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Fig. 2. Clustering results of approach (A) and (B) on a real-world dataset. (a)-(e) display five example wafermaps from the dataset. (f) displays the pairwise
scatterplot of the 3 principal components, resulting from approach (A), (g) displays the scatterplot of the two output features from approach (B). In (f) and
(g), color indicates clusters.

of the simulated dataset can be done by the NMI, which
compares the clustering results to the ground truth. In this re-
spect, both approaches show accurate performances, especially
considering the high complexity induced by different types of
variations between the patterns (e.g., position-invariance for
pattern 2, rotation-invariance for pattern 3, etc.).

Intuitively, an increase of the number of PCA components
in approach (A) or the dimensionality of the latent space
in approach (B) should improve the clustering performance.
Hence, we additionally investigate the effect of setting the
feature space to 10, 15 and 20 dimensions. Our results show
that for each four, five, and six clusters the NMI values
decrease to approx. 0.15 – 0.64 (approach (A)) and to approx.
0.2 – 0.4 (approach (B)). In both approaches, the distinct
gradient directions contained in pattern 3 are even more
accentuated in the higher dimensional space, although being
intra-class variations and therefore irrelevant for clustering.
As a result, pattern 3 is more dispersed on several clusters,
while pattern 1, 2 and 4 are successively merged to a single
cluster - therefore, the negative effects observed in the lower-
dimensional space are further intensified. Although three PCA
components only cover 40% of the total variance in approach
(A), this strong reduction of dimensionality is not only benefi-
cial for interpretability and presentability, but rather necessary
to reduce intra-class effects.

C. Real-World Dataset

Dataset. To demonstrate the performance of the presented
approaches on a real-world dataset, the following use-case
will be considered: wafer test data of a semiconductor product
with six lots are investigated. In total, 21 electrical parameters
are measured on each device, which results in a total number
of approx. 6000 wafermaps. A split into a training set and

a test set is performed by choosing Mtrain = 4935 training
wafermaps (five lots) and Mtest = 1029 wafermaps (one lot)
for evaluation. (For approach (B), training and test datasets
were reduced to be integer multiples of the batch size, i.e.,
to Mtrain = 4930 and Mtest = 1020.) Visual inspection
reveals different patterns at different levels of intensity on
most analog wafermaps, while few show spatially independent
measurement noise. Major patterns are depicted in Fig. 2.
Since a correct ”labeling” indicating the ground truth cannot
be assumed for real data, the evaluation of the real-world
dataset will be based on the ASC. The number of clusters is
determined by the optimal ASC value reached on the training
dataset for each method separately. Apart from this, the same
experimental setup as for the synthetic dataset is applied.
Results.Using the image features from approach (A), the real-
world dataset is divided into k = 3 clusters, which yields
the best ASC value. The clustering results for the test set are
depicted in Fig. 2f. The ASC value for approach (A) is 0.65,
which matches the range of the ASC for the simulated data,
i.e., the clustering performance is similar.

The features extraced using approach (B) for the test set are
shown in Fig. 2g. On the training set, the ASC was maximized
for k = 2 clusters to a value of 0.7. The second maximum
of the ASC at 0.56 was achieved for k = 3. Therefore, we
choose k = 2 for clustering the test set, achieving an ASC of
0.58 for the clustering shown in Fig. 2g.

In general, the behavior of approaches (A) and (B) on
the real dataset hardly deviates from the observations on
the simulated dataset. Regarding the clustering results, the
ASC yields similar values, while the number of clusters is
reduced for both approaches. As no ground truth is available,
an external evaluation measure (e.g., NMI) is not applicable.
Nevertheless, a verification via expert judgement is possible,
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evaluating whether intra-cluster similarities exist between the
wafermaps. Indeed, known relations from domain knowledge
between the wafermaps (e.g., wafermaps originating from
closely related electrical measurements on the same wafer)
can be retrieved by the clustering.

In detail, the largest clusters (w.r.t. their cardinalities) in
the real-world dataset are cluster C1 in approach (A) and
cluster C2 in approach (B). These collect mainly wafermaps
with unspecific, noisy or weak patterns, see Fig. 2a, depicting
an example of cluster C2 in approach (B), and Fig. 2d,
depicting an example of cluster C1 in approach (A). The other
clusters, i.e., cluster C2 and C3 in approach (A) and cluster
C1 in approach (B) contain patterns showing a higher level
of intensity: Fig. 2b demonstrates one example of cluster C2

in approach (A), characterized by a gradual increase of the
measurement values from the left to the right side of the wafer.
Fig. 2c, in contrast, shows an evolving border pattern, mainly
affecting the bottom side of the wafer, assigned to cluster
C3 in approach (A). Similarly, Fig. 2e, shows a ring-pattern,
similar to pattern 1 in Fig. 1a from the simulated dataset,
which is assigned to cluster C1 by approach (B). Hence,
both approaches are able to distinguish between noisy patterns
and those depicting e.g. regions of interest, i.e., potential
process patterns. In summary, the suggested methods deliver
a plausible partitioning of the wafermaps.

V. DISCUSSION & CONCLUSION

In a first step towards automated root-cause analysis of
deviations in semiconductor frontend production, this work
addressed the problem of extracting patterns from wafermaps,
i.e., a spatial view of test measurements of devices on the
wafer. The problem was approached with methods based on
classical as well as deep learning-based image processing
and evaluated in an unsupervised clustering framework. Re-
garding computational complexity, we note that the bulk of
the computational overhead of approach (B) lies at training
time and not in the evaluation. To train on the real-world
dataset using commodity hardware, approach (A) requires 1.5–
2 hours and approach (B) requires 3 hours, whereas both,
once trained, generate outputs within few minutes. Hence, we
believe both approaches are applicable for productive usage.
Although the quantitative and qualitative performances are
similar, the classical image processing approach shows two
beneficial characteristics: First, a lower amount of training
data is required (in detail, only the estimation of the PCA
parameters requires training), which is advantageous if a
new product is launched or a production process step is
modified. Second, the features extracted from the wafermaps
are more comprehensible and interpretable, which makes them
more accessible for wafer production experts. However, the
deep learning-based approach can benefit from an increasing
amount of training data in a way impossible for the classical
approach. Moreover, the applicability of the classical approach
is limited by the complexity of the pattern structure. Thus, we
believe that, e.g., arrangements of multiple spots, lines, etc. or
combinations of those on the wafer might be hard to recognize
or distinguish.

In summary, the auto-encoder approach (approach (B)) is
more suitable under the following three conditions:
• large amounts of training data are available, together with

high-performance hardware to process it,
• training time is rather uncritical,
• complexity of the patterns requires a more flexible model.

However, in case that one of these aspects is not fulfilled (es-
pecially if only little data is available), the classical approach
should be preferred.

In a practical environment in semiconductor industry, pat-
tern types are not constant over time. While known, product-
specific process patterns are likely to reoccur, previously
unknown patterns need to be considered in addition. Therefore,
future work will consider methods for online or incremental
learning with a focus on small datasets.

The presented clustering results indicate that important
patterns are separable in feature space for both the classical
and the deep learning-based approach. This suggests that both
types of features are applicable in (semi-)supervised settings
for automatic pattern recognition as well.
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[17] T. Siegert, R. Schachtner, G. Pöppel, and E. W. Lang, “A nonnegative
tensor factorization approach for three-dimensional binary wafer-test
data,” in 15th IEEE International Conference on Machine Learning and
Applications (ICMLA), Dec 2016, pp. 842–845.

[18] S. Schrunner, O. Bluder, A. Zernig, A. Kaestner, and R. Kern, “Markov
random fields for pattern extraction in analog wafer test data,” in Proc.
7th Int. Conf. on Image Processing Theory, Tools and Applications
(IPTA), Montreal, Nov. 2017, pp. 1–6.

[19] S. Z. Li, Markov Random Field Modeling in Image Analysis. Springer,
2001.

[20] S. Geman and D. Geman, “Stochastic relaxation, gibbs distributions,
and the bayesian restoration of images,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. PAMI-6, no. 6, 1984.

[21] M. Pleschberger, “Runtime optimization for automated pattern analysis,”
Master’s thesis, Alpen-Adria-Universtät Klagenfurt, 2018.
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