

On Functions of Markov Random Fields

IEEE Information Theory Workshop 2020

The Authors and Funders

KNOW

H2020 No. 824115

©Know-Center GmbH • Research Center for Data-Driven Business and Big Data Analytics

 \cap

í.

- ▶ $\mathcal{G} = (\mathcal{V}, E)$
- \triangleright \mathcal{N}_i are neighbors of *i*
- ▶ X is a (\mathcal{G}, p_X) -MRF
- $\triangleright p_{X_i|X_{i/}} = p_{X_i|X_{\mathcal{N}_i}}$
- e.g., $p_{X_3|X_1,X_2,X_4} = p_{X_3|X_2,X_4}$

í.

g_i: X_i → Y_i
g_i non-injective
Y_i = g_i(X_i)
Y = (Y₁,...,Y₄)

nî,

0

- W.r.t. which graph $\mathcal{G}_Y = (\mathcal{V}, E_Y)$ is Y an MRF?
- Lumpability: $E_Y \subseteq E$

í l

 \circ

- W.r.t. which graph $G_Y = (\mathcal{V}, E_Y)$ is Y an MRF?
- Lumpability: $E_Y \subseteq E$

 $p_{X_i|X_{i'}} = p_{X_i|X_{\mathcal{N}_i}} \Leftrightarrow H(X_i|X_{i'}) = H(X_i|X_{\mathcal{N}_i}) \text{ but } H(Y_i|Y_{i'}) \leq H(Y_i|Y_{\mathcal{N}_i})$

Running Example

X_i = {−1, 1} not lumpable

KNOW

(iilii

Ω

-

6

Related Work

Lumpability of Markov chains (G is a directed line graph)¹

- linear algebraic conditions²
- information-theoretic conditions³
- Yeung et al.^{4,5} did not specify p_X and considered sub-graphs, i.e., g_i is either constant or identity
- Perez & Heitz⁶ specified p_X and considered sub-graphs or stochastic maps p_{Yi|Xi} > 0
- ▶ This work: *p*_X specified, general *g_i*

 2 Gurvits and Ledoux, "Markov property for a function of a Markov chain: a linear algebra approach", 2005

 3 Geiger and Temmel, "Lumpings of Markov chains, entropy rate preservation, and higher-order lumpability", 2014

⁴Yeung et al., "Information-theoretic characterizations of Markov random fields and subfields", 2017

⁵Yeung et al., "On Information-Theoretic Characterizations of Markov Random Fields and Subfields", 2019

 $^{6}\mathsf{Perez}$ and Heitz, "Restriction of a Markov random field on a graph and multiresolution statistical image modeling", 1996

í.

¹Kemeny and Snell, Finite Markov Chains, 1976

MRFs with positive p_X

KNOW

Lemma (Hammersley-Clifford)

X is a (\mathcal{G}, p_X) -MRF iff there exists a family of clique potential functions $\{\psi_C, C \in C\}$ such that

$$\forall x \in \mathcal{X}: \quad p_X(x) = \frac{1}{Z} \prod_{C \in \mathcal{C}} \psi_C(x_C),$$

©Know-Center GmbH • Research Center for Data-Driven Business and Big Data Analytics

MRFs with positive p_X

1411

Lemma (Hammersley-Clifford)

X is a (\mathcal{G}, p_X) -MRF iff there exists a family of clique potential functions $\{\psi_C, C \in C\}$ such that

$$\forall x \in \mathcal{X}: \quad p_X(x) = \frac{1}{Z} \prod_{C \in \mathcal{C}} \psi_C(x_C),$$

E.g., $p_X(x) \propto \psi_{\{1,2\}}(x_1, x_2) \cdot \psi_{\{2\}}(x_2) \cdot \psi_{\{2,3,4\}}(x_2, x_3, x_4)$

▶ Y is a (\mathcal{G}, p_Y) -MRF if

$$p_Y(y) = \frac{1}{Z'} \prod_{C \in \mathcal{C}} U_C(y_C)$$

KNOW

iilii

0

▶ Y is a (\mathcal{G}, p_Y) -MRF if

$$p_Y(y) = \frac{1}{Z'} \prod_{C \in \mathcal{C}} U_C(y_C)$$

Since
$$Y = g(X)$$

$$p_Y(y) = \sum_{x \in g^{-1}(y)} p_X(x)$$

©Know-Center GmbH • Research Center for Data-Driven Business and Big Data Analytics

iilii

0

▶ Y is a (\mathcal{G}, p_Y) -MRF if

$$p_Y(y) = \frac{1}{Z'} \prod_{C \in \mathcal{C}} U_C(y_C)$$

Since Y = g(X) and X is a (\mathcal{G}, p_X) -MRF, we have

$$p_Y(y) = \sum_{x \in g^{-1}(y)} p_X(x) = \sum_{x \in g^{-1}(y)} \frac{1}{Z} \prod_{C \in \mathcal{C}} \psi_C(x_C)$$

©Know-Center GmbH • Research Center for Data-Driven Business and Big Data Analytics

nî,

▶ Y is a (\mathcal{G}, p_Y) -MRF if

$$p_Y(y) = \frac{1}{Z'} \prod_{C \in \mathcal{C}} U_C(y_C)$$

Since Y = g(X) and X is a (\mathcal{G}, p_X) -MRF, we have

$$p_Y(y) = \sum_{x \in g^{-1}(y)} p_X(x) = \sum_{x \in g^{-1}(y)} \frac{1}{Z} \prod_{C \in C} \psi_C(x_C)$$

Y is a (G, p_Y)-MRF if \u03c6_C are constant on the preimages under g í.

$$\blacktriangleright \mathcal{X}_i = \{-1, 1\}$$

KNOW

- *p_X* characterized by ψ_{{1,2}}, ψ_{{2},ψ_{{2,3,4}}</sub>
- Iumpable if:

$$\begin{split} \psi_{\{2\}}(-1) &= \psi_{\{2\}}(1) \\ \text{AND} \\ \psi_{\{1,2\}}(x_1,-1) &= \psi_{\{1,2\}}(x_1,1) \\ \text{AND} \\ \psi_{\{2,3,4\}}(-1,x_3,x_4) &= \psi_{\{2,3,4\}}(1,x_3,x_4) \end{split}$$

iilii

0

Theorem (Loosely)

Y is a MRF w.r.t. the graph G if for every vertex $i \in V$ there is at most one clique potential ψ_C that is **not** constant on the preimage under g

A Slightly Less Trivial Sufficient Condition

KNOW

nhi

Theorem

Y is a (\mathcal{G}, p_Y) -MRF if, for every $i \in \mathcal{V}$,

 $H(Y_i|Y_{\mathcal{N}_i}) = H(Y_i|X_{\mathcal{N}_i})$

KNOW

Theorem *Y* is a (\mathcal{G}, p_Y) -MRF if, for every $i \in \mathcal{V}$, $H(Y_i | Y_{\mathcal{N}_i}) = H(Y_i | X_{\mathcal{N}_i})$

Proof:

$$H(Y_i|Y_{\mathcal{N}_i}) \geq H(Y_i|Y_{ij}) \geq H(Y_i|X_{ij}) = H(Y_i|X_{\mathcal{N}_i})$$

©Know-Center GmbH • Research Center for Data-Driven Business and Big Data Analytics

nî,

Theorem (Sufficient Condition for Markov Chain Lumpability⁷)

Let $X = (X_1, X_2, ...)$ be a stationary Markov chain and let $Y_i = g_0(X_i)$. Then, $Y = (Y_1, Y_2, ...)$ is a stationary Markov chain if, for some i,

 $H(Y_i|Y_{i-1}) = H(Y_i|X_{i-1})$

• $H(Y_i|Y_{N_i}) = H(Y_i|X_{N_i})$ vs. $H(Y_i|Y_{i-1}) = H(Y_i|X_{i-1})$

 $^{^{7}}$ Geiger and Temmel, "Lumpings of Markov chains, entropy rate preservation, and higher-order lumpability", 2014

Theorem (Sufficient Condition for Markov Chain Lumpability⁷)

Let $X = (X_1, X_2, ...)$ be a stationary Markov chain and let $Y_i = g_0(X_i)$. Then, $Y = (Y_1, Y_2, ...)$ is a stationary Markov chain if, for some i,

 $H(Y_i|Y_{i-1}) = H(Y_i|X_{i-1})$

$$H(Y_i|Y_{\mathcal{N}_i}) = H(Y_i|X_{\mathcal{N}_i}) \text{ vs. } H(Y_i|Y_{i-1}) = H(Y_i|X_{i-1})$$
$$X_1 - X_2 - X_3 - \cdots \text{ vs. } X_1 \to X_2 \to X_3 \to \cdots$$

⁷Geiger and Temmel, "Lumpings of Markov chains, entropy rate preservation, and higher-order lumpability", 2014

Theorem (Sufficient Condition for Markov Chain Lumpability⁷)

Let $X = (X_1, X_2, ...)$ be a stationary Markov chain and let $Y_i = g_0(X_i)$. Then, $Y = (Y_1, Y_2, ...)$ is a stationary Markov chain if, for some i,

 $H(Y_i|Y_{i-1}) = H(Y_i|X_{i-1})$

 $H(Y_i|Y_{\mathcal{N}_i}) = H(Y_i|X_{\mathcal{N}_i}) \text{ vs. } H(Y_i|Y_{i-1}) = H(Y_i|X_{i-1})$ $X_1 - X_2 - X_3 - \cdots \text{ vs. } X_1 \to X_2 \to X_3 \to \cdots$

Undirected vs. directed graph G

 $^{^{7}}$ Geiger and Temmel, "Lumpings of Markov chains, entropy rate preservation, and higher-order lumpability", 2014

Theorem (Sufficient Condition for Markov Chain Lumpability⁷)

Let $X = (X_1, X_2, ...)$ be a stationary Markov chain and let $Y_i = g_0(X_i)$. Then, $Y = (Y_1, Y_2, ...)$ is a stationary Markov chain if, for some *i*,

 $H(Y_i|Y_{i-1}) = H(Y_i|X_{i-1})$

• $H(Y_i|Y_{N_i}) = H(Y_i|X_{N_i})$ vs. $H(Y_i|Y_{i-1}) = H(Y_i|X_{i-1})$

▶
$$X_1 - X_2 - X_3 - \cdots$$
 vs. $X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow \cdots$

Undirected vs. directed graph G

Suggests further work for Bayesian networks

 $^{^7 {\}rm Geiger}$ and Temmel, "Lumpings of Markov chains, entropy rate preservation, and higher-order lumpability", 2014

Conclusion

When is a function of an MRF an MRF on a subgraph?

Two sufficient conditions:

- via clique potentials of equivalent Gibbs field
- information-theoretic condition

Further results:

- conditions for Y to have the same entropy as X
- information preservation, lossless compression

Conclusion

When is a function of an MRF an MRF on a subgraph?

Two sufficient conditions:

- via clique potentials of equivalent Gibbs field
- information-theoretic condition

Further results:

- conditions for Y to have the same entropy as X
- information preservation, lossless compression

Thanks!