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Functions of Markov Random Fields (MRFs)

Xy
» V=1{1,2,34}
X1 X2 X3 » set of RVs X;
» alphabet X;
» PMF px.
> X =(X1,...,Xa)
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// > §= (V’ E)
» N are neighbors of |

» Xisa (G, px)-MRF
> PX;|x; = PX;| Xy,

P> e.8 PXs|Xi, X0, Xa =
PX3|X2,Xs
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X1 Xo /X3
81 83 84
Y, & Ys
Y, Ya

> gii Xi = )i

> gj non-injective
> Vi = gi(Xi)

> Y =(Y1,...,Ya)
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Functions of Markov Random Fields (MRFs)

Xy
» W.r.t. which graph
X X X3 Gy = (V,Ey)is Y an
MRF?
» Lumpability:
4 Y3 Ey CE
Ys Ya
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Functions of Markov Random Fields (MRFs)

Xy
» W.r.t. which graph
X X X3 Gy = (V,Ey)is Y an
MRF?
» Lumpability:
4 Y3 Ey CE
Ys Ya

Pxi|x, = Pxixy, & H(XilX;) = H(Xj|Xy;) but H(Yi|Y}) < H(Yi|Yx;)
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Running Example

» X ={-11}
» not lumpable
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Related Work

» Lumpability of Markov chains (G is a directed line graph)?

e linear algebraic conditions?
e information-theoretic conditions®

» Yeung et al.** did not specify px and considered sub-graphs,
i.e., g is either constant or identity

» Perez & Heitz® specified px and considered sub-graphs or
stochastic maps py;x, > 0

» This work: px specified, general g;

1Kemeny and Snell, Finite Markov Chains, 1976
2Gurvits and Ledoux, “Markov property for a function of a Markov chain: a linear algebra approach”, 2005

3Geiger and Temmel, “Lumpings of Markov chains, entropy rate preservation, and higher-order lumpability”,
2014

4Yeung et al., “Information-theoretic characterizations of Markov random fields and subfields”, 2017
l‘—’Yeung et al., “On Information-Theoretic Characterizations of Markov Random Fields and Subfields”, 2019

SPerez and Heitz, “Restriction of a Markov random field on a graph and multiresolution statistical image
modeling”, 1996
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MRFs with positive px

X1 X X3

Lemma (Hammersley-Clifford)

X is a (G, px)-MREF iff there exists a family of clique potential
functions {¢¢, C € C} such that

Vx € X1 px(x) = % H Ye(xc),
ceC
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MRFs with positive px

X1 X X3

Lemma (Hammersley-Clifford)

X is a (G, px)-MREF iff there exists a family of clique potential
functions {¢¢, C € C} such that

Vx € X1 px(x) = % H Ye(xc),
ceC

E.g. px(x) o Y12y (X1, x2) - ¥yy (x2) - 1y2,3.43 (32, X3, Xa)
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A Trivial Sufficient Condition
» Yisa (G, py)-MRF if

pr(y) = 5 [] Uetre)
ceC
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A Trivial Sufficient Condition
» Yisa (G, py)-MRF if

pr(y) = 5 [] Uetre)
ceC

» Since Y = g(X)

py(y)= > px(x)

xeg=(y)
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A Trivial Sufficient Condition

» Yisa (G, py)-MRF if

y)= % I Uclyo)

ceC

» Since Y = g(X) and X is a (G, px)-MRF, we have

py(y)= D, px(x)= > ch xc)

xeg=(y) Xeg‘l(y) CeC
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A Trivial Sufficient Condition

» Yisa (G, py)-MRF if

y)= % I Uclyo)

ceC

» Since Y = g(X) and X is a (G, px)-MRF, we have

py(y)= D, px(x)= > ch xc)

xeg=(y) Xeg‘l(y) CeC

» Yisa (G, py)-MRF if ¢¢ are constant on the preimages
under g
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A Trivial Sufficient Condition

/ X4
X1 X2 X3 » X ={-1,1}
. ‘ " ‘ . » px characterized by

Yi1.2) Vi1 Y1234}

Y1 \H Y3\ » lumpable if:
YZL Ya

Yi23(—1) = ¥y2(1)
AND

Y12y (1, —1) = Y123 (x1, 1)
AND

Vi2341(—1,x3,x4) = V2341 (1, x3, X4)
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A Slightly Less Trivial Sufficient Condition

Theorem (Loosely)

Y is a MRF w.r.t. the graph G if for every vertex i € V there is at

most one clique potential 1¢ that is not constant on the preimage
under g
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A Slightly Less Trivial Sufficient Condition

4 X /x3 > X ={-1,1}
. ‘ y ‘ . > px characterized by

Yr12) Vi) Y234

Y1 \H Ys\ » lumpable if:
YZL Ya

Y12y (x1, —1) = g1 03(xa, 1) AND 923 (—1) = hy21(1)
OR

Vi23.43(—1,x3,x8) = V2,3.43(1,x3,Xa) AND ¢y (—1) = ¥y (1)
OR
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X1 X2 X3

Theorem
Y is a (G, py)-MRF if, for every i € V,

H(YilYn;) = H(YilXx;)
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An Information-Theoretic Sufficient Condition

Theorem
Y is a (G, py)-MRF if, for every i € V,

H(YilYx;) = H(YilXx;)

Proof:

HYilYa;) = H(Yi[Y) = H(YiIX) = H(YilXw;)
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An Information-Theoretic Sufficient Condition

Theorem (Sufficient Condition for Markov Chain Lumpability”)

Let X = (X1, Xa,...) be a stationary Markov chain and let
Yi = go(Xi). Then, Y = (Y1, Yo,...) is a stationary Markov chain
if, for some i,

H(Yi|Yi—1) = H(Yi|Xi-1)

> H(YilYn;) = H(YilXx;) vs. H(Yi|Yi1) = H(Yi[Xi1)

7Geiger and Temmel, “Lumpings of Markov chains, entropy rate preservation, and higher-order lumpability”,
2014
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An Information-Theoretic Sufficient Condition

Theorem (Sufficient Condition for Markov Chain Lumpability”)

Let X = (X1, Xa,...) be a stationary Markov chain and let
Yi = go(Xi). Then, Y = (Y1, Yo,...) is a stationary Markov chain
if, for some i,

H(Yi|Yi—1) = H(Yi|Xi-1)

> H(Yi|Yx;) = H(Yi|Xx;) vs. H(Yi|Yi—1) = H(Yi|Xi-1)
| 2 X1—X2—X3—--- VS. X1—>X2—)X3—>---

7Geiger and Temmel, “Lumpings of Markov chains, entropy rate preservation, and higher-order lumpability”,
2014
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An Information-Theoretic Sufficient Condition

Theorem (Sufficient Condition for Markov Chain Lumpability”)

Let X = (X1, Xa,...) be a stationary Markov chain and let
Yi = go(Xi). Then, Y = (Y1, Yo,...) is a stationary Markov chain
if, for some i,

H(Yi|Yi—1) = H(Yi|Xi-1)

> H(YilYx;) = H(YilXn;) vs. H(Yi|Yi1) = H(Yi|Xi-1)
> X1 —Xo—-Xg—--vs. X1 = X0 > X3 — -
» Undirected vs. directed graph G

7Geiger and Temmel, “Lumpings of Markov chains, entropy rate preservation, and higher-order lumpability”,
2014
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An Information-Theoretic Sufficient Condition

Theorem (Sufficient Condition for Markov Chain Lumpability”)

Let X = (X1, Xa,...) be a stationary Markov chain and let
Yi = go(Xi). Then, Y = (Y1, Yo,...) is a stationary Markov chain
if, for some i,

H(Yi|Yi—1) = H(Yi|Xi-1)

> H(YilYx;) = H(YilXn;) vs. H(Yi|Yi1) = H(Yi|Xi-1)
> X1 —Xo—-Xg—--vs. X1 = X0 > X3 — -
» Undirected vs. directed graph G

» Suggests further work for Bayesian networks

7Geiger and Temmel, “Lumpings of Markov chains, entropy rate preservation, and higher-order lumpability”,
2014
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Conclusion

» When is a function of an MRF an MRF on a subgraph?
» Two sufficient conditions:

e via clique potentials of equivalent Gibbs field
e information-theoretic condition

» Further results:

e conditions for Y to have the same entropy as X
e information preservation, lossless compression

©Know-Center GmbH e Research Center for Data-Driven Business and Big Data Analytics



Conclusion

» When is a function of an MRF an MRF on a subgraph?
» Two sufficient conditions:

e via clique potentials of equivalent Gibbs field
e information-theoretic condition

» Further results:

e conditions for Y to have the same entropy as X
e information preservation, lossless compression

Thanks!
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