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ABSTRACT
Visual analytics (VA) research provides helpful solutions for in-
teractive visual data analysis when exploring large and complex
datasets. Due to recent advances in eye tracking technology, promis-
ing opportunities arise to extend these traditional VA approaches.
Therefore, we discuss foundations for eye tracking support in VA
systems. We first review and discuss the structure and range of
typical VA systems. Based on a widely used VA model, we present
five comprehensive examples that cover a wide range of usage sce-
narios. Then, we demonstrate that the VA model can be used to
systematically explore how concrete VA systems could be extended
with eye tracking, to create supportive and adaptive analytics sys-
tems. This allows us to identify general research and application
opportunities, and classify them into research themes. In a call for
action, we map the road for future research to broaden the use of
eye tracking and advance visual analytics.
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1 INTRODUCTION
Reliable eye tracking is now affordable enough that it can be inte-
grated into regular workstations to support a variety of day-to-day
work and leisure activities. This paper maps the road for using
eye tracking in an area, in which this technology holds particular
promise: Visual Analytics (VA).

VA describes a range of technologies that rely primarily on visual
representations, interaction, and human-steered computation for
analysts to explore, analyze, and make decisions with and from
data. VA systems are, for example, an interactive website that allows
people to visually explore and understand historical migration data
from different perspectives; a biomedical desktop application that
lets researchers analyze complex experimental data; or a crisis
management command center setup involving many screens, real-
time data, and multiple decision makers.

The common theme of VA systems is that they communicate
with analysts primarily through the visual channel. We hypothesize
that this makes VA systems particularly amenable to an integration
with eye tracking. Up to now, only a few eye-based VA systems
exist [Okoe et al. 2014; Shao et al. 2017; Silva et al. 2018, 2016b].
We believe that the next generation of VA systems could more
broadly use eye tracking to infer and learn analysts’ interests, goals,
workflows, and tasks to proactively support them.

Our paper furthers this vision and lays the foundation for re-
search on eye tracking supported VA systems. We first introduce
a general VA model to the eye tracking community, describe and
exemplify the range of possible VA contexts and solutions. Our
first contribution is an approach that researchers and practition-
ers can use to explore how VA systems can be extended with eye
tracking to create supportive and adaptive VA systems. Specifically,
we show that the particularities of a concrete VA system can be
described formally by a generic model whose facets can then be
used to systematically consider ways in which eye tracking sup-
ports analysts’ goals. Our second contribution is an inventory of
research challenges that future research needs to tackle before the
benefits of eye tracking supportive VA systems can materialize. We
structure these challenges into research themes and map the road
for researchers to broaden the use of eye tracking and advance VA.

https://doi.org/10.1145/3314111.3319919
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2 RELATEDWORK
Guidance systems [Collins et al. 2018] and recommender systems
are emerging topics in VA and both demonstrated potential in sup-
porting analysts. Using eye tracking we can potentially infer what
people focus on [Just and Carpenter 1980]. Therefore, eye tracking
offers a new and important channel through which applications
and analysts can interact with each other. Because eye tracking
is becoming affordable and allows systems to provide recommen-
dations and guide analysts in data analysis processes, we discuss
each of these topics individually, and give first hints about how to
achieve eye tracking supported VA.

2.1 Recommender Systems and Eye Tracking
Recommender systems assist people in identifying potentially inter-
esting items. With applications in many domains (e.g., e-commerce,
information retrieval, or social media) recommendation technology
is the target of constant improvements due to its real application
value. These improvements and the use of pervasive techniques (e.g.,
eye tracking) in new recommendation applications were discussed
in previous work [Felfernig et al. 2013]. Example recommender
systems that integrate eye tracking were developed to help and
guide people, select products [Castagnos et al. 2010; Castagnos
and Pu 2010; Chen and Pu 2011], support reading, browse images,
watch videos [Xu et al. 2008], assist air traffic controllers [Silva
et al. 2015; Zhao et al. 2016], or recognize activities on cartographic
maps [Kiefer et al. 2013]. In addition, advantages and pitfalls of
using eye movement data in adaptive systems were discussed [Bed-
narik 2005]. Techniques to estimate human preferences were also
developed, such as an evolutionary recommendation system [Jung
et al. 2013], a support vector machine to distinguish user activi-
ties [Kiefer et al. 2013], and a collaborative filtering approach to
increase the accuracy of recommendations [Song and Moon 2017].
Also, Renner and Pfeiffer [2017] have used eye tracking for attention
guiding in the context of assistance through augmented reality. In
addition, Blattergerste et al. [2018] compared selection mechanisms
in VR, which included eye gaze.

2.2 Guidance in Visual Analytics
Guidance is an important component in the support of analysts
when exploring large datasets. An example is the use of advising
mechanisms that point analysts to interesting data features or clus-
ters. Ceneda et al. [2017] presented amodel to classify key aspects of
guidance in VA. A selection of challenges associated with the imple-
mentation of guidance were then discussed by Collins et al. [2018],
including the use of external inputs to guidance systems, such as
eye tracking. Although this work already identifies eye tracking as
a mean for guidance, it is not the main suggested mechanism, and
its described role in the survey remained preliminary.

2.3 Visual Analytics and Eye Tracking
Eye tracking is also finding its way into evaluation of VA sys-
tems [Andrienko et al. 2012; Kurzhals et al. 2014]. In addition, a
multitude of visualization techniques for analyzing eye movement
data have been developed [Blascheck et al. 2017]. In addition, an
analysis of VA systems using eye tracking and the visualization of

the collected eye movement data has been proposed in combina-
tion [Blascheck et al. 2016].

However, the above approaches did not discuss how eye track-
ing could guide analysts in their actual interactive analysis of data
(i.e., while using a VA system). Only a few recent works proposed
and implemented eye tracking support for VA systems. Steichen et
al. [2013] investigated how to infer visualization tasks and cognitive
abilities from eye movement data using bar and radar graphs. Silva
et al. [2016a] used eye tracking to control a degree-of-interest dis-
playwhen exploring hierarchically organized data. Shao et al. [2017]
proposed an exploration of scatter plot sets by recommending un-
seen scatter plots most dissimilar to seen ones. Silva et al. [2018]
combined interaction with eye tracking and data features to com-
pute rankings of time series and perform recommendations. These
examples are encouraging and indicate the usefulness of integrating
eye tracking into VA systems. However, they might not generalize
well to certain tasks or data types.

Up to now, a systematic review of challenges, and a road map
of how to achieve eye tracking support for VA systems is missing.
Therefore, we provide such a road map in this paper, give examples
of common VA systems for different domains and contexts, discuss
how eye tracking can be integrated within these contexts, and
organize research challenges associated with this endeavor.

3 BACKGROUND — VA PROCESS MODEL
VA encompasses technologies by which analysts relate to data
by means of interactive data visualization, tightly integrated with
data analysis algorithms, supporting the discovery of actionable
insights into large and complex data. As a research field, VA builds
on multiple disciplines, including analytical reasoning and human
cognition, planning and decision making, visual representations
and interaction techniques, data mining and machine learning, data
management technologies, among others [Keim et al. 2010; Thomas
and Cook 2005].

To describe a VA process, Keim et al. [2008] defined a well-known
process-driven model (cf. Figure 1). As mentioned above, the VA
process suggests that analysts aim to obtain insight into data by
approaches that integrate data visualization and analysis. The vi-
sual analysis process is highly interactive, supporting analysts in
interacting with the visualization (e.g., create views, drill down into
views), and the data analysis model (e.g., select or configure analysis
methods, clustering, classification, find suitable parameters).

To organize the discussion of how eye tracking can be integrated
into VA systems, we consider the mentioned VAmodel. We enhance
the four high-level building blocks of this VA model (Data, Visual-
ization, Model, and Knowledge) with more detailed concepts (e.g.,
system, analysts’ tasks, parameters, cf. Figure 1). Note, this specifi-
cation serves our discussion goals. More encompassing extensions
of the basic model have been suggested by others (e.g., Sacha et
al. [2014], which details the knowledge generation process).

Next, we further explain the detailed concepts that we introduced
into the VA model.

Context. The context describes the application domain in which
a VA process takes place. VA systems are used in many domains
including scientific data analysis (e.g., social, environmental, phys-
ical and bio-medical research), engineering and production data
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Figure 1: VA process model by Keim et al. [2008]. We further
detail this model with context, system, and the analyst to
discuss how to integrate eye tracking into VA systems.

analysis (e.g., input or output factors in production), or social media
analysis (e.g., large networks and high-frequency messaging). An
analyst may for example use a VA system in the lab, real-world
emergency situations in the field using mobile devices, or in the
office. The context relates to both the system aspects as well as the
analysis goals and tasks.

Analyst. The range of analysts using VA systems is broad. We
can divide them into experts and novices in a specific domain or
in visualization. A domain and visualization expert could be a data
journalist, whereas a domain expert with less knowledge in visual-
ization could be a biologist. Typically, visualization researchers are
experts in the field of visualization, however, they do not necessar-
ily have specific domain knowledge. Lastly, an increasing number
of people that are neither domain nor visualization experts (general
public) are interested in analyzing data.

Knowledge. Analysts using a VA system usually have multiple
specific goals in mind. These goals can be reached by performing
multiple analytic tasks. Shneiderman [1996] defined a widely-used
taxonomy of analytic tasks that are universally applicable: overview,
zoom, filter, details-on-demand, relate, history, and extract tasks.
Similarly, Pike et al. [2009] defined goals and tasks of analysts.
However, they further divided the analytic discourse of an analyst
with a VA system into low-level choices versus high-level goals
for an investigated problem. Knowledge obtained from the VA can
occur in implicit or explicit form [Federico et al. 2017].

System. The VA system comprises the implementation of a VA
design that runs on a specific hardware and software platform. It
typically involves different visual media and interaction modalities.
The range spans from desktop computers to tablets, smartphones,
smart watches, public or wall-sized displays, virtual and immer-
sive environments. The system specifications determine the many
performance aspects it may deliver (e.g., response time, display res-
olutions, interaction modalities). Recently, natural user interfaces
like voice and gesture recognition are being considered, in addition
to typical desktop interaction modalities. Eye tracking capabilities
can also extend these systems.

Data. The data analyzed in a VA system originates from different
data sources and represent multiple data types. The data sources
can be from real world measurements and observations (e.g., medi-
cal images, seismic data, astronomy) or theoretical/virtual world
measurements using mathematical and simulation models (e.g.,

molecular dynamics, meteorology, economic or financial model-
ing, simulation). The data from these sources can have different
data types. Shneiderman [1996] defines seven data types: 1D, 2D,
3D, temporal, multi-dimensional, hierarchical (tree), and network.
Typically, the first step before analyzing the data is to pre-process
and transform it into an appropriate form for further exploration.
This may include data cleansing, normalization, grouping, or inte-
gration of multiple heterogeneous data sources [Keim et al. 2008].
Important aspects of data influencing the analysis process include
the quality of the data that may be affected by missing data values,
erroneous measurements, uncertainty, and others.

Visualization. After the data is transformed into an appropriate
form, it can be mapped to a visualization technique. The build-
ing blocks of a visualization according to Bertin [1967] are marks
(points, line, areas) and visual variables (size, form, value, orienta-
tion, position, color, and texture). The different types of visualiza-
tions based on groups of imposition are also classified (diagrams,
networks, maps, symbols) and types of imposition, divided into
arrangement and construction (rectilinear, circular, orthogonal, or
polar). Some examples based on this classification are (stacked) bar
charts, pie charts, sunburst charts, node-link diagrams, scatter plots,
or map representations.

Interaction. To reach their goals, analysts perform multiple tasks
and interact with VA systems. Preim and Dachselt [2010] consid-
ers interaction style (e.g., direct manipulation, speech, gestures,
menus) and interaction techniques, (e.g., selection, brushing, dy-
namic queries). Interaction further depends on devices (e.g., key-
board, pointing, touch) and on intent [Haag et al. 2013]. Many
taxonomies exist for interaction intent [Amar and Stasko 2004;
Brehmer and Munzner 2013; Munzner 2014; von Landesberger et al.
2014]. Themostwell-known taxonomies established by Yi et al. [2007],
defined the following categories, select, explore, reconfigure, en-
code, abstract/elaborate, filter, and connect. Eye tracking informa-
tion can complement classic interaction operations. In our work,
we focus on the inference of analysts’ goals, states, etc. and on how
to support the analysis process thereby.

Model. The model specifies the data analysis method to be ap-
plied to the data, and to support the analysis goals. Here, many
different methods from statistics and machine learning can be con-
sidered. Examples can include regression modeling, outlier and
anomaly detection, similarity search, cluster analysis or classifica-
tion, and frequent pattern mining [Han et al. 2011].

The analysis goal and data at hand influence the choice of the
model. VA systems often aim to integrate data modeling with visu-
alization via interaction [Endert et al. 2017]. For example, model
tools can be applied to visualize the mining process, or serve as an
interface for analysts to select and compare model parameters.

4 INTEGRATION OF EYE TRACKING INTO
EXAMPLE VISUAL ANALYTICS SYSTEMS

To demonstrate how we can integrate eye tracking into VA systems,
we present several examples from different domains: business intel-
ligence, law enforcement, immersive analytics, situated analytics,
and geographic information systems. We chose these systems to
cover a wide range of domains and different types of usages (i.e.,
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desktop, mobile, virtual, augmented, and mixed reality). These ex-
ample VA systems do not include an integration of eye tracking.
However, we discuss for each how eye tracking could be integrated
and how to infer analysts interests. We use the VA model described
in Section 3 to identify promising extensions to these example
VA systems by integrating novel eye tracking technologies. We
also identify challenges of such an integration. The extensions and
challenges presented are usually common to all of the VA systems
discussed and could even be generalized to other applications. Un-
less stated otherwise, we assume that desktop applications are used
in an office setup with reliable eye tracking.

4.1 Tableau — Business Intelligence Analytics

Tableau [2019] is a business intelligence and analytics software
intended for analysts from all types of sciences and different do-
mains (e.g., energy, education, government, finances, manufactur-
ing, health care, insurance, sports, law). It offers desktop as well as
tablet, web, and embedded versions. It provides functionality for
analysts to get an overview of data, filter it, and inspect details. An
exhaustive history is created, which is available even after Tableau
is closed. To a lesser extent, Tableau includes the option to relate
and extract data. Zooming is only available for certain visualization
techniques.

Analysts can load data from a file or connect to a server. Tableau
supports many common data and charting types. An analyst can fil-
ter, perform calculations, and integrate data from multiple sources.
The visualization techniques that Tableau provides ranges from
simple data tables to diagrams such as bar, pie, line, area charts, box
plots, Gantt and bubble charts, maps, heat maps, tree maps, and
scatter plots. To interact with Tableau, analysts can directly manip-
ulate data points, use menus and dialogues. In Tableau desktop, one
can use a classical keyboard and mouse pointing interaction. On a
tablet gestures are used, as analysts interact via touch screen. The
interaction techniques supported in Tableau include the selection of
one or multiple data points and brushing to highlight the same data
points in multiple views. Based on the taxonomy by Yi et al. [2007],
Tableau supports different intents of an analyst (i.e., select, explore,
reconfigure, encode, abstract/elaborate, and filter). Tableau offers
functionality for automatic data analysis such as outlier detection,
clustering, and regression analysis.

Benefits and challenges of an eye tracking integration. The an-
alysts’ expertise level when using Tableau varies, as in several
other VA applications. Hence, detecting analyst expertise using eye
tracking, and adapting the UI or application behavior can provide
appropriate guidance. A novice might feel lost while using Tableau,
therefore, detecting when a person is “lost” (e.g., based on num-
ber of rapid saccades between AOIs) could trigger a help function
dependant on which features analysts are working on. When an
expert is detected, the help function could be triggered at a later
stage than it would normally for a novice.

Tableau offers many visualization types that could be created by
choosing different dimensions and measures as well as by specify-
ing marks in a panel [Bertin 1967]. Integrating eye tracking into
visualization creation could be supported, e.g., by suggesting which
dimension, measure, mark, or visualization could be chosen based

on analysts’ focus. This would help an analyst explore the data
exhaustively. Suggestions could also be given based on collabora-
tive efforts. If multiple analysts are exploring the same dataset, the
software could display suggestions based on previously collected
eye movement data.

Exploring data in Tableau could be enhanced by automatically
highlighting data elements when an analyst focuses on them for an
amount of time. In addition, a combination of keyboard interactions
and fixation duration could perform gaze-based filtering. Instead
of dragging a dimension or measure with the mouse to the filter
panel, an analyst could instead look at one of them, the system
highlights it, and triggered by a keyboard shortcut it automatically
opens the filter menu to select which elements should be excluded
or included.

Supporting analysts during the data mining process in Tableau
is similar to creating new visualizations. A separate pane next
to the data pane offers functionality for automatic analysis (e.g.,
clustering). Based on where an analyst is looking at, suggestions
and guidance could be given to help with the data mining.

4.2 Mobile VA for Law Enforcement

Razip et al. [2014] worked with a consortium of law enforcement
agencies to develop and evaluate a VA system (cf. Figure 2 A) to aid
patrol officers, crime analysts and detectives. It was intended to be
used on desktops inside offices, and in the field, on mobile devices.

The system stores, collates, and displays geographically and
temporally annotated crime reports. It consists of a map onto which
crime incidents are plotted as color-coded points; plots of incident
counts over time on an interactive view; a calendar view showing
incident counts for specific dates; and an interactive clock view to
plot incident counts for concrete times of day. It also retrieves and
overlays census information onto the map. All views are linked
through brushing interactions in which a selection in one view is
mirrored into others.

A study with officers indicated that the system is used differently
across the multiple categories of analysts. Shift supervisors pointed
out that they used temporal reporting combined with geo-spatial
features to support resource allocation planning. Patrol officers pri-
marily used a mobile version in the field – geo-spatial and temporal
filtering allowed an increased awareness of their area of patrol re-
sponsibility. To perform usual functions mobile analysts considered
necessary the use of voice activated commands, as their hands were
often busy with other tasks. Detectives used the system to solve
crimes, for example, by investigating crime patterns. Crime ana-
lysts used it to generate insights into patterns and analyze trends
in crime that they reported to their police departments.

Benefits and challenges of an eye tracking integration. Analysts
using desktop computers are stationary in front of large screens
and their eyes can be tracked accurately. In mobile contexts, an-
alysts’ positioning in relation to the screen, lighting conditions,
and screen sizes are variable, making accurate eye tracking more
difficult. Task-support in each mode should account for different
degrees of uncertainty in the eye movement data they rely on.

Different eye tracking support could be offered depending on
the system’s types of users. To detectives and crime analysts who
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Figure 2: VA Systems: A) Law enforcement analytics (image courtesy David Ebert), B) FiberClay (image courtesy Christophe
Hurter), C) Situated Analytics (image courtesy Neven ElSayed), D) V-Analytics (image courtesy Gennady Andrienko). All im-
ages used with permission from the authors.

seek patterns in the data, the system could offer analytic support
in the form of recommendations. Examples are analysis recommen-
dations, e.g., “You looked at correlations between X and Y , you
may be interested in Z as it is correlated with X ”, or collaborative
recommendations, e.g., “This data may be of interest as it caught
the attention of many other analysts”. Patrol officers use the mobile
version of the system and explicitly requested a reduced reliance on
manual interactions. Eye tracking could complement voice interac-
tion by helping disambiguate references made in natural language
commands. For example, based on an analyst’s current gaze activity,
the question “When are such crimes happening in this area?” could
be specified as “When are burglaries happening around the inter-
section of street X and Y?”. Overall, eye tracking could be used to
identify and support low-level visual tasks. The system could infer
that analysts are searching for blue dots and visually emphasize
them. It could also detect that analysts are trying to connect visual
information across multiple views and highlight it in all views.

As shown in Figure 2 A), the system integrates multiple views
each with relatively distinct functions. One may automatically de-
tect which views analysts are looking, and aim to detect from this an-
alysts tasks, interests, and favorite ways of visualizing data. Within
each view, we could detect specific visual elements that analysts
fixate on, the accuracy would depend on the element’s size, shape,
and proximity to other elements. The system displays much of the
information as point-like glyphs and these should be easier to track
compared to more complex shapes such as lines [Okoe et al. 2014].
It is also important to note that the system is not interaction-heavy,
analysts could extract insights by just looking at the linked visu-
alizations without interacting with them. In a system such as this,
eye tracking could tell us a lot about analysts’ interests and inten-
tions whereas tracking manual interactions alone would not. This
differs from some interactive systems that rely heavily on details
on demand and navigation and in which manual interactions are a
sufficiently reliable proxy for analyst interest.

4.3 FiberClay — Visual Analytics in VR
FiberClay (cf. Figure 2 B) works with head-mounted displays and
hand-held controllers [Hurter et al. 2019]. It was designed for the

visualization of trajectories. Users navigate the virtual 3D space by
orienting the camera with their head posture and use controllers to
move and scale the view. Alternatively, a 2D plane is used for ad-
justing continuous view and layout parameters. The plane is filled
with tiles that show thumbnails to guide analysts in possible adjust-
ments, including the switch to 2D projections of the trajectories,
allowing them to follow an airplane’s history of flight levels.

Once analysts have chosen their view on the data, they can select
large data ranges or specific trajectories using virtual rays that
represent physical hand-held controllers. They press buttons and
select or deselect all intersecting trajectories, essentially sculpting
a query in 2D or 3D. The system gives an intuitive representation
of spatial data as it matches the display dimensions. Trajectories of
air planes and neural cell connections can be shown and analyzed.
Simultaneously, time series of single parameters can be visualized
in 2D, matching regular and well-known techniques from outside
the virtual environment. The system runs smoothly on current
hardware and it is well adapted for intuitive interaction through
head and hand movement. It can be operated while sitting on a
chair and does not require free body movement.

Benefits and challenges of an eye tracking integration. Integration
of eye tracking in the FiberClay system could lead to several changes
in multiple areas. Hurter et al. [2019] minimize body movement
and potential collisions by providing interaction through hand-
held controllers and head movements, allowing an analyst to be
stationary. Using gaze as an interaction technique, arm movements
could be reduced to pressing buttons. Visually focusing on virtual
objects that are near or far could be suitable for depth selection
within VR headsets. However, the actual focal distance of drawn
objects is physically limited to a static value and could lead to
confusion. The depth selection issue for two crossing gaze rays,
could be ameliorated if the system automatically moves the camera
to a position that is orthogonal to data points currently being looked
at. Frequent automatic view changes could confuse analysts, destroy
their mental map, and make the entire system unusable. However,
it could be combined with explicit interaction through buttons.

Virtual environments often have high performance demands.
Using eye movement data, developers can implement dynamic
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foveated rendering and therefore increase frame rates in order to
ameliorate issues with simulator sickness [Marianos 2018]. Eyes
have a narrow field of view at full resolution. Outside of the retina’s
fovea, vision becomes blurred. Rendering specific parts of objects or
scenes that analysts are able to fully grasp (by using interpupilary
distance and the position of the eye relative to the lenses) might
have several advantages. The same technique can be used to au-
tomatically adapt dynamically generated content (i.e., procedural
generation of virtual scenes according to the deployment of atten-
tion and physical differences of analysts) to improve the overall
user experience (e.g., story-line in a game). At the same time, gaze
reflects personal interest and could give the system an indication of
what data items are most interesting to analysts [Just and Carpenter
1980]. The 2D parameter navigation described in Section 4.3 could
highlight the interesting data points and help analysts manually
find more suitable representations. Alternatively, the system could
automatically select glyphs with less overdraw in the region of
interest, or suggest completely different views and visualizations
that make the target data more readable. Notifications are a pos-
sible way of making such suggestions and are often placed on a
specific location in regular desktop environments. In an immersive
environment, however, there might not be a single suitable static
placing option. Notifications might require explicit input to become
visible and could be coupled with sound alerts.

People with refraction errors need to wear glasses that might not
fit inside head-mounted displays. Additional optics could correct
such defects and might be automatically adjusted to the person
when combined with eye tracking. To achieve this, the underlying
software could show test patterns with increasingly finer shapes
and check real-time gaze data for their visibility.

4.4 Situated Analytics — Analytical Tools in AR
ElSayed et al. [2016] presented Situated Analytics (SA), real-time
interaction techniques (cf. Figure 2 C). It provides analytic rea-
soning in the physical space, supported by two domains: VA and
Augmented Reality (AR).

The authors investigated how data exploration and information
comprehension can benefit from SA. It is stated that SA can improve
decision making in three ways. First, clear information display by
pairing informationwith physical objects. Second, increased natural
interaction when exploring information through direct handling
of physical objects. Third, advanced information analysis to allow
contextual and overview information.

SA combines real-time visualization and interaction techniques
that supports the exploration and analysis of information about
objects in a specific physical environment. Analysts can visually
interact with information and objects in AR and access attached in-
formation. They can also view and compare information associated
with multiple physical objects.

Benefits and challenges of an eye tracking integration. Augmen-
tation by eye tracking support in the case of the SA system could
consider multiple aspects. In highly sensitive jobs, eye tracking
systems might be used for continuous security and identification
checks. Analysts could share the same AR device and the adjust-
ment of their profile preferences could be done automatically.

While using this VA system, analysts focus their attention on
both virtual and physical objects. Eye tracking enables interaction
with objects using fewer steps (e.g., users look at objects and give
commands using voice, and a mapping between gaze and object de-
tection provides contextual information). In collaboration scenarios,
information on gaze direction, emotion and interests may be used
to support social interaction between analysts. For example, one
analyst may be given hints about other analysts’ gazes, which may
enable an interest-based connection between them. It also may also
open new possibilities for remote support and learning scenarios
(e.g., changes in one analyst’s focus could be synchronized to the
camera views on other remote systems).

Head-pointing could be replaced by eye-pointing. It might be
a more accurate representation of how humans interact with the
real world (i.e., hand-eye coordination could be implemented by
correlating gaze-aim with action-finger-pointing). Visible traces for
areas focused on by analysts could be added (e.g., each analyst leaves
a color or pattern trace to be followed by others when exploring
a dataset). If analysts focus on a wrong direction or follow an
inefficient analysis sequence, navigational hints are activated (e.g.,
arrows, contours, color shifts, voice/binaural sounds, or messages).

Knowing if analysts are focusing on an object or not, allows to
update information only when desired to minimize distractions and
resources usage. This technique could infer if objects in the scene
are attended and respective importance, allowing the guidance of
analysts to unattended or hidden objects. Information changes could
be enabled in a dynamic way to achieve adaptation of the overall
story in a more engaging way. Using information about previous
interests together with analysts’ interactions, a new simulation and
inference model could be created (e.g., using reinforcement learn-
ing) to learn how analysts behave in different situations. The VA
system could then decide when and which information to display.

4.5 V-Analytics — Visual Analytics for GIS
Geographic Information Systems (GIS) are used for storing, repre-
senting, analyzing, and visualizing spatio-temporal data [O’sullivan
and Unwin 2014]. V-Analytics (known as CommonGIS, cf. Fig-
ure 2 D) is a VA platform offering a multitude of analysis methods
and visualization possibilities for spatio-temporal data, most promi-
nently spatio-temporal trajectories for movement data analysis [An-
drienko et al. 2013]. The software has supported research in various
domains, such as mobility and transport, aviation and air traffic
analysis [Andrienko et al. 2018], sports [Andrienko et al. 2017], or
animal movement. Although V-Analytics is mainly a platform for re-
searchers, it is freely available [Andrienko and Andrienko 2019] and
can be used by anyone for different types of spatio-temporal data
sources. The software offers various methods for visual analysis of
trajectories (single or groups). It allows comparative analyses that
focus on discovering and understanding patterns resulting from dif-
ferences in spatio-temporal distributions and contexts [Andrienko
et al. 2019]. V-Analytics contains tools for data transformation,
generalization and aggregation, clustering methods, and interac-
tion techniques. Visualization techniques include 2D and 3D maps,
space-time cubes, flow maps, histograms, and density distribution.

Benefits and challenges of an eye tracking integration. Integrating
eye tracking support into V-Analytics could encompass diverse



Eye Tracking Support for Visual Analytics Systems ETRA ’19, June 25–28, 2019, Denver , CO, USA

items. V-Analytics allows the visualization of maps, trajectories,
diagrams, graphs. Using eye movements the system could detect
that an analyst missed an important item and provide automatic
highlighting. Visual attention is an important aspect in eye track-
ing. Boris et al. [2017] presented a generalized process for visual
attention analysis with eye movement data and Frutos-Pascual and
Garcia-Zapirain [2015] assessed visual attention using eye gaze data
as a way to identify children’s behavior in attention-enhancement
therapies. Analysts’ visual attention could be used to include in-
teraction improvements by automatically adapting the placement
of legends and content in maps according to analysts’ gaze [Göbel
et al. 2018]. Using a remote eye tracker within the desktop environ-
ment would ensure sufficiently high accuracy of the eye movement
data to detect the region where analysts are looking at and relate
analysts’ attention with the task. When solving a problem as a team,
collaborative work could be facilitated if one analyst could always
know where the others are currently looking at (e.g., to which part
of the trajectory another analyst is interested in or handling).

Eye tracking would enable support during various analytic tasks,
for example, the system could actively recommend important data
correlations and visual items. The system could create a graph of
attended items and keep an historic track that analysts could use
for posterior analysis (i.e., data provenance), reconstruction of ex-
ploration strategy, or to be simply utilized by other less experienced
analysts. A model could be created to decide when to automatically
support analysts or not, based on their gaze behaviour. The model
would need to be able to decide the right balance between analysts’
control and automatic support as well as adaptation.

5 OPPORTUNITIES AND CHALLENGES
We identified research opportunities associated with the creation of
gaze enabled VA systems. We did so by aggregating, extrapolating,
and organizing opportunities and challenges discussed in Section 4,
by drawing from our own research experiences, and from existing
literature [Alam and Jianu 2017; Okoe et al. 2014; Shao et al. 2017;
Silva et al. 2018, 2015, 2016a,b]. We clustered opportunities and
challenges into five critical research themes that might align with
interests and expertise in eye tracking and visualization commu-
nities. The themes correspond to different stages or envisioned
prerequisites in the development of eye tracking supported VA sys-
tems: (i) reliable and accurate collection of raw eye movement data;
(ii) translation of raw eye movements into data and visualization
semantics; (iii) modelling of higher-level intents; (iv) provision of
adaptive support; (v) ensuring privacy. Our work suggests research
opportunities and motivates the two communities to materialize
eye tracking supportive VA systems.

5.1 Theme 1: Reliable Eye Tracking
At their core, eye tracking supportive VA systems rely on the im-
provement of unobstructed, affordable, and reliable eye tracking
technologies, across different VA system platforms, including desk-
top computers, mobile devices such as tablets, phones, watches,
public or wall-sized displays, and embedded into virtual and im-
mersive environments (cf. Section 4).

Eye tracking in desktop settings has become affordable and rel-
atively accurate. This is due to large screens, stable lighting, and

analysts limited movement. Conversely, emerging VA usage con-
texts such as the ones exemplified in Section 4 are significantly
more problematic. A range of problems needs to be solved before
eye tracking can be used in practical VA settings. Among these, and
arranged by usage context, are:

• Varying light conditions and viewing angles (e.g., mobile
usage like in Mobile VA for Law Enforcement, see Section 4.2)

• Energy efficiency and remote communication capabilities to
increase autonomy (e.g., mobile usage like in Mobile VA for
Law Enforcement, or virtual environments like in FiberClay,
see Section 4.3, and Situated Analytics AR, see Section 4.4)

• Accuracy for collaboration (e.g., wall-sized displays or dash-
boards like in Tableau, see Section 4.1, or V-Analytics, see
Section 4.5, and in virtual environments like in FiberClay,
see Section 4.3 and Situated Analytics, see Section 4.4)

• Head-mounted accuracy and multiple infrared interference
(e.g., CAVE VR systems or exterior applications like in Fiber-
Clay, see Section 4.3, and Situated Analytics, see Section 4.4)

• Automatic, unobtrusive (re)calibration (all VA examples)
• Standardized SDKs for gaze metrics (all VA examples)

5.2 Theme 2: Mapping Eye Movement Data to
Visualizations

Mapping fixations onto rectangular, non-overlapping, and relatively
large AOIs has received considerable attention in the eye tracking
community. However, VA systems build on visualizations that com-
pose complex drawing primitives. Such primitives include not just
shapes that are approximated by rectangular/circular outlines but
also overlap as interleaved curves and shapes of different sizes.

Thus, considering that a visual primitive is viewed only if a fix-
ation lands within its bounds, may not suffice. It is likely that for
VA systems, each fixation translates into a set of probabilities that
one or more visual primitives have been viewed. Such probabil-
ities depend on the complexity and density of primitives in the
visualization and resolution of the eye tracker [Jianu and Alam
2018]. Moreover, people do not view visualizations in a random
order, they follow patterns determined by the structure of the vi-
sualization, analysts’ visual tasks, and their manual interactions.
This information can help determine viewed elements with an in-
creased accuracy [Alam and Jianu 2017]. A thorough understanding
of how gaze information translates into viewing likelihoods, how
to increase the accuracy of detection, and how to work around the
uncertainties associated with it, is currently lacking. Also, in virtual
environments, new heuristics to determine the actual gazed object
(i.e., gaze-to-object mapping) need to be developed.

Moreover, the visual elements that VA systems build on, they
depict data. Systems can infer data elements and data features that
analysts are interested in by detecting when visual representations
are focused (e.g., Section 4.1). How to do this for different types
of visualizations and data is still partially unknown. Libraries and
SDKs that can integrate such knowledge and allow visualization de-
signers to easily translate eye movement data into probabilities that
their elements have been viewed, as well as maintaining histories
of this during run-time would further the proposed vision.
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5.3 Theme 3: Modelling of Higher-level Intents
Accurate raw eye movement data and attention maps on visualiza-
tion elements needs to be converted into models of expertise (e.g.,
Section 4.2), understanding, goals, and tasks. New systems should
be aware of past, current, and future intentions. This should be
possible if a model maps the intentions and needs of analysts in
a continuous way, by creating an online support model based on
multiple features (e.g., eye movement data, interaction, feedback,
sensors, mental model, reverse engineering during the exploration
of large datasets, etc.). The investigation of how and when to best
guide, recommend, or adapt is an important research topic. A re-
liable inference of the action-intent would enable the support of
analysts, for example, help select data faster, interactively load more
data into a view, reduce interaction by providing auto-navigation,
or provide step-by-step instructions to accomplish a task.

Machine learning techniques may help. These range from train-
ing offline models with eye movement data (improve collaborative
recommendations), to continuous tracking systems that use real-
time eye movement data (feed an online model). The models can
adjust its weights according to the variations in the analysts’ visual
interests. They can combine multiple features directly or indirectly
linked to the gaze of a person (i.e., combination of gaze duration
on AOIs, interesting history data features through time, multiple
sensors, actions or decisions made using a keyboard, control pad, or
voice). In Sections 2 and 4 we refer and discuss multiple examples
of potential solutions. This feature combination increases the capa-
bility of detecting the context (e.g., Section 4.4). It might be vital
for the next stage during which we want to support the analysts.

5.4 Theme 4: Adaptive Support
Research on the themes described above would create the premise
for generating a variety of support mechanisms. Interaction Support
helping analysts perform low level interactions (e.g., navigating to
data of interest) and data-reading tasks (e.g., determining if two
nodes are connected in a node-link diagram [Okoe et al. 2014]). Rec-
ommendations about unexplored and potentially useful data could
bemade based on historical or online models of their interests.Guid-
ance (e.g., Section 4.1) consisting of higher level support in which
systems help users trough novel methodologies and techniques that
fit the problems to be solved. Dynamic Adaptation allowing systems
to detect and match analysts’ cognitive and analytic particularities
(e.g., Section 4.3), their workflows, preferences, interests and needs.

It is not obvious how to best communicate such support to ana-
lysts in a way that is helpful yet not disruptive. In-situ highlight-
ing and overlays (e.g., Section 4.5) could be used to show support
directly in visualizations (e.g., marking suggested items). Recom-
mendation panels could show support in separate panels, perhaps
along with more detailed suggestions that analysts could consult on
demand. Perhaps other modalities such as speech or haptics could
add dimensions to communication between analysts and systems.

5.5 Theme 5: Ensuring Privacy
Ensuring analysts’ privacy is paramount in allowing eye tracking
based VA systems to be adopted. Investment from big players like
Google, Facebook, Microsoft or Twitter will increase the awareness
for protection of analysts. A careful debate around the potentials

and misuses of the technology and specific guidelines for user
identification (e.g., Section 4.4) and privacy protection are needed.

Eye tracking adds elusive capabilities to marketing profiling.
Sensitive information can be captured by measuring gaze duration
or pupil dilation [Blog 2017] and, while clicking can be avoided,
willfully not looking at content is difficult. The technology is already
available in MR or VR systems and could soon be widely used in
TVs, smartphones, or cars. Commercials can be embedded into
free VR games for profiling [Law 2017]. Surveillance systems can
integrate eye tracking to anticipate next actions and thus invade
peoples’ privacy [Liebling and Preibusch 2014; Stanley 2013].

Additionally, disorders can be revealed with high accuracy (up to
87%) [Lagun et al. 2011; Terao et al. 2017; Ting et al. 2014], like, cogni-
tive disorders (e.g., autism, attention deficit disorder, dyslexia); psy-
chological disorders (e.g., Schizophrenia, Parkinson, Alzheimer’s,
post-traumas, eating); HIV (AIDS Dementia Complex); and behav-
ioral disorders (e.g., lies, drug and alcohol use, fatigue and distrac-
tion).

Eye-tracking provides a potentially dangerous channel into peo-
ples’ identity and into how they think, analyze, process, or interact
with information. The long awaited arrival of affordable eye track-
ing systems could also bring a new generation of privacy invasion.
Remedies and avenues to ensure the privacy of analysts using eye
tracking supportive VA systems need to be researched. New eye
tracking APIs could provide notice about the data being collected
and analysts could be able to control which data is shared. Pol-
icy changes to provide minimum privacy guarantees can be made.
Liebling et al. [2014] refers privacy challenges and eye tracking
potentials for research, engineering, policy makers and businesses.

6 CONCLUSION
In this paper we discussed the vision and lay the foundation for
research on eye tracking supported VA systems. We first introduced
a general VA model, then we described and exemplified the range
of possible VA systems. Based on these example VA systems, we
identified promising extensions through integration of eye track-
ing technology, and discussed potential research challenges that
future research needs to tackle before the benefits of eye tracking
supportive VA systems can materialize. Finally, we aggregated, ex-
trapolated, and organized the challenges of eye tracking integration,
extracted five research themes, and mapped the road for researchers
to broaden the use of eye tracking and advance visual analytics.
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