e Related information layer: other information that are directly
connected with the concepts used for populating the Concep-
tual layer.

These information are stored in a JSON object for keeping layers
separated. This way, it will be possible to easily manage the query
submissions; for instance, a retrieval service may support a multi-
layer query parsing or the possibility of managing and scoring the
layers in different ways.

3.2.3 Query Runner and Results Presentation

This last component is in charge of performing enriched queries
for retrieving documents from the services belonging to the do-
main detected by the “Domain Mapper” component. At this stage
is important to highlight that each retrieval service is managed in-
dependently by its service provider and it may implement different
scoring techniques.

Indeed, here, the main drawback of the designed architecture emerged.

Unfortunately, it is the impossibility to have a direct control on the
techniques used for computing the relevance of documents with re-
spect to user queries.

The scoring function used by each service for computing document
relevance are seen as black boxes by the federated search compo-
nent. For this reason, it has been implemented a mechanism, based
on the one presented in [2], for aggregating and, eventually, re-
ranking, the results provided by each service before to provide a
unique result to users. Briefly, such a mechanism normalizes the
scores computed on each service and multiplies them by a weight
proportional to the belonging degree of the original query to the
domain used services belong to.

4. SYSTEM EVALUATION

The evaluation of the system has been done in two steps: (i) the
first one provides an evaluation of the scalability and the robustness
of the federated search service; while (ii) the second one presents
measures, in terms of precision and recall, of the effectiveness of
the enriched queries. The latter aims to validate the contribution of
information extracted from knowledge graphs in the retrieval activ-
ity.

Since scalability and perceived performance of the system are im-
portant factors for the acceptance by users, we conducted tests to
evaluate the overall system performance and find potential bottle-
necks in the system architecture. We designed four settings for
testing system performance and for measuring the impact of the
federated search component.

e Setting 1: on the same server, we installed the system and a
service containing 150,000 documents coming from Wikipedia;
here, the federated search component is disabled.

e Setting 2: on the same server, we installed the system and
three services containing 50,000 documents each, coming
from the collections of three partners: Mendeley, Europeana,
and KimPortal; here, the federated search component is en-
abled.

e Setting 3: on two servers (placed in two different locations),
we installed the system on server one and a service contain-
ing 150,000 documents coming from Wikipedia on server
two; here, the federated search component is disabled.

e Setting 4: on four servers (placed in four different locations),
we installed the system on server one and three services (on
server two, three, and four respectively) containing 50,000
documents each coming from the collections of three part-
ners: Mendeley, Europeana, and KimPortal; here, the feder-
ated search component is enabled.

Each run consisted of 1649 unique queries that were sent to the
system in blocks from 10 to 500 queries at a time with 10 second
breaks between the blocks to let the system recover from the load.
These settings simulated the behavior of several users, who query
the retrieval service simultaneously within a few milliseconds. Re-
sults of run executed under Settings 1 and 2 are shown in Figure 2
and 3 respectively.

Both figures show that timeouts start to appear at around 50 and
100 parallel calls, depending on the setup. For Setting 2, the system
errors caused by the federated search component are around 0.35%
at 500 parallel calls. From the graphs, we may infer that the main
timing component is provided by the retrieval services that, with
increasing load, yield higher latencies, which, at a certain stage,
provoke timeouts. By comparing the “Time” data for Settings 1
and 2, the federated search component does not appear to play the
role of bottleneck and it copes well with load increasing.

A second set of runs was conducted by simulating the usage of mul-
tiple distributes retrieval services deployed in different geographi-
cal locations. As mentioned early, given four servers, the feder-
ated search component was running on the first server, while the
retrieval services on the other three. This setup allowed to observe
how the federated search component coped with the geographical
distribution across several machines and which issues might be en-
countered. Figure 4 shows the results obtained by running Setting
3. Here, it is possible to observe a slightly performance improve-
ment related to the service timeouts.

This aspect is confirmed also from the running of Setting 4 (Fig-
ure 5). Here, the failure rate of the federated search component at
500 parallel queries drops to 0.3%. This positive improvement is
given due to the distribution of multiple search systems on different
servers with respect to Setting 2 where only one server was used.

The peak load of the system, when the federated search component
was running, never exceeds 30% per CPU, where the average load
was around 10%. This again corroborates that the scalability of
federated search component is good independently from how many
users can be simultaneously served.

The second quantitative evaluation aims to validate the effective-
ness of the enriched queries on the ranks presented to users. The
evaluation procedure has been performed in a closed environment [5]
with the following setup:

o the set of documents contained 400,000 articles coming from
all repositories;

307

Only Wikipedia Local / One Server

partnertimeout
== systemerror
—f— time

10 30 50 100 150 500

Total Time (in sec) for 1649 Queries | Parnter imeouts

Parallel Calls

Figure 2: Runtime behavior obtained by applying Setting 1.

3 Partners / One Server

Mendeley, Europeana, KimPortal

1800

1600

1400

1200 == time

1000 systemerror
== partnertimeout

400
200

0% P .

L

10 30 50 100 150 500

Parallel Calls

Total Time (in sec) for 1649 Queries | Parnter Timeouts

Figure 3: Runtime behavior obtained by applying Setting 2.

o the set of queries contained 60 queries assigned to 30 differ-
ent users coming from outside the project context;

e as baselines, (i) we manually enriched the queries by assum-
ing that the resulting query is the “optimal” one that can be
performed by starting from the ones assigned to users, and
(ii) we measured the effectiveness of the system without en-
riching queries with the contribution of knowledge graphs;

o the rank composed by the first 10 retrieved documents have
been evaluated;

e all ranks have been validated by experts;

e precision, recall, and f-measure have been measured at the

10th position.
Manual Enrichment | Automatic No
(Baseline) Enrichment | Enrichment
Precision 0.81 0.78 0.65
Recall 0.72 0.63 0.54
F-Measure 0.76 0.69 0.59

Table 1: Effectiveness validation of the enriched queries.

Table 1 shows the results computed by comparing the automatic
enriched queries with the two baselines. By assuming that the “op-
timal” enrichment achieves the best possible result, by applying
the automatic enriched queries, we obtained a performance equal

Only Wikipedia Local / Separate Server
1800
1600
1400
1200
1000
800
600
400

200

0% ' \f\!%g

50 100 150 500

== time
—4— systemerrors

Total Time (in sec) for 1649 Queries | Parnter Timeouts

Parallel Calls

Figure 4: Runtime behavior obtained by applying Setting 3.

3 Partners / Separate Servers

Mendeley, Europeana, KimPortal

1800
1600
1400
1200
1000

= time
systemerror

400
200

50 100 150

Parallel Calls

Total Time (in sec) for 1649 Queries | Parnter Timeouts

Figure 5: Runtime behavior obtained by applying Setting 4.

to 91% (0.69/0.76) of the “optimal” one. While, by comparing
the results with the no-enriched queries, the performance gain rose
to 117%. These results are encouraging for future improvement of
the algorithm used for automatically enriching queries by exploit-
ing knowledge graphs.

5. CONCLUSIONS

In this paper, we presented the platform implemented in the EEX-
CESS EU-project for supporting the task of semantic federated
document retrieval. The platform allows to connect domain-specific
retrieval services in order to exploit semantic resources for enrich-
ing user queries. The core component of the platform, the federated
search component, (i) maps users’ queries to one of the domain
supported by the retrieval services, (ii) exploits the content of the
related knowledge graph for enriching such queries, and (iii) sends
the enriched queries to the proper services. The system has been
evaluated from an efficiency perspective demonstrating the almost
absent impact of the federated search component on the general
performance of the platform independently of the tested settings.
The evaluation performed on the produced ranks demonstrated the
quality of the semantic enrichment of the queries.

6. REFERENCES

[1] E. Corcoglioniti, M. Dragoni, M. Rospocher, and A. P.
Aprosio. Knowledge extraction for information retrieval. In
The Semantic Web. Latest Advances and New Domains - 13th

partnertimeouts

—%— partnertimeout

308

2

—

13

—

[4

—

[5

—

[6

—_

[7

—

(8]

(9]

(10]

(1]
(12]

[13]

[14]

European Semantic Web Conference, ESWC 2016, Creete,
Grecia, May 29 - June 2, 2016. Proceedings. To appear.,
2016.

C. da Costa Pereira, M. Dragoni, and G. Pasi.
Multidimensional relevance: Prioritized aggregation in a
personalized information retrieval setting. Information
processing & management, 48(2):340-357, 2012.

C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank
aggregation methods for the Web. Proceedings of the 10th
international conference on World Wide Web, pages
613-622, 2001.

M. Hagen, M. Potthast, A. Beyer, and B. Stein. Towards
optimum query segmentation: In doubt without. In
Proceedings of the 21st ACM International Conference on
Information and Knowledge Management, CIKM ’12, pages
1015-1024, New York, NY, USA, 2012. ACM.

P. Ingwersen and K. Jarvelin. The Turn - Integration of
Information Seeking and Retrieval in Context, volume 18 of
The Information Retrieval Series. Springer, 2005.

A. Kopliku, K. Pinel-Sauvagnat, and M. Boughanem.
Aggregated search: A new information retrieval paradigm.
ACM Computing Surveys (CSUR), 46(3):41, 2014.

J. Lu and J. Callan. Federated search of text-based digital
libraries in hierarchical peer-to-peer networks. In Advances
in Information Retrieval, pages 52—66. Springer, 2005.

G. Marchionini and R. White. Find what you need,
understand what you find. Int. J. Hum. Comput. Interaction,
23(3):205-237, 2007.

D. Minnie and S. Srinivasan. Meta search engines for
information retrieval on multiple domains. In Proceedings of
the International Joint Journal Conference on Engineering
and Technology (IJJCET 2011), pages 115-118. Citeseer,
2011.

J. Montgomery, L. Si, J. Callan, and D. A. Evans. Effect of
varying number of documents in blind feedback: analysis of
the 2003 nrrc ria workshop bf_numdocs experiment suite. In
Proceedings of the 27th annual international ACM SIGIR
conference on Research and development in information
retrieval, pages 476-477. ACM, 2004.

X. Rong. word2vec parameter learning explained. CoRR,
abs/1411.2738, 2014.

M. Shokouhi and L. Si. Federated search. Foundations and
Trends in Information Retrieval, 5(1):1-102, 2011.

N. Stojanovic. An approach for the efficient retrieval in
ontology-enhanced information portals. In D. Karagiannis
and U. Reimer, editors, Practical Aspects of Knowledge
Management, 5th International Conference, PAKM 2004,
Vienna, Austria, December 2-3, 2004, Proceedings, volume
3336 of Lecture Notes in Computer Science, pages 414-424.
Springer, 2004.

S. Zwicklbauer, C. Seifert, and M. Granitzer. From general
to specialized domain: Analyzing three crucial problems of
biomedical entity disambiguation. In Q. Chen,

A. Hameurlain, F. Toumani, R. Wagner, and H. Decker,
editors, Database and Expert Systems Applications - 26th
International Conference, DEXA 2015, Valencia, Spain,
September 1-4, 2015, Proceedings, Part I, volume 9261 of
Lecture Notes in Computer Science, pages 76-93. Springer,
2015.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32

 D:20160112132206
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryList_V1
 qi2base

