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Abstract—Semiconductor manufacturing is a highly innovative
branch of industry, where a high degree of automation has
already been achieved. For example, devices tested to be outside
of their specifications in electrical wafer test are automatically
scrapped. In this work, we go one step further and analyse test
data of devices still within the limits of the specification, by
exploiting the information contained in the analog wafermaps.
To that end, we propose two feature extraction approaches
with the aim to detect patterns in the wafer test dataset. Such
patterns might indicate the onset of critical deviations in the
production process. The studied approaches are: (A) classical
image processing and restoration techniques in combination with
sophisticated feature engineering and (B) a data-driven deep
generative model. The two approaches are evaluated on both
a synthetic and a real-world dataset. The synthetic dataset has
been modelled based on real-world patterns and characteristics.
We found both approaches to provide similar overall evaluation
metrics. Our in-depth analysis helps to choose one approach over
the other depending on data availability as a major aspect, as well
as on available computing power and required interpretability
of the results.

Index Terms—Automation, Data Processing, Unsupervised
Learning, Feature Extraction.

I. INTRODUCTION

PATTERN recognition is a promising, as well as chal-
lenging area in Computer Science, which has recently

attracted interest in various branches of industry, including
semiconductor manufacturing. In a production environment,
tasks such as identification of critical conditions are supported
by data analysis tools, requiring a lot of experience and human
effort to take correct decisions. As a response to this, initiatives
have been started to increase the degree of automation. This
goal is challenging as it requires an understanding of the
specifics and peculiarities of semiconductor manufacturing, in
addition to in-depth know-how in data science methods.
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At the end of semiconductor frontend production, the wafer
test dataset is generated by conducting a sequence of electrical
tests. Each device on the wafer is measured in order to detect
quality deviations, capturing a number of parameters for each
device. Depending on whether or not the measurements are
within the predefined specification limits, devices are classified
as pass or fail.

In addition, wafer test data might also reveal production
issues visible as spatial regularities, i.e. patterns on the so-
called wafermap. For many of the different products, engineers
are aware of specific patterns that indicate critical process
deviations and need to be traced back to their root-cause.
However, manual screening of wafermaps requires a high
effort and might be linked to subjective decisions. Although
automated state-of-the-art procedures have been proposed in
literature, these are mainly based on pass/fail or categorical
data (binning), which impedes detecting process deviations
at an early stage. In contrast, analog wafer test data permit
to recognize patterns before they lead to violations of the
specification limits. Hence, the use of analog data reduces
yield loss and time until a deviation is detected. While there
is a substantial body of research on binary wafermap data
(pass/fail), to the best of our knowledge, there is little research
available about how to make use of this potential advantage
due to analog wafermaps.

In this work we fill this gap by presenting a first step towards
an automatic assessment of analog wafermaps. Specifically,
we propose two approaches to extract features from analog
wafermaps: (A) a classical image processing approach based
on restoration and specifically engineered features, and (B)
a deep learning approach based on convolutional variational
auto-encoders. To verify that the extracted features can distin-
guish different wafermap patterns, we conduct experiments on
two datasets: i) a synthetic evaluation dataset based on proto-
type patterns, and ii) a real-world dataset of analog wafermaps.
For evaluation, the features extracted via both approaches
are used to cluster wafermaps, and the obtained clusters are
validated internally (Average Silhouette Coefficient) and exter-
nally (Normalized Mutual Information). Our in-depth analysis
of cluster assignments indicates that both approaches perform
similarly, both quantitatively and qualitatively. Moreover, we
show that the features extracted of both approaches can be
used to distinguish different patterns and may thus be used
in (semi-)supervised classification settings. We conclude our
work by comparing the computational requirements of each
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approach and by providing guidelines on choosing among the
proposed approaches based on, e.g., the availability of data
and computational resources.

II. RELATED WORK

Several semiconductor manufacturers and research institutes
have tackled the problem of automated wafer test data or
wafermap analysis. While most research projects dealing with
wafer test data focus on the detection of single-chip anomalies
(i.e. outliers) to address product quality issues, e.g. [1], [2], a
minor part utilizes automated methods for production process
monitoring and failure detection.

An example for automated approaches to detect failure pat-
terns in wafermaps is provided by Wu et al. [3]. They propose
a feature extraction method to perform pattern recognition on
large databases in a reasonable computation time, improving
state-of-the-art approaches. In contrast to most other available
research papers dealing with this topic, they consider rotation-
invariant patterns. However, the presented approaches are
tailored to describe patterns in discrete instead of analog
wafer test data. Another closely related idea was recently
introduced by Taha et al. [4], who apply an unsupervised
learning (clustering) method to wafermaps. They investigate
defect patterns using Voroni regions, i.e., a segmentation
approach of a wafermap to detect defect areas. The developed
”DDPfinder” identifies spatial clusters by their centroid points
and correlates them to other wafermaps. Chen and Liu [5]
present an approach for pattern recognition in wafer bin maps,
using the so-called ART1 neural network pipeline. This idea
is extended and refined in later works by Liu et al., e.g., in an
improved network setting [6] and by introducing a wavelet
transform [7]. More recently, an approach is presented by
Alawieh et al. [8], who suggest wafermap clustering after
removing random failures using singular value decomposition.

There is a growing body of literature on deep neural net-
works dedicated to clustering (e.g. Guo et al. [9] and references
therein) and to feature extraction with deep generative models,
specifically with the variational auto-encoder [10], [11]. The
work by Kyeong and Kim [12] and Nakazawa and Kulka-
rni [13] exemplifies the applicability of deep convolutional
neural networks to classify wafer bin map defect patterns of
mixed-types and to classify and retrieve images of density-
based wafermap defect patterns.

All of those works use pass/fail, bin wafermaps or defect
densities instead of the original measurement values. The
resulting patterns show violations of the specification limits,
but fail to indicate whether pass-devices are close to the limits
or not. As a result, these methods cannot be applied to prevent
upcoming production process issues, which do not yet violate
the specification limits. Further, a distinction between different
root-causes of errors is not easily possible in a setting where
only pass/fail information is used.

In contrast, the solution proposed in this work focuses on the
analysis of spatial patterns in the original (analog) wafer test
data, i.e., a multivariate set of measurements is available for
each device. Variations of single patterns are considered, such
as rotations or translations, which are not covered by other

approaches. Only little research has been performed along this
direction. For example, Rostami et al. [14] present a whole
machine learning pipeline, consisting of binary classifiers,
projection and clustering methods. Their aim, however, is
to detect and classify faults in wafer production data, while
our focus is more generally on extracting features that can
be used in unsupervised settings, too. Another interesting
work on semiconductor industry is presented by Bao, Wang
and Jin [15], who apply Gaussian Markov Random Fields
to create a spatial model of wafer thickness. However, the
work focuses on modelling material parameters instead of
recognizing electrical failure patterns.

None of the cited approaches is directly comparable to
our method, mainly because the target differs: state-of-the-
art algorithms analyze pass/fail (or bin) data over wafermaps
to detect patterns produced by devices violating the spec-
ifications. Hence, the failure mode already induces a yield
loss. In this paper, a novel approach of analyzing the analog
measurement data is deployed, which permits the user to
detect evolving patterns before they cause a violation of the
specification limits. This focus on analog wafermaps also
leads to data properties fundamentally different from those of
pass/fail or bin wafermaps: It is unusual in practice to observe
analog wafermaps without a pattern (i.e., pure noise), as most
measurements depict certain spatial dependencies. Therefore,
the occurrence of patterns is the normal situation for analog
wafermaps, whereas their absence is normal for pass/fail or
bin wafermaps. In case that mixtures of multiple patterns
on one wafermap occur, demixing such combinations can be
done using independent component analysis, as demonstrated
for analog wafer test data by Zernig et al. [16], or using
nonnegative tensor factorization, demonstrated by Siegert et
al. [17].

III. FEATURE EXTRACTION METHODS

For both proposed methods, the classical and the deep
learning approach, we assume that there are M wafers with n
devices each. The i-th device of a given wafer is represented
by a real-valued measurement di; we collect all measurements
of a given wafer in a vector d = (d1, . . . , dn) ∈ Rn. If for
a subset of devices the measurement is missing, we replace
these missing values by the median measurement value of the
other devices in the spatial neighborhood (approach (A)) or
on the whole wafer (approach (B)), respectively.

A. Approach (A): Classical Image Processing

Our first approach is based on a classical image processing
procedure. It consists of a denoising step based on a Markov
Random Field model and a feature extraction step that com-
bines Local Binary Patterns and Rotated Local Binary Patterns.
Markov Random Fields (MRFs). An MRF is a probabilistic
model defined by a graph G of random variables (RVs). In
our case, the set of the graph nodes corresponds to the set
of devices on a wafer, S = {1, . . . , n}. The edge set of G
is specified by the spatial neighborhoods between the devices
(adjacency). We assume a regular 8-neighborhood structure,
i.e., the node of device i is connected to the nodes of its
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horizontal, vertical, and diagonal neighbors; letNi ⊂ S denote
the index set of nodes neighboring node i. It is assumed that
each (noiseless) device value xi is a realization of an RV Xi

associated with node i in the graph G. The definition of an
MRF implies that in the graph G, each RV Xi, i ∈ S is
conditionally independent from all other RVs given the RVs
associated with its neighbors j ∈ Ni.
Denoising using MRFs. The MRF model for wafermap
denoising is explained in detail in [18] which is based on the
book of Li [19]. The corresponding image processing model,
which was originally introduced by Geman and Geman [20],
belongs to the class of Spatial Domain Filters, i.e., filtering
local groups of adjacent image pixels directly from the original
image to reduce noise. Specifically, the basic model describing
the denoising task is given as

d = x+ ε, (1)

where x = (x1, . . . , xn) ∈ Rn is the vector of noiseless
device measurements and ε = (ε1, . . . , εn) ∈ Rn denotes the
vector of noise values and unwanted influences. The goal is
to provide an appropriate estimation of x, assuming that x
is such that measurements of adjacent devices on the same
wafer are not too different and that the entries of ε are all
stochastically independent and normally distributed with zero
mean and variance σ2.

An explicit maximum a-posteriori MRF exploiting the as-
sumption of normally distributed errors for the likelihood and
a smoothing act as a prior, is given by

x̂MAP = arg min
x∈Rn

∑
i∈S

 (xi − di)2
2σ2

+
∑
j∈Ni

(xi − xj)2
 , (2)

which is solved to infer the noiseless device values. For details,
see [21].
(Rotated) Local Binary Patterns ((R)LBPs). LBPs are a
texture-based image feature description method, proposed by
Ojala et al. [22] based on an idea by He and Wang [23], which
can be quickly calculated because of their simplicity. In the
terminology of this paper, the basic principle of LBPs is to
compare each denoised device measurement xi at site i to its
neighbors xj , j ∈ Ni. For each j ∈ Ni, define yj as follows:

yj =

{
1, xj ≥ xi
0, else.

(3)

For each position i, the LBP value is defined as

LBPi =
7∑
j=0

ỹj2
j =

∑
j∈Ni

yj2
πi(j), (4)

where πi : Ni → {0, . . . , 7} indicates a clockwise numbering
of the neighborhood set, starting with the right neighbor.
Therefore, LBPi is a decimal representation of the binary
number (ỹ0, . . . , ỹ7)2, which represents the structure of the
pixels neighboring the i-th device. While binary numbers
containing more than two 0-1- or 1-0-transitions are often
neglected as they might represent noisy image pixels (so-called
non-uniform patterns), Mehta and Egiazarian [24] showed that
also non-uniform patterns may contain essential information.

Considering also these non-uniform patterns, we obtain 256
possible values for LBPi.

Unfortunately, LBPs are not invariant w.r.t. rotations. This
issue was resolved by Mehta and Egiazarian [24] who intro-
duced a variant called Rotated LBPs (RLBPs). For RLBPs,
the neighborhood is oriented along the “dominant direction”:
the positions of the digits in the binary number LBPi =
(ỹ0, . . . , ỹ7)2 are shifted such that the largest absolute differ-
ence, i.e. maxj∈Ni |xj−xi|, corresponds to the first position.
Therefore we shift by Di positions, where

Di = πi

(
argmax
j∈Ni

|xj − xi|
)
. (5)

In mathematical terms, this means that (4) can be reformulated
for RLBPs as

RLBPi =
∑
j∈Ni

yj2
(πi(j)−Di)mod8 , (6)

where (·)mod· denotes the modulus operator.
Feature Extraction using (R)LBPs and PCA. For feature
extraction, we select relevant wafer regions by thresholding,
extract histograms based on LBPs and RLBPs, and then reduce
the resulting features via principal component analysis (PCA).

The wafer regions from which LBP- and RLBP-based his-
tograms are computed are determined by Otsu’s thresholding
method [25], which is an automated criterion to perform
image thresholding. This means that the smoothed image is
segmented into regions, where histograms are computed only
on regions R ⊆ S exceeding the Otsu threshold.

We then compute LBPi, defined in (4), for each device i ∈
R (in the computation, we make sure not to include pixels from
outside the region of interest). The LBP-based features of the
wafer are finally obtained by calculating histograms of LBPi
for all i ∈ R. Since each LBPi can take up to 256 different
values, we obtain a 256-dimensional LBP-based feature for
each wafer. Similarly as for the LPBs, also histograms for the
RLPBs are computed from the RLPB values of the devices
in R. Combined with the LPB-based histogram, this leads to
a 512-dimensional feature vector for each wafer. We reduced
the feature space via PCA by retaining only the first three
principal components. Thus, each wafer is represented by a
three-dimensional feature vector z.

B. Approach (B): Deep Learning

Our second approach is based on convolutional neural
networks trained in an auto-encoding setup. As a result, every
wafer is represented as a point in a low-dimensional space.
Auto-Encoder Theory. Auto-encoders are neural networks
that compress their input to a lower-dimensional representation
via an encoder and decompress it back to the original input
space via a decoder. The encoder (decoder) is represented as
neural network layers of progressively less (more) neurons,
which, as with other deep neural networks, are trained via
backpropagation. The loss function of auto-encoders reflects
the distance between original input and the auto-encoder’s
decoded output (e.g., binary cross-entropy). Therefore, auto-
encoders aim to faithfully reproduce given input data as far
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as the constraint of encoding input data to lower-dimensional
representations allows. Auto-encoders see application in di-
mensionality reduction and data-denoising problems.
Variational Auto-Encoder Theory. The variational auto-
encoder is a Bayesian deep learning technique, which learns
latent data representations given the presence of large amounts
of data and intractable posterior distributions.

In variational inference, the goal is to find an approxima-
tion to an intractable probability distribution in a class of
tractable probability distributions. It is assumed that data di,
i = 1, . . . , n is generated by an unobserved continuous latent
RV z via the likelihood pθ(d|z) and the prior pθ(z). These
are assumed to be parametrized by θ and to be unknown
Gaussian distributions. The posterior distribution pθ(z|d) and
the marginal likelihood pθ(d) are assumed to be intractable,
so they need to be approximated with parametric families
of Gaussian probability distributions qφ(z|d). In variational
inference, one solves this problem by maximizing the evidence
lower bound for pθ(d), which is given by:

log(pθ(d)) ≥ −DKL(qφ(z|d)‖pθ(z)) + Eqφ [log(pθ(d|z))],
(7)

where DKL(·‖·) is the Kullback-Leibler divergence. The
auto-encoder encodes input d to a lower-dimensional repre-
sentation z and then decodes it back to d, with the goal
to maximize the right-hand side of (7). First, maximizing
−DKL(qφ(z|d)‖pθ(z)) yields a compact representation of
input data d by the latent variable z. Second, in a conflicting
optimization objective, maximizing Eqφ [log(pθ(d|z))] leads
to an accurate reconstruction d̂ = (d̂1, . . . , d̂n) of input d
given z via the decoder. Since (7) represents a lower bound
on the log-likelihood, maximizing this objective function
during training the auto-encoder ensures that the parameter
estimation is getting more accurate. In particular, the so-called
reparametrization trick allows for end-to-end optimization of
the auto-encoder via stochastic gradient descent methods,
despite the probabilistic setting. For more details, see Kingma
and Welling [10] and Rezende et al. [11].
Convolutional Auto-Encoding Neural Networks. Neural net-
works with convolutional layers form the basis of many image
classification neural networks. One reason for that is that they
escape the curse of dimensionality present in large images.
Crucially, convolutional layers leverage the spatial structure
of images to constrain the neural network’s architecture and
thereby reduce the amount of parameters required to extract
higher-level feature representations of input images. Since
convolutional layers perform differentiable operations, these
so-called convolutional neural networks can be trained with the
same methods as used for regular multi-layer neural networks.

The convolutional layer’s weights are typically termed fil-
ters. The filters function as small sliding windows which are
convolved with an input matrix (or image), i.e., sequentially
multiplied over subsets of its columns (width) and rows
(height). The sliding window’s jump size is called stride.
In this paper, convolutional layers are used in the encoder
and deconvolutions [26] in the decoder. Deconvolutions, also
known as transposed convolutions, also perform convolutions
like the encoder’s convolutional layers, but they do so in

the reverse direction. In particular, in our auto-encoder setup,
the encoder’s (decoder’s) convolved output becomes lower-
(higher-)dimensional with each layer.
Feature Extraction Using Convolutional Variational Auto-
Encoders (CVAEs). This work employs a deep auto-encoder
architecture for wafermaps as described by Santos and
Kern [27]. Each device on the wafer and its measurement can
be interpreted as pixel and color value, respectively, connecting
the problem to image processing. For each wafer, all measure-
ments are scaled to fall within the range [0, 1], which allows
interpreting them as greyscale values. Next, all wafermaps
are converted to images with a resolution of 112×112 pixels.
This allows to reuse the same CVAE architecture for different
semiconductor products, but potentially loses the one-to-one
correspondence between devices on the wafer and pixels in
the image. Our experiments show that this correspondence
is of little importance for the task of detecting measurement
patterns.

Our CVAE has the following architecture: The encoder
consists of four convolutional layers followed by two fully-
connected layers of 128 neurons and two neurons, respectively.
The output of the two neurons represent the latent variable z;
the number of dimensions was set to two to allow visualizing
the latent variable. The decoder then consists of two fully-
connected layers that embed the latent variable in a higher-
dimensional space. Four deconvolutional layers follow, which
map the activation volumes back to the original input image
size. Our architecture does not contain pooling layers: In
generative models such as ours, repeated convolutions are
preferred over pooling [28], a claim which we empirically con-
firmed in preliminary experiments with the dataset described in
Section IV-B. As far as the convolutional layers are concerned,
we employ 128 filters of size 3× 3 with a stride of two. All
layers use the rectified linear unit as activation function.

We selected an existing implementation1 of a variational
auto-encoder and adapted it to our needs. Note that this (and
many other) implementations replace the second term on the
right-hand side of (7) by the empirical cross-entropy, i.e., by

−
n∑
i=1

(
di log(d̂i) + (1− di) log(1− d̂i)

)
(8)

where d̂i is the reconstruction of the measurement of the i-th
device by the auto-encoder. This loss function was minimized
using the RMSprop optimizer with a batch size of 10.

IV. EXPERIMENTS & RESULTS

To compare the classical image processing-based approach
(A) from Section III-A to a representative instantiation of the
deep learning approach (B) from Section III-B, we present
experiments using synthetic and real-world wafer test datasets.

A. Evaluation criteria

We evaluate both approaches (A) and (B) by means of clus-
tering the extracted feature vectors. Specifically, we perform
hierarchical agglomerative clustering with average linkage

1github.com/keras-team/keras/blob/master/examples/variational autoencoder.py
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computed with the Euclidean distance. A predefined number
of clusters is chosen for each of the datasets. The clusters are
then evaluated by inspection as well as with internal and (if
a ground truth is available) external validation measures: the
Normalized Mutual Information (NMI) [29] and the Average
Silhouette Coefficient (ASC) [30], respectively.
NMI. Let Pi denote the set of wafermaps in the test set with
pattern i, i = 1, . . . , p and let Cj denote the set of wafermaps
in the test set mapped to cluster j, j = 1, . . . , k, where p and
k are the number of patterns and clusters, respectively. Given
that Mtest is the number of elements in the test dataset, the
entropy of the clustering is

H(C) = −
k∑
j=1

|Cj |
Mtest

log
|Cj |
Mtest

(and similarly, the entropy H(P) of the pattern assignment),
and the mutual information between the clustering and the
pattern assignment is

I(C;P) =
k∑
j=1

p∑
i=1

|Cj ∩ Pi|
Mtest

log
Mtest|Cj ∩ Pi|
|Cj ||Pi|

.

The NMI is defined as

NMI(C;P) = 2I(C;P)
H(C) +H(P)

and coincides with the V-measure.
Therefore, the NMI quantifies the ability of the clustering

method to identify the underlying patterns, similar to su-
pervised learning evaluation measures like the F1-measure.
However, the NMI considers that clustering might mix the
label ordering or return a different number of clusters than
specified patterns (ground truth). The NMI takes values in
[0, 1], where 1 means that the clustering perfectly matches the
real labels.
ASC. In contrast to the NMI, the ASC is an internal evaluation
measure, i.e., it assesses the quality of the clustering without
considering a ground truth. Wafers are represented by feature
vectors z in some feature space F (R3 for approach (A) and
R2 for approach (B)). Let d be a distance metric in this feature
space – in our case, the Euclidean metric d(v, z) = ‖v − z‖2
is used, where v, z ∈ F . Further, let

d(z,A) =
1

|A|
∑
v∈A

d(z, v)

denote the distance between wafer feature z ∈ F and a finite
set A ⊂ F . We define the silhouette s: F → R of a wafer
feature z ∈ F as

s(z) =
d(z, C(6 z))− d(z, C(z))

max{d(z, C(z)), d(z, C(6 z))}
,

where C(z) is the cluster to which z is assigned and C(6 z) is
the ”nearest” cluster to z excluding C(z). The ASC values of
the clustering are defined as

ASC =
1

Mtest

∑
z

s(z),

where the sum runs over the feature vectors of all Mtest

wafers. The ASC takes values in [−1, 1], with values above
0.5 and 0.75 indicating a medium and strong cluster structure.

B. Synthetic Dataset

Dataset. The dataset consists of M = 5000 different
wafermap images, containing one out of five distinctive pat-
terns, see Fig. 1a-1e. The dataset is balanced, i.e., each pattern
occurs on 1000 wafermaps. Each pattern is varied in size and
intensity. The patterns are characterized as follows:

• Pattern 1 is a ring-pattern along the border of the wafer.
• Pattern 2 is a single circular or elliptic spot at an arbitrary

position on the wafer.
• Pattern 3 is constant gradient over the whole wafermap,

but changes w.r.t. the direction.
• Pattern 4 are two spots at the left and right wafer edge.
• Pattern 5 is a crescent-shaped area at the right edge of

the wafer.

The selection of the five pattern types for this experiment is
based on observations in real-world wafer test data. While it
might not cover the whole spectrum of patterns occurring in
production, these dominant characteristics shall be considered
as a benchmark for method evaluation and comparison.

In addition to these specifications, Gaussian white noise
and outliers are added to the simulations, as well as a linear
transformation to an arbitrary data scale. The intensity of
noise, as well as the number of outliers are selected in a ran-
domized way, for each wafermap individually. This guarantees
to provide realistic simulations of production data.2

In the following experiment, approaches (A) and (B) are ap-
plied as follows: the available dataset is divided into Mtrain =
4000 training samples and Mtest = 1000 test samples. The
training set is used to estimate the PCA parameters of approach
(A), as well as to train the auto-encoder for approach (B).
In order to guarantee comparability, both approaches use the
same split of the data samples.
Results. The results for both approaches are presented in
Fig. 1 for four, five, and six clusters. Specifically, Figs. 1f and
1g show the scatterplots of the three- and two-dimensional
features of approaches (A) and (B) for six clusters, with color
indicating cluster assignment and marker styles indicating
patterns. If, instead of six clusters, five clusters are selected,
then clusters C1 and C2 are merged (red and dark red). If four
clusters are selected, additionally, clusters C5 and C6 coincide
(blue and dark blue).

To study the influence of individual patterns, we computed
confusion matrices for both approaches for the number of
clusters maximizing the NMI. The obtained confusion matrices
in Figs. 1h and 1j present the number of wafermaps of each
pattern assigned to each cluster. Note that – in contrast to
classification problems – the order of the clusters is randomly
assigned by the algorithm, i.e., any permutation of the rows is
valid in the confusion matrix.

According to Fig. 1h, approach (A) distinguishes between
pattern 1, 2, 3 and 5 correctly by assigning corresponding
wafermaps to disjoint clusters, if the number of clusters is
set to 6. However, patterns 1 and 4 are mapped to the same
cluster C1, which indicates that approach (A) is not able to

2For the full set of synthetic data, see https://zenodo.org/record/2542504,
DOI: 10.5281/zenodo.2542504
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C1 200 0 0 200 0
C2 0 0 0 0 200
C3 0 200 24 0 0
C4 0 0 66 0 0
C5 0 0 83 0 0
C6 0 0 27 0 0

(j) Approach (B)
Fig. 1. Clustering results of approach (A) and (B) on a synthetic dataset. (a)-(e) display prototypes of the five used patterns. (f) displays the pairwise
scatterplot of the 3 principal components, resulting from approach (A), (g) displays the scatterplot of the two output features from approach (B). In (f) and
(g), color indicates clusters, while marker styles indicate patterns. (h) and (j) show the confusion matrices for clustering, given an optimal number of clusters,
for approach (A) and (B), respectively. The table entries in (h) and (j) indicate the number of wafermaps with a given pattern mapped to a certain cluster.
Table (i) demonstrates the values of the evaluation criteria, NMI and ASC, for both approaches at a number of k = 4, k = 5 and k = 6 clusters.

separate them. Wafermaps showing pattern 3 are assigned to
three distinct clusters C4, C5, and C6.

Obviously, clustering pattern 3 is a challenge for approach
(A) due to the different gradient directions, which need to be
merged. For this purpose RLBP features are essential, but due
to the influence of LBP, two gradient directions are separated
from all others (see clusters C4 and C5 in Fig. 1h). The influ-
ence of gradient directions, leading to different ”subclusters”
of cluster C6, is visible in the pairwise scatterplot of the PCA
components used in approach (A), see Fig. 1f.

Thanks to the image segmentation step by Otsu’s threshold-
ing method, the size of the region of interest is implicitly taken
into account as a minor feature for the evaluation (i.e., a larger
region will result in a more accurate LBP/RLBP histogram
describing the underlying distribution). This explains the fact
that pattern 2 and 3 can be easily distinguished from each
other and from all other pattern types.

For approach (B), the auto-encoder returns the two-
dimensional feature shown in Fig. 1g. First of all, it can
be seen that all patterns are well-separated even in a two-
dimensional latent space. This shows that approach (B) is valid
as a feature extraction method for pattern classification in a
supervised or semi-supervised scenario.

Second, properties of patterns are represented in the latent

space as well: The cloud of points in the center of the
image corresponds to pattern 2, which is characterized by
arbitrary positions on the wafer. The patterns 1, 4, and 5,
which are grouped into clusters C1 (red) and C2 (dark red),
are characterized by different sizes, which is reflected in the
fact that the corresponding features z lie on approximately
one-dimensional manifolds. As in approach (A), pattern 3
is split into clusters C3 to C6, each corresponding to a set
of directions of the gradient. This suggests that the different
gradient directions of pattern 3 cannot be clustered to a single
cluster, but are separable and can thus easily be detected in a
(semi-)supervised classification setting.

In general, approaches (A) and (B) yield similar results on
the simulated dataset, which is underlined by their correspond-
ing NMI values (see Fig. 1i). The structure of the feature space
is also comparable: pattern 3 is divided into a set of subclus-
ters, one for each gradient direction. Pattern 2, i.e., a spot at
variable positions on the wafer, is represented by one wide-
spread cluster. Pattern 1 and 4, both characterized by areas at
the border of the wafer, cannot be distinguished. Regarding the
quantitative comparison, approach (A) outperforms approach
(B) w.r.t. the ASC evaluation. This might be caused by the
different dimensions of the feature spaces (3 for approach
(A), 2 for approach (B)). However, a more accurate evaluation
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(f) Approach (A), Test Set, k = 3, ASC= 0.65

clustering

cluster 1
cluster 2
cluster 3

-4 -3 -2 -1 0 1

-1
0

1
2

3

z1

z2
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Fig. 2. Clustering results of approach (A) and (B) on a real-world dataset. (a)-(e) display five example wafermaps from the dataset. (f) displays the pairwise
scatterplot of the 3 principal components, resulting from approach (A), (g) displays the scatterplot of the two output features from approach (B). In (f) and
(g), color indicates clusters.

of the simulated dataset can be done by the NMI, which
compares the clustering results to the ground truth. In this re-
spect, both approaches show accurate performances, especially
considering the high complexity induced by different types of
variations between the patterns (e.g., position-invariance for
pattern 2, rotation-invariance for pattern 3, etc.).

Intuitively, an increase of the number of PCA components
in approach (A) or the dimensionality of the latent space
in approach (B) should improve the clustering performance.
Hence, we additionally investigate the effect of setting the
feature space to 10, 15 and 20 dimensions. Our results show
that for each four, five, and six clusters the NMI values
decrease to approx. 0.15 – 0.64 (approach (A)) and to approx.
0.2 – 0.4 (approach (B)). In both approaches, the distinct
gradient directions contained in pattern 3 are even more
accentuated in the higher dimensional space, although being
intra-class variations and therefore irrelevant for clustering.
As a result, pattern 3 is more dispersed on several clusters,
while pattern 1, 2 and 4 are successively merged to a single
cluster - therefore, the negative effects observed in the lower-
dimensional space are further intensified. Although three PCA
components only cover 40% of the total variance in approach
(A), this strong reduction of dimensionality is not only benefi-
cial for interpretability and presentability, but rather necessary
to reduce intra-class effects.

C. Real-World Dataset

Dataset. To demonstrate the performance of the presented
approaches on a real-world dataset, the following use-case
will be considered: wafer test data of a semiconductor product
with six lots are investigated. In total, 21 electrical parameters
are measured on each device, which results in a total number
of approx. 6000 wafermaps. A split into a training set and

a test set is performed by choosing Mtrain = 4935 training
wafermaps (five lots) and Mtest = 1029 wafermaps (one lot)
for evaluation. (For approach (B), training and test datasets
were reduced to be integer multiples of the batch size, i.e.,
to Mtrain = 4930 and Mtest = 1020.) Visual inspection
reveals different patterns at different levels of intensity on
most analog wafermaps, while few show spatially independent
measurement noise. Major patterns are depicted in Fig. 2.
Since a correct ”labeling” indicating the ground truth cannot
be assumed for real data, the evaluation of the real-world
dataset will be based on the ASC. The number of clusters is
determined by the optimal ASC value reached on the training
dataset for each method separately. Apart from this, the same
experimental setup as for the synthetic dataset is applied.
Results. Using the image features from approach (A), the real-
world dataset is divided into k = 3 clusters, which yields
the best ASC value. The clustering results for the test set are
depicted in Fig. 2f. The ASC value for approach (A) is 0.65,
which matches the range of the ASC for the simulated data,
i.e., the clustering performance is similar.

The features extraced using approach (B) for the test set are
shown in Fig. 2g. On the training set, the ASC was maximized
for k = 2 clusters to a value of 0.7. The second maximum
of the ASC at 0.56 was achieved for k = 3. Therefore, we
choose k = 2 for clustering the test set, achieving an ASC of
0.58 for the clustering shown in Fig. 2g.

In general, the behavior of approaches (A) and (B) on
the real dataset hardly deviates from the observations on
the simulated dataset. Regarding the clustering results, the
ASC yields similar values, while the number of clusters is
reduced for both approaches. As no ground truth is available,
an external evaluation measure (e.g., NMI) is not applicable.
Nevertheless, a verification via expert judgement is possible,
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evaluating whether intra-cluster similarities exist between the
wafermaps. Indeed, known relations from domain knowledge
between the wafermaps (e.g., wafermaps originating from
closely related electrical measurements on the same wafer)
can be retrieved by the clustering.

In detail, the largest clusters (w.r.t. their cardinalities) in
the real-world dataset are cluster C1 in approach (A) and
cluster C2 in approach (B). These collect mainly wafermaps
with unspecific, noisy or weak patterns, see Fig. 2a, depicting
an example of cluster C2 in approach (B), and Fig. 2d,
depicting an example of cluster C1 in approach (A). The other
clusters, i.e., cluster C2 and C3 in approach (A) and cluster
C1 in approach (B) contain patterns showing a higher level
of intensity: Fig. 2b demonstrates one example of cluster C2

in approach (A), characterized by a gradual increase of the
measurement values from the left to the right side of the wafer.
Fig. 2c, in contrast, shows an evolving border pattern, mainly
affecting the bottom side of the wafer, assigned to cluster
C3 in approach (A). Similarly, Fig. 2e, shows a ring-pattern,
similar to pattern 1 in Fig. 1a from the simulated dataset,
which is assigned to cluster C1 by approach (B). Hence,
both approaches are able to distinguish between noisy patterns
and those depicting e.g. regions of interest, i.e., potential
process patterns. In summary, the suggested methods deliver
a plausible partitioning of the wafermaps.

V. DISCUSSION & CONCLUSION

In a first step towards automated root-cause analysis of
deviations in semiconductor frontend production, this work
addressed the problem of extracting patterns from wafermaps,
i.e., a spatial view of test measurements of devices on the
wafer. The problem was approached with methods based on
classical as well as deep learning-based image processing
and evaluated in an unsupervised clustering framework. Re-
garding computational complexity, we note that the bulk of
the computational overhead of approach (B) lies at training
time and not in the evaluation. To train on the real-world
dataset using commodity hardware, approach (A) requires 1.5–
2 hours and approach (B) requires 3 hours, whereas both,
once trained, generate outputs within few minutes. Hence, we
believe both approaches are applicable for productive usage.
Although the quantitative and qualitative performances are
similar, the classical image processing approach shows two
beneficial characteristics: First, a lower amount of training
data is required (in detail, only the estimation of the PCA
parameters requires training), which is advantageous if a
new product is launched or a production process step is
modified. Second, the features extracted from the wafermaps
are more comprehensible and interpretable, which makes them
more accessible for wafer production experts. However, the
deep learning-based approach can benefit from an increasing
amount of training data in a way impossible for the classical
approach. Moreover, the applicability of the classical approach
is limited by the complexity of the pattern structure. Thus, we
believe that, e.g., arrangements of multiple spots, lines, etc. or
combinations of those on the wafer might be hard to recognize
or distinguish.

In summary, the auto-encoder approach (approach (B)) is
more suitable under the following three conditions:
• large amounts of training data are available, together with

high-performance hardware to process it,
• training time is rather uncritical,
• complexity of the patterns requires a more flexible model.

However, in case that one of these aspects is not fulfilled (es-
pecially if only little data is available), the classical approach
should be preferred.

In a practical environment in semiconductor industry, pat-
tern types are not constant over time. While known, product-
specific process patterns are likely to reoccur, previously
unknown patterns need to be considered in addition. Therefore,
future work will consider methods for online or incremental
learning with a focus on small datasets.

The presented clustering results indicate that important
patterns are separable in feature space for both the classical
and the deep learning-based approach. This suggests that both
types of features are applicable in (semi-)supervised settings
for automatic pattern recognition as well.
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