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4 Abstract—We presentQ1 an information-theoretic cost function for co-clustering, i.e., for simultaneous clustering of two sets based on

5 similarities between their elements. By constructing a simple random walk on the corresponding bipartite graph, our cost function is

6 derived from a recently proposed generalized framework for information-theoretic Markov chain aggregation. The goal of our cost

7 function is to minimize relevant information loss, hence it connects to the information bottleneck formalism. Moreover, via the

8 connection to Markov aggregation, our cost function is not ad hoc, but inherits its justification from the operational qualities associated

9 with the corresponding Markov aggregation problem. We furthermore show that, for appropriate parameter settings, our cost function is

10 identical to well-known approaches from the literature, such as “Information-Theoretic Co-Clustering” by Dhillon et al. Hence,

11 understanding the influence of this parameter admits a deeper understanding of the relationship between previously proposed

12 information-theoretic cost functions. We highlight some strengths and weaknesses of the cost function for different parameters.

13 We also illustrate the performance of our cost function, optimized with a simple sequential heuristic, on several synthetic and real-world

14 data sets, including the Newsgroup20 and the MovieLens100k data setsQ2 .

15 Index Terms—Co-clustering, information-theoretic cost function, clustering, Markov chains

Ç

16 1 INTRODUCTION AND OUTLINE

17 CO-CLUSTERING is the task of the simultaneous clustering
18 of two sets, typically represented by rows and columns
19 of a data matrix. Aside from being a clustering problem in
20 its own right, co-clustering is also applied for clustering
21 only one dimension of the data matrix. In these scenarios,
22 co-clustering is an implicit method for feature clustering
23 and provides an alternative to feature selection with, pur-
24 portedly, increased robustness to noisy data [1], [2], [3].
25 A popular approach to co-clustering employs informa-
26 tion-theoretic cost functions and is based on transforming
27 the data matrix into a probabilistic description of the two
28 sets and their relationship. For example, if the entries in the
29 data matrix are all nonnegative, one can normalize the data
30 matrix to obtain a joint probability distribution of two ran-
31 dom variables taking values in the two sets. This approach
32 has been taken by, e.g., Slonim et al. [1], Bekkerman
33 et al. [4], El-Yaniv and Souroujon [5], and Dhillon et al. [2]
34 (see also Section 2). A different approach to co-clustering is
35 to identify the data matrix with the weight matrix of a bipar-
36 tite graph and subsequently apply graph partitioning

37methods to cluster the rows and columns of the data matrix.
38This approach has been taken by, e.g., Dhillon [6], Labiod
39and Nadif [7], and Ailem et al. [8]. Other popular
40approaches are model-based (e.g., latent block models as
41in [9] and the references therein) or based on nonnegative
42matrix factorization (e.g., [10, Sec. 4.4]).
43In this work, we combine ideas from the graph-based
44and the information-theoretic approaches. Specifically, we
45use the data matrix to define a simple random walk on a
46bipartite graph, i.e., a first-order, stationary Markov chain.
47Clustering this bipartite graph (i.e., co-clustering) thus
48becomes equivalent to clustering the state space of a Mar-
49kov chain (i.e., Markov aggregation, cf. Section 3). This, in
50turn, allows us to transfer the information-theoretic cost
51function from the latter problem to the former. The thus
52presented cost function, parameterized by a single param-
53eter b, derives its justification from the corresponding
54Markov aggregation problem. This justification is further
55inherited to other information-theoretic cost functions
56previously proposed in the literature [1], [2], [3], [4], [11],
57which we obtain as special cases for appropriate choices
58of b.
59In several examples we discuss weaknesses inherent in
60the cost function for certain values (or value ranges) of b.
61We also present a simple sequential heuristic to optimize
62our cost function and analyze the influence of the choice
63of b on the co-clustering performance. For the synthetic
64data sets, we confirm that co-clustering outperforms one-
65sided clustering if the data matrix is noisy or if there is
66strong intra-cluster coupling. For the Newsgroup20 data
67set we observed that performance is insensitive to b as
68long as the number of word clusters is sufficiently large.
69Performance drops for few word clusters, a fact for which
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70 we provide a theoretical explanation. The parameter b has
71 a somewhat stronger influence on the performance on
72 the MovieLens100k data set, for which we obtained movie
73 clusters largely consistent with genres. Finally, for the
74 Southern Women Event Participation Dataset, our results
75 are remarkably similar to the reference co-clusterings
76 from [12], [13].
77 In summary, our contribution is threefold:

78 (1) We provide a generalized framework for informa-
79 tion-theoretic co-clustering via connecting it with
80 Markov aggregation. The cost function, parameter-
81 ized with a single parameter and connected with the
82 information bottleneck formalism, is justified by
83 well-defined operational goals of the Markov aggre-
84 gation problem (Sections 3 an 4).
85 (2) Our generalized framework contains previously pro-
86 posed information-theoretic cost functions as special
87 cases (Section 5). Since the parameter of our cost
88 function has an intuitive meaning, our framework
89 leads to a deeper understanding of the previously
90 proposed approaches. This understanding is further
91 developed by pointing at the strengths and limita-
92 tions of information-theoretic cost functions for co-
93 clustering with the help of examples and experi-
94 ments on synthetic datasets (Section 6). We also dis-
95 cuss the influence of the single parameter on the co-
96 clustering results and present general guidelines for
97 setting this parameter depending on the characteris-
98 tics of the dataset.
99 (3) We perform experiments (Section 7) with real-world

100 datasets. Varying the parameter allows us to com-
101 pare our results to those obtained via cost functions
102 previously proposed in the literature.
103 We do not address the important issues of choosing the
104 number of clusters, nor do we design sophisticated optimi-
105 zation heuristics and/or initialization procedures; essen-
106 tially, most heuristics proposed for previous cost functions
107 such as in [2], [11] can be adapted to our framework.
108 The fact that our cost function contains previously pro-
109 posed cost functions as special cases allows us to compare
110 them fairly, i.e., with the same initialization steps and the
111 same optimization heuristic. For example, the insensitivity
112 to b in our experiments with the Newsgroup20 datasets
113 provides a new perspective on the differences reported
114 in [1], [2], [3], [4], suggesting that they are due to differences
115 in optimization heuristics, preprocessing steps, or choice
116 of data subsets rather than due to differences in the cost
117 function.

118 Notation. Random variables (RVs) are denoted by upper
119 case letters (Z), lower case letters (z) are reserved for
120 realizations and constants, and calligraphic letters (Z)
121 are used for sets. We use bold upper case letters (Z) to
122 denote matrices. We assume that the reader is familiar
123 with information-theoretic quantities. Specifically, the
124 mutual information between two RVs Z and S with finite
125 alphabet and joint distribution PZ;S is denoted as
126 IðZ;SÞ [14, eq. (2.28)]. Note further that IðZ;SÞ ¼
127 HðSÞ �HðSjZÞ, where HðSÞ is the entropy of S and
128 whereHðSjZÞ is the conditional entropy of S given Z.

1292 RELATED WORK

1302.1 Information-Theoretic Co-Clustering
131Approaches

132Information-theoretic approaches to co-clustering require a
133probability distribution over the sets to be clustered, which
134we will denote as X and Y. For example, if the data matrix
135W is nonnegative, then one can normalize it such that its
136entries sum to one. One can thus define RVs X and Y over
137the sets X and Y that have a joint distribution PX;Y /W.
138One-sided clustering, i.e., clustering only the RV X with
139a clustering functionF such that information about Y is pre-
140served, was one of the main motivations behind the infor-
141mation bottleneck (IB) method [15]. Several algorithmic
142approaches have been proposed, including agglomera-
143tive [16] and sequential [11] methods and a method reminis-
144cent of k-means [17] (the latter being equivalent to the fixed-
145point iterations in the original paper [15]).
146An early information-theoretic approach to co-clustering
147was proposed by Slonim and Tishby [1] and is based on the IB
148method [15]. There, the authors proposed first finding the
149clustering functionFmaximizing IðFðXÞ;Y Þ, and then, after
150fixing F, finding the clustering function C that maximizes
151IðFðXÞ;CðY ÞÞ. Their approach was improved later by El-
152Yaniv and Souroujon, who suggested iterating this procedure
153multiple times [5]. Also based on the IBmethod is the work of
154Wang et al. [3]. They used a multivariate extension of mutual
155information to compress “input information”—captured
156by the mutual information terms IðX;Y Þ, IðX;FðXÞÞ,
157and IðY ;CðY ÞÞ—while preserving relevant information—
158captured by the information shared between the clusters,
159IðFðXÞ;CðY ÞÞ, and the predictive power of the clusters,
160IðFðXÞ;Y Þ and IðX;CðY ÞÞ.
161In 2003, Dhillon et al. proposed a co-clustering algorithm
162simultaneously determining clustering functions F and C
163with the goal to maximize IðFðXÞ;CðY ÞÞ [2]. They showed
164that the problem is equivalent to a constrained nonnegative
165matrix tri-factorization problem [2, Lemma 2.1] with Kull-
166back-Leibler divergence as cost function. (An iterative update
167rule for the entries of the three matrices is provided in [10,
168Sec. 4.4].) The work in [2] was generalized into various direc-
169tions. On the one hand, Bekkerman et al. investigated simulta-
170neous clustering of more than two sets in [4]. Rather than
171maximizing one of themultivariate extension ofmutual infor-
172mation, the authors suggestedmaximizing the sum of mutual
173information terms between pairs of clusters; the pairs of clus-
174ters considered in the sum are determined by an undirected
175graph that has to be provided by the user. On the other hand,
176Banerjee et al. viewed co-clustering as amatrix approximation
177problem [18], of which the nonnegative matrix tri-factoriza-
178tion problem of [2, Lemma 2.1] is a special case. Their general-
179ized framework admits any Bregman divergence (e.g.,
180Kullback-Leibler divergence or squared euclidean distance)
181as cost function and several co-clustering schemes character-
182ized by the type of summary statistic used to approximate the
183matrix.
184Finally, Laclau et al. formulate the co-clustering problem
185as an optimal transport problem with entropic regulariza-
186tion [19]. Their formulation also turns into a probability
187matrix approximation problem with Kullback-Leibler diver-
188gence as cost function, but 1) the order of original and
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189 approximate distribution is swapped compared to [2,
190 Lemma 2.1], and 2) the approximate distribution is obtained
191 differently. They proposed solving the co-clustering prob-
192 lem with the Sinkhorn-Knopp algorithm and suggested a
193 heuristic to determine the number of clusters.

194 2.2 Markov Aggregation and Lumpability

195 Markov aggregation is the task of replacing a Markov chain
196 fZt: t ¼ 1; 2; . . .g with a alphabet Z by a Markov chain with

197 a smaller alphabet Z, sacrificing model accuracy for a reduc-
198 tion in model complexity. Aggregation is usually performed
199 by partitioning (i.e., clustering) the alphabet Z and defining
200 a Markov chain on the partitioned alphabet Z. Information-
201 theoretic cost functions for Markov aggregation had been
202 proposed in, e.g., [20], [21], [22] and were recently unified
203 in [23]. More generally, aggregations of dynamical systems
204 that are not necessarily Markov were discussed in [24]. In
205 contrast to [20], [21], [22], [23], the cost functions proposed
206 by [24] are task-specific in the sense that they aim to predict
207 an observation based on Zt from the aggregated process.
208 Closely related to Markov aggregation is the topic of
209 lumpability, i.e., the question whether a non-injective func-
210 tion of a Markov chain is Markov. Initial research in this
211 area has performed by Kemeny and Snell (strong and weak
212 lumpability, [25, Sections 6.3-6.4]), Rosenblatt (lumpability
213 of continuous-valued Markov processes [26]), and Buchholz
214 (exact lumpability [27]). Gurvits and Ledoux discovered lin-
215 ear-algebraic conditions on the transition probability matrix
216 of fZt: t ¼ 1; 2; . . .g and the aggregation function for weak
217 and strong lumpability [28]. An equivalent characterization
218 of strong lumpability in information-theoretic terms has
219 been presented by Geiger and Temmel and Pfante et al.
220 in [29] and [30], respectively. This information-theoretic
221 characterization was used in a cost function for Markov
222 aggregation in [21].

223 3 GENERALIZED INFORMATION-THEORETIC

224 MARKOV AGGREGATION

225 Suppose fZt: t ¼ 1; 2; . . .g is a discrete-time, first-order, sta-
226 tionary Markov chain with finite alphabet Z and state tran-
227 sition matrix A ¼ ½Aij�, where

8i; j 2 Z; t > 1: Aij :¼ PrðZt ¼ jjZt�1 ¼ iÞ: (1)

229229

230 Throughout this work we assume that A is irreducible. The
231 Markov aggregation problem is concerned with finding a
232 function z: Z ! Z, where typically jZj � jZj, such that the

233 reducedmodel captures relevant aspects of the originalmodel.

Specifically, the authors of [23] suggest trading between two

different objectives: The objective to make the process fzðZtÞg
as close to a Markov chain as possible, and the objective that

fzðZtÞg preserves the temporal dependence structure of the

original Markov chain fZtg. They propose the following

information-theoretic cost function forMarkov aggregation:

234 Definition 1 (Generalized Markov Aggregation [23]).
235 Let fZtg be a discrete-time, stationary Markov chain with
236 alphabet Z and state transition matrix A, and suppose the set
237 Z is given. Let b 2 ½0; 1�. The generalized information-theoretic
238 Markov aggregation problem concerns finding a minimizer ẑ of

min
z: Z!Z

LbðzÞ; (2)

240240

241where the minimization is over all functions z: Z ! Z and
242where, with Zt :¼ zðZtÞ for every t � 1,

LbðzÞ :¼ bIðZ1;Z2Þ þ ð1� 2bÞIðZ1;Z2Þ
� ð1� bÞIðZ1;Z2Þ:

(3) 244244

245

246For b ¼ 1, the cost function is reminiscent of the IB func-
247tional [15], where compression is enforced by limiting the
248alphabet size of the compressed variable. For b ¼ 0, the cost
249function is linked to the phenomenon of lumpability and z

250is chosen such that the process fZtg is “as Markov as possi-
251ble”; indeed, if L0ðzÞ ¼ 0, then fZtg is a Markov chain [21,
252Th. 1]. Finally, it can be shown that minimizing L1

2
ðzÞ is

253equivalent to maximizing IðZ1;Z2Þ; essentially, this means
254that one wants to predict Z2 from Z1 with high accuracy,
255i.e., the temporal dependence structure should be pre-
256served. This cost function was considered in [20] and was
257shown to be related to spectral clustering.
258In the spirit of the IB formalism, mutual information can
259be used to measure relevance. Relevant information loss
260measures the information about some relevant RV S that is
261lost by processing a statistically related RV Z in a determin-
262istic function z. The quantity was introduced by Plumbley
263in the context of unsupervised neural networks [31]:

264Definition 2 (Relevant Information Loss). Let S and Z be
265RVs with finite alphabet, and let z be a function defined on the
266alphabet Z of Z. Then, the relevant information loss w.r.t. S
267that is induced by z is

LSðZ ! zðZÞÞ :¼ IðS;ZÞ � IðS; zðZÞÞ ¼ IðS;ZjzðZÞÞ � 0:

(4)
269269

270

271With this definition, we can rewrite the cost function for
272Markov aggregation in terms of relevant information loss:

273Lemma 1. In the setting of Definition 1 we have

LbðzÞ ¼ bLZ1
ðZ2 ! Z2Þ þ ð1� bÞLZ2

ðZ1 ! Z1Þ: (5)
275275

276

277The function z partitions the alphabet Z into clusters.
278Hence, the first term captures how much information is lost
279about Z1 if Z2 is clustered via z, while the second term cap-
280tures how much information is lost about the cluster Z2 if Z1

281is clustered via z. This formulation will be our starting point
282for developing an information-theoretic cost function for
283co-clustering.

2844 INFORMATION-THEORETIC CO-CLUSTERING VIA

285MARKOV AGGREGATION

286We now turn to the co-clustering problem. Suppose we
287have two disjoint finite sets X and Y and a jXj � jYj matrix
288W containing, e.g., similarities, the number of co-occur-
289rences, or correlations between elements of these two sets.
290As an example, if X is a set of documents and Y a set of
291words, then the ði; jÞth entry of W could be the number of
292times the word j appeared in document i. Co-clustering is
293concerned with finding partitions of X and Y (document
294and word clusters in this example), sacrificing information

BL€OCHL ET AL.: CO-CLUSTERING VIA INFORMATION-THEORETIC MARKOV AGGREGATION 3
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295 about the individual data elements to make the group char-
296 acteristics more prominent and accessible.

297 4.1 Adapting the Cost Function

298 If the matrix W is nonnegative, we can interpret it as the
299 weight matrix of an undirected, weighted, bipartite graph,
300 cf. [6]. Throughout this work we will assume that W is such
301 that the bipartite graph is irreducible. On this graph, one
302 can then define a simple random walk, i.e., a Markov chain
303 fZtgwith alphabet X [ Y and state transition matrix

A ¼ D�1
0 W

WT 0

� �
; (6)

305305

306 where D is a diagonal matrix collecting sums of all con-
307 nected edge weights of respective nodes. The matrix D nor-
308 malizes each row of A to make it a probability distribution.
309 Since the graph is bipartite and undirected, the Markov
310 chain fZtg is 2-periodic and reversible.
311 We now apply the Markov aggregation framework from
312 Definition 1 and Lemma 1 to the co-clustering problem. To
313 this end, we add the constraint that the function z from Defi-
314 nition 1 does not put elements of X and Y in the same clus-
315 ter. This mutual exclusivity constraint guarantees that there
316 exist functions F andC such that

8i 2 X [ Y: zðiÞ ¼ FðiÞ; i 2 X
CðiÞ; i 2 Y:

�
(7)

318318

319

320 The following proposition transfers the cost function
321 from Lemma 1 to the co-clustering setting:

322 Proposition 1. Suppose two disjoint finite sets X and Y and a
323 nonnegative jXj � jYj matrix W containing similarities
324 between elements of these two sets are given. Define two dis-
325 crete RVs X and Y over these sets, where the joint distribution
326 PX;Y is obtained by normalizing W. Let fZtg be a stationary
327 Markov chain with alphabet X [ Y and state transition matrix
328 A given in (6). Let b 2 ½0; 1� and suppose the sets X and Y are
329 given.
330 For every function z: X [ Y ! X [ Y satisfying the
331 mutual exclusivity constraint (7), we have

2 � LbðzÞ ¼ bðLXðY ! Y Þ þ LY ðX ! XÞÞ
þ ð1� bÞðLXðY ! Y Þ þ LY ðX ! XÞÞ ¼: LbðF;CÞ (8)

333333

334 whereX :¼ FðXÞ and Y :¼ CðY Þ.
335 Proof. Suppose that fZtg is a Markov chain with state space
336 X [ Y and state transition matrix A as in (6), withD given
337 by

D ¼ diag
0 W

WT 0

� �
1

� �
; (9)

339339

340 where 1 is a vector of ones of appropriate length. Sup-
341 pose mm ¼ ½mi� is the invariant distribution of A, i.e.,
342 mmT ¼ mmTA. It follows that diagðmmÞ / D. Suppose further

343 that PX;Y is the joint distribution obtained by normalizing

344 W. Then, the marginal distributions for X and Y are

345 PX ¼
P

y2Y PX;Y ð�; yÞ /W1 and PT
Y ¼

P
x2X PX;Y ðx; �Þ /

346 1TW, respectively. From the 2-periodicity of fZtg thus

347 follows that

mi ¼
1

2

PXðiÞ; i 2 X
PY ðiÞ; i 2 Y:

�
(10) 349349

350

351Now assume that the Markov chain fZtg is stationary,
352i.e., the distribution of Z1 coincides with the invariant
353distribution mm. Let U be a RV that indicates whether Z1

354was drawn from X or Y, i.e.,

U :¼ 1; Z1 2 X
0; Z1 2 Y:

�
(11)

356356

357Note that U is a function not only of Z1 but, by periodic-
358ity, of Zt for every t. The RV U thus connects PZt with PX

359or PY ; e.g., if U ¼ 1, then PZ3
¼ PX . It follows from (10)

360that PrðU ¼ 1Þ ¼ PrðU ¼ 0Þ ¼ 1
2.

361Finally, suppose that z satisfies the mutual exclusivity

362constraint (7); hence FðXÞ ¼ X , CðYÞ ¼ Y, and U ¼ 1 if

363and only if Z1 2 X .
364We now investigate Ið ~Z1; ~Z2Þ, where ~Zi is either Zi or
365Zi. We get

Ið ~Z1; ~Z2Þ
¼ðaÞ Ið ~Z1; U ; ~Z2Þ
¼ðbÞ Ið ~Z1; ~Z2jUÞ þ IðU ; ~Z2Þ
¼ðcÞ 1

2
Ið ~Z1; ~Z2jU ¼ 1Þ þ 1

2
Ið ~Z1; ~Z2jU ¼ 0Þ þHðUÞ;

(12)

367367

368where ðaÞ is because U is a function of Z1 and Z1, ðbÞ is
369the chain rule of mutual information, and ðcÞ follows
370because U is also a function of Z2 and Z2 and from the
371definition of conditional mutual information.
372Now suppose ~Z1 ¼ Z1 and ~Z2 ¼ Z2. If U ¼ 1, then
373Z1 2 X and Z2 2 Y, and the joint distribution PZ1;Z2
374equals the joint distribution PX;Y . With similar considera-
375tions for U ¼ 0we hence get

IðZ1;Z2Þ ¼ 1

2
IðZ1;Z2jU ¼ 1Þ þ 1

2
IðZ1;Z2jU ¼ 0Þ þHðUÞ

¼ 1

2
IðX;Y Þ þ 1

2
IðX;Y Þ þHðUÞ:

(13a)
377377

378Along the same lines we obtain

IðZ1;Z2Þ ¼ IðX;Y Þ þHðUÞ; (13b)
380380

381

IðZ1;Z2Þ ¼ IðX;Y Þ þHðUÞ; (13c)

383383

384

IðZ1;Z2Þ ¼ 1

2
IðX;Y Þ þ 1

2
IðX;Y Þ þHðUÞ: (13d)

386386

387

388Inserting these in the cost function in Lemma 1 and
389applying the definition of relevant information loss in
390Definition 2 completes the proof. tu
391We now present our cost function for information-theo-
392retic co-clustering:

393Definition 3 (Generalized Information-Theoretic Co-
394Clustering). The generalized information-theoretic co-cluster-
395ing problem concerns finding a minimizer ðF̂; ĈÞ of
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min
F: X!X ; C: Y!Y

LbðF;CÞ; (14)

397397

398 where the minimization is over all functions F: X ! X and
399 C: Y ! Y and where LbðF;CÞ is as in the setting of
400 Proposition 1.

401 The presented cost function admits an intuitive explana-
402 tion for the effect of the parameter b: In the context of the
403 words/documents co-clustering example above, minimiz-

404 ing LXðY ! Y Þmeans that we are looking for word clusters

405 that tell us much about documents. In contrast, minimizing

406 LXðY ! Y Þ means that we are looking for word and docu-
407 ment clusters such that the word clusters tell us much about
408 the document clusters. The parameter b thus determines
409 how strongly the two clusterings should be coupled. We
410 show in Sections 6 and 7 that the choice of b can have a
411 prominent effect on the clustering performance.

412 4.2 Adapting a Sequential Optimization Heuristic

413 In general, finding a minimizer of our cost function (14) is a
414 combinatorial problem with exponential computational
415 complexity in jXj and jYj . Hence heuristics for combinatorial
416 or non-convex optimization are used to find good sub-opti-
417 mal solutions with reasonable complexity. In particular, it
418 can be optimized by adapting heuristics proposed for infor-
419 mation-theoretic co-clustering by other authors (see Sec-
420 tions 2 and 5). Since our cost function is derived from the
421 generalized information-theoreticMarkov aggregation prob-
422 lem, co-clustering solutions can be obtained by employing
423 the aggregation algorithm proposed in [23] taking into
424 account the additional mutual exclusivity constraint. The
425 algorithm is a simple sequential heuristic for minimizing Lb,
426 similar to the sequential IB algorithm proposed in [11] and
427 the algorithm proposed by Dhillon et al. for information-the-
428 oretic co-clustering [2]. This algorithm is random in the sense
429 that it is started with two random functions F and C with
430 desired output cardinalities. In each iteration, these two
431 functions are altered successively in order to reduce the cost
432 function, either until we reach a maximum number of itera-
433 tions or until the cost function has converged to within a cho-
434 sen threshold of a local minimum. The authors of [23]
435 introduced an annealing procedure for the b-parameter to
436 escape local optima, which is particularly important for
437 small values of b. The pseudocodes for the sequential heuris-
438 tic, SGITCC, and the annealing heuristic, ANNITCC, are given
439 in Algorithms 1 and 2, respectively; for details, the reader is
440 referred to [23]. It can be shown along the lines of the corre-
441 sponding result in [23] that, by storing intermediate results,
442 the computational complexity of computing LbðF;C‘Þ and
443 LbðFj;CÞ can be brought down toOðjXjÞ andOðjYjÞ, respec-
444 tively. Thus, one iteration of Algorithm 1 has computational

445 complexity ofOðjXj � jYj�maxfjYj; jXjgÞ.
446 The following example shows how the sequential heuristic
447 in Algorithm 1 can get stuck in a poor local optimum for
448 b ¼ 1

2. The same example is unproblematic for b ¼ 1. Since
449 one can certainly find heuristics that perform optimally in this
450 example even for b ¼ 1

2, matching the heuristic to the cost
451 function seems to be an important issue. We will see further
452 evidence for the impact of heuristics on performance in our
453 experimentswith theNewsgroup20 dataset in Section 7.1.

454Example 1. Consider the following 3� 4 matrix describing
455the joint probability distribution betweenX and Y :We are

456interested in two row clusters and two column clusters, i.e.,
457jXj ¼ jYj ¼ 2. Suppose that during some iteration, the clus-
458tering functions F and C induce the partition indicated by
459the thin black lines in the matrix PX;Y . At this stage, for
460b ¼ 1

2 the sequential algorithmwill terminate since thisF is
461the optimal choice for C fixed, and this C is the optimal
462choice for F fixed. In other words, changing either cluster-
463ing function alone increases the cost L1

2
¼ IðX;Y Þ�

464IðX;Y Þ. Nevertheless, it is clear from looking at PX;Y , that

465the cost is minimized (IðX;Y Þ is maximized) for the parti-

466tion indicated by the thick black lines. The algorithm thus
467gets stuck for b ¼ 1

2 because the cost function in this case

468only depends on the clustered variables, and because it

469updates the clustering functions subsequently rather than

470jointly. For larger values of b, the coupling between the

471clustering functions is weaker. In particular, for b ¼ 1, the

472clustering functions can be optimized independently of

473each other, and the algorithm hence terminates at a parti-

474tion consistent with the vertical thick line, even if it was
475started at the partition indicated by the thin lines.

476Algorithm 1. Sequential Generalized Information-
477Theoretic Co-Clustering (SGITCC)

4781: function: ðF;CÞ ¼ sGITCC(PX;Y , b, jXj, jYj, #itermax, tol,

479optional: intial clustering ðFinit;CinitÞ)
4802: if ðFinit;CinitÞ is empty then " Inizialization

4813: ðF;CÞ  Random Clustering
4824: else
4835: ðF;CÞ  ðFinit;CinitÞ
4846: end if
4857: #iter 0
4868: while#iter < #itermax ^ d > tol do " Main Loop

4879: Cold  LbðF;CÞ
48810: for all elements i 2 X do " Optimizing F

48911: for all clusters j 2 X do

49012: FjðxÞ ¼ FðxÞ 8x 6¼ i
j x ¼ i

�
49113: end for

49214: FðiÞ ¼ argminjLbðFj;CÞ
49315: end for
49416: for all elements k 2 Y do " OptimizingC

49517: for all clusters ‘ 2 Y do

49618: C‘ðyÞ ¼ CðyÞ 8y 6¼ k
‘ y ¼ k

�

49719: end for
49820: CðkÞ ¼ argmin‘LbðF;C‘Þ " Break ties
49921: end for
50022: d Cold � LbðF;CÞ
50123: #iter #iterþ 1
50224: end while
50325: end function:

PX;Y ¼
0:25 0 0 0

0 0:25 0 0

0 0 0:25 0:25

2
64

3
75:
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504 Algorithm 2. b-Annealing Information-Theoretic Co-
505 Clustering (ANNITCC)

506 1: function: ðF;CÞ ¼AnnITCC(PX;Y , b, jXj, jYj,#itermax, tol,D)
507 2: a 1
508 3: ðF;CÞ = sGITCC(PXY , b, jXj; jYj,#itermax, tol)
509 4: while a > b do
510 5: a maxfa� D;bg
511 6: ðF;CÞ = sGITCC(PXY , a, jXj, jYj,#itermax, tol, ðF;CÞ)
512 7: end while
513 8: end function:

514 5 SPECIAL CASES OF GENERALIZED

515 INFORMATION-THEORETIC CO-CLUSTERING

516 We next show that our generalized information-theoretic co-
517 clustering cost function fromDefinition 3 contains, for appro-
518 priate settings of the parameter b, previously proposed cost
519 functions as special cases. For example, for b ¼ 1, we obtain

L1ðF;CÞ ¼ LXðY ! Y Þ þ LY ðX ! XÞ: (15)
521521

522 This cost function consists of two IB functionals: The first term
523 considers clustering Y withX the relevant variable, while the
524 second term considers clustering X with Y the relevant vari-
525 able. This approach rewards clustering solutions forX and Y
526 that are completely decoupled. To minimize this cost func-
527 tion, one can use the fixed-point equations derived in [15]
528 or the agglomerative IB method (aIB) that merges clusters
529 until the desired cardinality is reached [16]. Finally, a sequen-
530 tial IB method (sIB) has been proposed that iteratively moves
531 an element from its current cluster to the cluster that mini-
532 mizes the cost until a localminimum is reached [11].
533 More interestingly, we can rewrite the cost function that
534 Dhillon et al. proposed in [2] for information-theoretic co-
535 clustering (ITCC) and obtain

LITCCðF;CÞ :¼ IðX;Y Þ � IðX;Y Þ ¼ L1
2
ðF;CÞ: (16)

537537

538 Thus, ITCC is a special case of our cost function for b ¼ 1
2.

539 The authors of [2] proposed a sequential algorithm, similar
540 to sIB, alternating between optimizing F and C. Further-
541 more, LITCCðF;CÞ can be optimized via non-negative
542 matrix tri-factorization [2, Lemma 2.1] and thus yields a
543 generative model as a result. We are not aware if a similar
544 connection to generative models holds for other values of b.
545 In [4], the cost function L1

2
is generalized to pairwise

546 interactions of multiple variables (the two-dimensional case
547 is equivalent to co-clustering). The authors introduce a mul-
548 tilevel heuristic that schedules the splitting of clusters,
549 merges clusters following the ideas of aIB [1], and optimizes
550 intermediate results sequentially with sIB.
551 The authors of [1] proposed applying aIB twice to obtain
552 the co-clustering. In the first step, in which the set X is clus-
553 tered, they treat Y as the relevant variable; in the second
554 step, in which the set Y is clustered, they treat the clustered
555 variable X as relevant. In essence, the authors of [1] thus
556 minimize the functional

LIB�doubleðF;CÞ ¼ LY ðX ! XÞ þ LXðY ! Y Þ ¼ L1
2
ðF;CÞ;

(17)558558

559in a greedy manner: They first optimize over F to minimize
560only the first term and then optimize over C to minimize
561the second term. Comparing (16) and (17) reveals that [1]
562and [2] optimize the same cost function; the fact that they
563report different performance results can only be explained
564by differences in the optimization heuristic and (possibly)
565preprocessing steps. We will elaborate on this topic in our
566experiments with the Newsgroup20 dataset in Section 7.1.
567Another approach related to IB, called information bot-
568tleneck co-clustering (IBCC), was proposed in [3]. The func-
569tional being maximized by IBCC is

LIBCCðF;CÞ : ¼ IðX;Y Þ þ IðX;Y Þ þ IðX;Y Þ
¼ 3IðX;Y Þ � 2L3

4
ðF;CÞ: (18)

571571

572Hence, also IBCC is a special case of the generalized Markov
573aggregation framework for b ¼ 3

4. The authors of [3] propose
574two algorithms: One is an agglomerative, i.e., a greedy
575merging algorithm, the other is an iterative update of fixed-
576point equations in the spirit of [15].
577Finally, for b ¼ 0we obtain the functional

L0ðF;CÞ ¼ LXðY ! Y Þ þ LY ðX ! XÞ: (19)
579579

580As previously mentioned, for Markov aggregation and
581b ¼ 0 the cost function is linked to the phenomenon of
582lumpability. In the co-clustering framework, lumpability
583means that the two clustering solutions that are coupled.
584Precisely, we have L0ðF;CÞ ¼ 0 if the rows X and columns
585Y do not share more information with the column clusters
586Y and row clusters X, respectively, than the row clusters
587and column clusters share with each other. Unfortunately,
588we also have L0ðF;CÞ ¼ 0 if X and Y are independent,
589which suggests an inherent drawback of L0 for co-clustering
590(despite its justification in Markov aggregation [21]). This
591leads to L0 (and, in general, Lb for small b) having multiple
592bad local optima in which any heuristic tends to get stuck.

5936 STRENGTHS AND LIMITATIONS OF GENERALIZED

594INFORMATION-THEORETIC CO-CLUSTERING

595In this section we use examples and experiments on syn-
596thetic datasets to highlight different aspects of using Lb and
597our proposed optimization heuristic for co-clustering. Spe-
598cifically, we will point at limitations and strengths of co-
599clustering in comparison with one-sided clustering (b ¼ 1),
600which leads to guiding principles for the choice of b

601depending on characteristics of the considered dataset.

6026.1 Examples

603In the previous section we have discovered an inherent
604shortcoming of L0 in that it leads to co-clusterings with
605(near-)independent cluster RVs. In this section, we point at
606further limitations of information-theoretic cost functions
607for co-clustering. These shortcomings are independent of
608the employed optimization heuristic, but rather reflect that
609in some scenarios not even the global optimum of the cost
610function coincides with the ground truth (or an otherwise
611desired co-clustering solution). Sometimes this is simply
612caused by the fact that the cost function does not fit the
613underlying model—e.g., if W is generated according to a
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614 Poisson latent block model, then maximizing the likelihood
615 of the co-clustering is equivalent to minimizing L1

2
only if

616 the clusters have all the same cardinality [9, Sec. 2.2]. In con-
617 trast, the following two scenarios make no assumptions on
618 an underlying model but illustrate shortcomings inherent to
619 the considered information-theoretic cost functions.

620 6.1.1 Largely Different jXj and jYj
621 An advantage of information-theoretic co-clustering appro-
622 aches over, e.g., spectral [6], [8] or certain block model-based
623 approaches [9] is that the former admit different cardinalities

624 for the clustered sets jXj and jYj. If, however, these cardinali-

625 ties differ greatly, then minimizing Lb becomes problematic

626 especially for small values of b. Let us assume w.l.o.g. that

627 jYj < jXj. Then, the optimization termLY ðX ! XÞ is limited
628 by the information contained in Y rather than by the informa-

629 tion loss induced by clustering X to X; many functions F

630 may bring LY ðX ! XÞ close to zero simply because Y itself

631 already contains little information. Similarly, the term LX

632 ðY ! Y Þmay be large for many choices ofF, because, again,

633 the limiting factor is the coarse clustering from Y to Y . These

634 terms getmore importance in (14) if b is small. In otherwords,
635 coupled co-clustering fails because the clustered variables
636 contain little information. We illustrate this with a particular
637 example, in which the joint probability distribution between
638 X and Y is

639Our aim is to obtain a co-clustering with jYj ¼ 2 and jXj ¼ 4.
640InPX;Y , the thick vertical line indicates one possibility forC (a
641plausible ground truth). The horizontal lines indicate two
642possible options, F1 (thick lines) and F2 (thin lines) for the
643row clustering, where F1 corresponds to a plausible ground
644truth.
645For b ¼ 1, ðF1;CÞ has a lower cost than ðF2;CÞ, as
646desired. Furthermore, one can show that ðF1;CÞ minimizes
647the cost function; L1 has its global minimum at the ground

648truth. For b ¼ 1
2, by evaluating IðX;Y Þ we see that both

649ðF1;CÞ and ðF2;CÞ have the same cost. In fact, any row

650clustering function F that shares the cluster boundary with

651the thick horizontal line in the middle has the same IðX;Y Þ
652for the given column clustering function C: In this case, X

653determines Y , hence we achieve the maximum IðX;Y Þ ¼
654HðY Þ ¼ 1; the cost function has multiple global minima,
655only one of which lies at the ground truth. Finally, for b ¼ 0,

656ðF1;CÞ has a higher cost than ðF2;CÞ. This implies that

657even if we initialize our algorithm at the ground truth (this
658could be the case if we do b-annealing) we move away from
659this clustering solution when we optimize the cost function
660for smaller values of b.

6616.1.2 Trading Entropy for Conditional Entropy

662Consider the joint distribution in Fig. 1a that describes a data-

663set with awell-separated co-cluster structure for jXj ¼ jYj ¼ 2

664(based on zeros and indicated by solid lines, denoted by

665ðF�;C�Þ). We evaluate our cost function for different values

666of b, both for ðF�;C�Þ and for an alternative co-clustering

667indicated by dashed lines, denoted by ðF;CÞ. It can be seen in

668Fig. 1b that, for b 2 ½0:65; 1�, we haveLbðF�;C�Þ > LbðF;CÞ,
669i.e., the “incorrect” solution has a lower cost than the ground
670truth. While in this case, e.g., ITCC [2] would probably termi-
671nate with ðF�;C�Þ, it is easy to construct an example where
672ITCC fails. Changing our example only slightly leads to gen-
673eralized information-theoretic co-clustering preferring ðF;CÞ
674over ðF�;C�Þ for all b in ½0:15; 1� (see Figs. 1c and 1d).
675These examples show that even for datasets with a well-
676separated co-cluster structure, for a range of b there can be
677(local and global) minima having a lower cost Lb than the
678ground truth. This can be explained by the fact that optimiz-
679ing the cost function for a given value of b boils down to
680maximizing/minimizing a combination of several mutual
681information terms. For example, for b ¼ 1

2 we aim to maxi-
682mize, cf. (16)

IðX;Y Þ ¼ HðXÞ �HðXjY Þ: (20)
684684

685This leads to two competing goals: entropy maximization
686(preferring clusters with roughly equal probabilities) and
687conditional entropy minimization (preferring row clusters
688that determine column clusters, and vice-versa). For the
689range of b where LbðF�;C�Þ is not the global minimum, the
690first goal outweighs the second.
691Note that for joint distributions with a well-separated co-
692cluster structure we have L0ðF�;C�Þ ¼ 0 since IðX;Y Þ ¼
693IðX;Y Þ ¼ IðX;Y Þ. Nevertheless, due to the shortcoming
694discussed in Section 5, this global optimum may not found
695because many other co-clusterings lead to L0ðF;CÞ 	 0.

Fig. 1. Trading entropy for conditional entropy. (a) and (c) show joint dis-
tributions PX;Y together with two possible co-clusterings, while (b) and
(d) show the corresponding values of the cost function for different val-
ues of b. Solid and dashed curves in (b) and (d) correspond to co-
clusterings indicated by dashed and solid lines in (a) and (c).

PX;Y ¼

0:125 0 0 0
0:125 0 0 0
0 0:125 0 0
0 0:125 0 0
0 0 0:125 0
0 0 0:125 0
0 0 0 0:125
0 0 0 0:125

2
66666666664

3
77777777775
:
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696 6.2 Synthetic Datasets

697 Next, we perform experiments with two different synthetic
698 datasets to explore further the relation between suitable
699 choices of b and the characteristics of the dataset. Since our
700 focus is on providing a better understanding of informa-
701 tion-theoretic co-clustering, we assume that the true num-
702 bers of clusters and the true clustering functions F� and C�

703 are known. As an accuracy measure, we employ the micro-
704 averaged precision, which we define as follows:

MAPðF;F�Þ :¼ max
p

P
j2X jF�1ðjÞ \F��1ðpðjÞÞj

jXj ; (21)

706706

707 where the maximization is over all permutations p of the set
708 X . The micro-averaged precision MAPðC;C�Þ is computed
709 along the same lines. Note that MAPð�; �Þ requires that the
710 clustering solution found by the algorithm has the same
711 number of clusters as are present in the ground truth. Since
712 we assume the true number of clusters to be known, this is
713 unproblematic. If the number of clusters is unknown, one
714 can resort to more sophisticated measures such as the
715 adjusted Rand index or normalized mutual information. In

716the present case, all of these measures will lead to similar
717qualitative results.
718Unless noted otherwise, we set tol ¼ 0, #itermax ¼ 20,
719and D ¼ 0:1 and ran ANNITCC for values of b between 0
720and 1 in steps of 0.1. The simulation code for these and the
721real-world experiments in Section 7 is publicly accessible.1

722The first experiment looks at the clustering performance
723in the presence of noise. We generated a joint probability
724distribution TX;Y with 80 rows and 50 columns, i.e., jXj ¼ 80
725and jYj ¼ 50, and planted co-clusters such that TX;Y is con-
726stant within each co-cluster. A colorplot of TX;Y is shown in

727Fig. 2a. The figure also shows the ground truth F� (jXj ¼ 5)

728and C� (jYj ¼ 3). We moreover constructed a random prob-
729ability distribution N and constructed PX;Y from a weighted
730average of TX;Y and N , i.e.,

PX;Y ¼ ð1� "ÞTX;Y þ "N; (22)

732732

733where " 2 f0; 0:5; 0:7; 0:8g. Colorplots of PX;Y are shown in
734Figs. 2b and 2c for " ¼ 0:5 and " ¼ 0:8, respectively.

Fig. 2. (a)-(c) and (f)-(g) Colorplots of PX;Y for different noise levels " and different parameters k. It can be seen that the true cluster structure
becomes less obvious with increasing noise levels. (d), (e), and (h) Micro-averaged precision curves show the average over 500 random experiments
(center line) and the standard deviation (shaded area). Solid curves correspond to ANNITCC, dashed curves to SGITCC. See text for details.

1. bitbucket.org/bernhard_geiger/coclustering_markovaggregation
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735 We repeated the whole procedure for 500 different prob-
736 ability matrices N . The MAP values, averaged over these
737 500 runs, are reported in Fig. 2d and 2e (solid lines). First of
738 all, it can be seen that even in the noiseless case, the clusters
739 are not always identified correctly. Since we identified the
740 correct clusters in over 90 percent of the simulation runs,
741 we believe that this effect can be explained by the algorithm
742 getting stuck in a local optimum. Second, one can observe
743 the natural effect that large noise levels lead to lower MAP
744 values—interestingly, though, co-clustering seems to be
745 quite robust to noise, as the MAP values in this experiment
746 seem to decrease significantly only for " > 0:5, i.e., when
747 noise starts to dominate the data matrix. Finally, for large
748 noise levels, it turns out that the intermediate values of b
749 perform better. The performance drop for larger values of b
750 is not due to the optimization heuristic getting stuck in bad
751 local optima: We found that the cost of the co-clustering
752 solution found by ANNITCC for large b is lower than the
753 cost of the ground truth. Rather, the reason is that for b ¼ 1
754 the clustering solutions are uncoupled, i.e., the relevant RV
755 for clustering rows is the noisy column RV. For a certain
756 amount of coupling, i.e., for intermediate values of b, the
757 relevant RV for clustering rows is more strongly related to
758 the column clusters, in which noise is reduced due to the
759 averaging effect of clustering. Performance drops again
760 when decreasing b further; the reason is the inherent short-
761 coming of L0ðF;CÞ which is discussed at the end of
762 Section 5 and in [23].
763 The second experiment investigates the effect of intra-
764 cluster coupling betweenX and Y . We choose jXj ¼ jYj ¼ 90
765 and jXj ¼ jYj ¼ 3 to avoid the effects discussed in Section
766 6.1.1 and generate a joint probability distribution

PX;Y ¼
C 0 0
0 C 0
0 0 C

2
4

3
5; (23)

768768

769 where C is a 30� 30 circulant matrix the first row of which
770 consists of 30� k zeros followed by k entries equal to 1

kjXj.
771 Each subsequent row of C is obtained by a circular shift of
772 the previous row. Figs. 2f and 2g show PX;Y for k ¼ 3 and
773 k ¼ 15, respectively. The ground truth co-clustering is given
774 by the block structure of PX;Y .
775 It is clear that, as k decreases, the intra-cluster coupling
776 between X and Y increases. To see this note that, for k ¼ 30,
777 X does not contain more information about Y than the
778 ground truth cluster X does, whereas for k ¼ 1, X specifies
779 Y uniquely. Fig. 2h shows the average MAP values obtained
780 by running ANNITCC 500 times with random initializations.
781 Since the experimental setup is symmetric we only show
782 the results for F. First, we observe that with decreasing k
783 the performance deteriorates. This is intuitive considering
784 that with decreasing k the clustering structure becomes less
785 obvious. For k ¼ 30, PX;Y is uniform in the the blocks
786 whereas for k ¼ 1, the colums of PX;Y can be reordered such
787 that PX;Y is a diagonal matrix with no clear co-clustering
788 structure. Second, b ¼ 1 does not lead to the best results for
789 increased coupling, despite the fact that the global optimum
790 of L1 coincides with the ground truth. Apparently, the opti-
791 mization heuristic tends to terminate in poor local optima
792 more often for b ¼ 1 than for smaller values of b. This is

793because for b ¼ 1 the two clustering solutions are
794decoupled, i.e., F and C are determined independently of
795each other, while smaller b explicitly assumes coupled clus-
796terings. We thus conclude that smaller values of b detect
797intra-cluster coupled co-clusters more robustly.
798Finally we noticed that for both synthetic datasets, the
799MAP curves are relatively flat in many scenarios. One may
800think that this is due to ANNITCC getting stuck in a local
801optimum for a certain b, which it is not able to escape from
802for the subsequent lower b values. This is not the case:
803Figs. 2h and 2d show that the results obtained by running
804SGITCC (dotted lines) are almost identical to those obtained
805from ANNITCC for larger values of b until where both of
806them reach the peak performance. Subsequently, for smaller
807values of b, the performance of SGITCC dropped signifi-
808cantly due to the reasons outlined at the end of Section 5,
809justifying using ANNITCC for these values of b.

8106.3 Guiding Principles for Choosing b

811Although in this paper we do not propose a heuristic to find
812the suitable value (or range) of b for a given dataset, the
813examples and experiments in this section admit providing
814the following guiding principles:

815� For large differences between target cardinalities jXj
816and jYj, larger values of b may lead to better results
817due to the increasingly decoupled nature of the cost
818function for increasing b.
819� For datasets with highly imbalanced (co-)clusters,
820smaller values of b are more suitable (but only when
821one can manage to avoid optimization issues linked
822to smaller values of b).
823� In general, co-clustering using Lb and b-annealing
824seems to be robust to noise. For large noise levels,
825however, intermediate values of b tend to perform
826better due to noise averaging.
827� In presence of intra-cluster coupling, local optima of
828Lb are more prominent for b close to 1. The correct
829co-clusterings are found more robustly for interme-
830diate values of b.

8317 REAL-WORLD EXPERIMENTS

8327.1 Document Classification by Co-Clustering of
833Words and Documents - Newsgroup20 Data Set

8347.1.1 Dataset, Preprocessing, and Simulation Settings

835The Newsgroup20 (NG20) dataset2 consists of approxi-
836mately 18800 documents containing 50000 different words.
837In this section, we evaluate co-clustering performance only
838via document clusters since there is no ground truth for
839word clusters. Nevertheless, word clustering was claimed
840to improve the document clustering performance, cf. [1], [2].
841We refer to the RV over words as W , the set of words as
842W, the RV over the documents as D, and the set of docu-
843ments as D. The respective clustered RVs and sets are
844denoted by an overline. The joint distribution of W and D is
845obtained by normalizing the contingency table (counting
846the number of times a word appears in a document) to a
847probability distribution. During preprocessing, we removed

2. qwone.com/
jason/20Newsgroups
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849 ters. We moreover reduced W to the 2000 words with the
850 highest contribution to IðD;WÞ, which is consistent with
851 the preprocessing in [1], [2], [11]. Finally, we constructed
852 various subsets of the NG20 dataset by randomly selecting
853 500 documents evenly distributed among the document
854 classes. An overview of the used datasets is given in Table 1.
855 Note that there are significant differences in the prepro-
856 cessing steps performed in previous studies. For exam-
857 ple, [11] included the newsgroup-identifying header, which
858 may improve clustering performance.
859 We ranANNITCCwith tol ¼ 10�3, D ¼ 0:05 and#itermax ¼ 20.
860 For initialization, we slightly changed line 3 in Algorithm 2:
861 Instead of running SGITCCwith b ¼ 1, which is equivalent to
862 the completely decoupled case, we run sIB for both the word
863 and document clusterings separately, where 25 restarts are
864 performed and the best result w.r.t. the cost function is taken.

865 Since there is no ground truth available for the word clusters,

866 we executed ANNITCC for jWj 2 f2; 4; 8; 16; 32; 64; 128g. This
867 is consistent with the simulation settings described in [2], for
868 example.
869 For a fair comparison of different values of b, we do not
870 apply further heuristics to improve the performance of
871 ANNITCC. In contrast, the authors of [2] initialize their co-
872 clustering algorithm for jWj word clusters with the result
873 obtained for jWj=2 word clusters, where each word cluster is
874 split randomly. In [4], the authors introduce an additional cor-
875 rection parameter which leads to clusters of approximately

876the same size (whichmatches the evenly distributed classes in
877the NG20 dataset). Therefore, even for those values of b for
878which we obtain the same cost functions, our results need not
879be equal to those reported in the literature.

8807.1.2 Results and Comparison

881The results obtained by Algorithm 2 - averaged over 20
882runs—for the different subsets of NG20 are visualized in
883Fig. 3. As it can be seen, ANNITCC can discover the true doc-
884ument labels with high accuracy. For the Binary dataset,
885ANNITCC was able to achieve a micro-averaged precision of
886approximately 90 percent, for the Multi5 dataset 60 percent
887and for the Multi10 dataset approximately 60–65 percent. In
888comparison, experiments with SGITCC confirm the observa-
889tions from [23] that small b 2 ½0; 0:4� lead to meaningless
890results in the range of random clustering, while high
891b 2 ½0:6; 1� produce results in the range of Fig. 3. Fig. 3 fur-
892ther shows that the stronger the word and document clus-
893tering solutions are coupled, the worse are the results for
894small numbers of word clusters. This is most obvious for
895the Multi10 dataset for W 2 f2; 4; 8g word clusters, where
896the MAP values increase sharply if b increases from 0.4 to
8970.6 (see Fig. 3c). For small b, the document clusters are
898obtained from the word clusters and, e.g., two word clusters
899do not contain sufficient information to distinguish between
900ten document clusters. This agrees with our discussion in
901Section 6.1.1. However, for very large jWj, there were no
902further improvements. This suggests that there exists a
903number of word clusters that are sufficient to achieve the
904same (or better, see below) performance as document clus-
905tering based on words.
906Onemajor issue to observe from Fig. 3 is that for the Binary
907and Multi5 data, the results are almost independent of b (for
908sufficiently many word clusters). Only for Multi10 there was
909a mild increase in performance for intermediate values of b.
910This confirms the observations from Section 6.2: Clustering
911words removes noise, hence document clustering based on
912word clusters may be slightly more robust than document
913clustering based on words. Nevertheless, since the effect is
914only small for Multi10 (and not present for Binary and
915Multi5), we doubt that co-clustering of words and documents

TABLE 1
Overview of the Different Subsets Drawn from NG20

Dataset Discussion Groups docs
class jDj

Binary talk.politics.mideast, talk.politics.misc 250 500
Multi5 rec.motorcycles, comp.graphics,

sci.space, rec.sport.basketball,
talk.politics.mideast

100 500

Multi10 comp.sys.mac.hardware, misc.forsale,
rec.autos, talks.politics.gun, sci.med,
alt.atheism, sci.crypt, sci.space,
sci.electronics, rec.sport.hockey

50 500

Fig. 3. Micro-averaged precision for different NG20 subsets and ANNITCC. Results are shown for different numbers of word clusters,
jWj ¼ f2; 4; 8; 16; 32; 64; 128g (darker colors for fewer clusters). For comparison, we added results reported in the literature. ð�Þ: Taken from [2,
Table 5]; jWj is unclear. ðþ; �Þ: Taken from [1, Table 3]; the best results for each dataset are displayed. These results were obtained by applying aIB
for different numbers of word clusters, jWj ¼ f10; 20; 30; 40; 50g; the displayed MAP values are averages of the individual MAP values. We were not
able to compare our results to those of [3] because they used different subsets of the NG20 dataset. Since the cost functions from the literature are
the same as ours for the respective values of b, the difference in the performance can only be attributed to preprocessing steps, the optimization heu-
ristics, and/or the choice of favorable data subsets.
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916 is indeed significantly superior to one-sided document clus-
917 tering w.r.t. the classification results. The classification results
918 from [4] point towards similar conclusions, since also there
919 sIB performed very well compared to the respective co-clus-
920 tering methods. Still, the authors of [1], [2], [3] claim that their
921 proposed algorithms and/or cost functions for co-clustering
922 outperform one-sided clustering. In the light of our results,
923 we suggest that the choice of the cost function has less effect
924 on the performance than algorithmic details, preprocessing
925 steps, and additional heuristics for, e.g., initialization.

926 7.2 MovieLens100k

927 7.2.1 Dataset, Preprocessing, and Simulation Settings

928 TheMovieLens100k dataset3 consists of 100000 ratings of 1682
929 movies by 943 users [32]. The user ratings take integer values
930 1 (worst) to 5 (best). We construct a user-movie matrix
931 R :¼ ½Rij� where Rij is the rating user i gave to the movie j
932 (Rij ¼ 0 if user i did not rate movie j). Note that R is a sparse
933 matrix with only 100000 out of approximately 1.59 million
934 entries being nonzero.
935 We refer to the RV over the users asU , the set of users as U,
936 the RV over movies as M, and the set of movies asM. The
937 respective clustered RVs and sets are denoted by an overline.
938 The joint distribution between U and M is obtained by nor-
939 malizingR to a probability distribution.
940 For initializing ANNITCC we ran SGITCC 25 times with
941 random initializations for b ¼ 1 with tol ¼ 10�3 and #itermax ¼
942 20. We chose the best co-clustering ðF;CÞ among these 25
943 restarts w.r.t. the cost and used this as the initialization for
944 ANNITCC. We ran ANNITCC with tol ¼ 10�3, D ¼ 0:1 and
945 #itermax ¼ 20. We defined 10 user clusters, i.e., jUj ¼ 10, as
946 was done in [18], [19]. Furthermore, we defined jMj ¼ 19
947 since the MovieLens100k dataset categorizes the movies into
948 19 different genres.

949 7.2.2 Evaluation Metrics

950 Evaluating co-clustering performance for the Movie-
951 Lens100k dataset is difficult. The authors of [19] proposed
952 to assess co-clustering performance based on recommenda-
953 tions, i.e., a portion of the dataset is used for co-clustering,
954 based on which the “taste” of the users is predicted. The
955 remaining portion of the dataset (i.e., the validation set) is
956 used to assess this prediction. We believe that such an
957 approach is not effective. Indeed, the available ratings in R
958 are skewed in the sense that approximately 82.5 percent of
959 the ratings are above 3. Hence, a naive recommendation sys-
960 tem suggesting a positive rating for every user-movie pair
961 in the validation set matches the user’s taste with approxi-
962 mately 82.5 percent. In comparison, the authors of [19] claim
963 a match of 89 percent for their approach.
964 A second option is to compare the co-clustering results to
965 a plausible ground truth. For the users, demographic infor-
966 mation is available which theoretically admits constructing
967 such a ground truth; we nevertheless refrain from doing so,
968 since no choice can be justified without evoking critique.
969 For the movies, genre information is available which lends
970 itself to evaluating movie clusters. However, not every
971 movie is assigned to a unique genre, but may belong to

972multiple genres. The ground truth C� is therefore not a
973function, but a distribution over the set of genresM. This is
974problematic for (21), which is why we replace it here by

MAP0ðC;C�Þ :¼ 1

jMj
X
j2M

max
i2M
jC�1ðjÞ \C��1ðiÞj: (24)

976976

977For each movie cluster, we look for the genre with which
978this cluster has the greatest overlap. Unlike for MAP, two
979different clusters can now be mapped to same movie genre
980in MAP0. Hence, MAP0, sometimes referred to as purity, is
981essentially the average of the fraction of movies in each clus-
982ter that belong to the same genre. As a side result, MAP0

983gets rid of the maximum over all permutations p, which is
984intractable for large numbers of genres.

9857.2.3 Results

986The results are shown in Fig. 4. First, note that theMAP0 value
987for randomly generated clusters is remarkably high. This is
988because the number of movies in different genres varies
989greatly; for example, 725 movies are assigned to genre
990“Drama” and 505 to genre “Comedy”, whereas only 24 mov-
991ies belong to the genre “Film-Noir”. Noting this, quantitative
992results based on movie genres are useful to observe trends
993and general behavior, but the numbers should be takenwith a
994grain of salt. On the other extreme, the maximum value for
995MAP0 in Fig. 4 is significantly smaller than 1. This is reason-
996able since co-clustering is based on a sparse matrix of user-
997movie rating pairs: While some users are genre-addicts rating
998movies mainly based on their genre, other users may rate
999movies based on completely different aspects unrelated to
1000genre. Hence, one cannot expect a value MAP0 ¼ 1 for co-
1001clustering based on user-movie rating pairs.
1002We observe that MAP0 generally decreases with decreas-
1003ing b and the maximum value is at b ¼ 0:9, albeit only
1004slightly larger than for b ¼ 1. This shows that our algorithm

1005is capable of outperforming ITCC (b ¼ 1
2), IBCC (b ¼ 3

4), and

1006(albeit only slightly) IB-based (b ¼ 1) movie clustering. For
1007b close to 0, we obtain results which are very close to what
1008we obtain for randomly generated movie clusters. A closer
1009analysis revealed that the solution found for b ¼ 0 has a
1010lower cost than the solution found for b ¼ 1, which means
1011that b-annealing was successful in escaping bad local
1012optima, but that the ground truth does not coincide with the
1013global optimum of the cost function for b ¼ 0. We believe
1014that, in this particular example, this phenomenon is linked
1015to the user-movie rating matrix R being sparse.
1016We finally complement this quantitative evaluation by a
1017qualitative evaluation of the movie clusters. Again, we

Fig. 4. ANNITCC performance for movie genre matching.

3. grouplens.org/datasets/movielens/100k

BL€OCHL ET AL.: CO-CLUSTERING VIA INFORMATION-THEORETIC MARKOV AGGREGATION 11



IEE
E P

ro
of

1018 observe meaningful results for higher values of b when
1019 compared to smaller values of b. For example, looking at
1020 movie clusters for b ¼ 0:9, we notice that many classics are
1021 clustered into one group, including Gone With The Wind,
1022 Breakfast at Tiffany’s (1961), 12 Angry Men, The Graduate, The
1023 Bridge on River Kwai, Citizen Kane, Dr. Strangelove or: How I
1024 Learned to Stop Worrying and Love the Bomb, Vertigo, Casa-
1025 blanca, His Girl Friday (1940), A Street Car Named Desire, It
1026 Happened One Night, The Great Dictator, The Great Escape,
1027 Philadelphia Story. Similarly, many animated/kids movies
1028 have been assigned to a cluster, including The Lion King,
1029 Alladin, Snow White and the Seven Dwarfs, Homeward Bound,
1030 Pinocchio, Turbo: A Power Rangers Movie, Mighty Morphin
1031 Power Rangers: The Movie, Cinderella, Alice in Wonderland
1032 (1951), Dumbo (1941), Beauty and the Beast, Winnie the Pooh
1033 and the Blustery Day, The Jungle Book, The Fox and the Hound,
1034 Parent Trap, Jumanji, Casper, etc. Furthermore, our approach
1035 clustered various sequences of movies, e.g., 6 out of 8 Star
1036 Trek movies and all 7 Amityville movies have been
1037 assigned to one cluster each. In contrast, the results for
1038 b ¼ 0 did not yield clusters one would consider meaningful.

1039 7.3 Community Detection in Bipartite Graphs

1040 Community detection is a commonproblem in social network
1041 analysis and is usually concerned with (random) unipartite
1042 graphs, see [33]. In this section, we look at the related problem
1043 for bipartite graphs. There, the two sets of vertices could be
1044 the characters and the scenes of a play, and the goal could be
1045 to group characters in ameaningfulway.
1046 We apply our algorithm to the Southern Women Event
1047 Participation Dataset [12], [33]. The dataset consists of 18
1048 women (jXj ¼ 18) and 14 events (jYj ¼ 14), and the weight
1049 matrixW contains a one if the corresponding woman partic-
1050 ipated in the corresponding event and a zero otherwise. We
1051 restarted ANNITCC 50 times for b ¼ 1 to obtain a good ini-
1052 tial co-clustering for the annealing process. To get results
1053 comparable to those in the literature, we chose jXj ¼ 2;
1054 jYj ¼ 3 and jXj ¼ jYj ¼ 4. The results are displayed in Fig. 5
1055 for b ¼ 0:7.

1056The two women communities we obtained match with
1057those communities reported in the literature [13], [33]. The
1058authors of [13] also clustered the events into three clusters:
1059The events are clustered into a group inwhich onlywomen of
1060the first women community participated, a group in which
1061only women of the second women community participated,
1062and a group in which women from both communities partici-
1063pated. Our result in Fig. 5a is remarkably similar to theirs,
1064with the exception that the event with label 6 is put in a differ-
1065ent group. Note, however, that in this event only one woman
1066of the opposite community participated. Remarkably, we
1067obtained the same co-clustering for all values of b.
1068For four women communities and four event clusters, we
1069compared our results with those of Barber [12], who
1070employed a modularity-based approach. Our event clusters
1071in Fig. 5b are identical to those of [12], and our women com-
1072munities are largely consistent. We found in a separate set
1073of experiments that the women communities show a greater

1074agreement for b ¼ 1, and less agreement for b ¼ 1
2; the MAP

1075values for the chosen value of b ¼ 0:7 lie in between. Thus,
1076community detection via ITCC can be outperformed by our
1077algorithm for larger values of b.

10788 CONCLUSION

1079We introduced a generalized framework for information-
1080theoretic co-clustering that arises from recent results on the
1081theory of Markov aggregation. The generalized cost func-
1082tion we proposed allows for trading between completely
1083coupled and decoupled clusterings of two variables con-
1084nected via a probability table. We obtain well-known previ-
1085ous approaches, e.g., Information-Theoretic Co-Clustering
1086from Dhillon et al., as special cases of our cost function.
1087Using this framework, we provided better understanding of
1088information-theoretic co-clustering in general and discussed
1089some shortcomings inherent to such co-clustering methods.
1090We performed experiments on both synthetic and real-
1091world data, such as document classification, movie cluster-
1092ing, and community detection. We also demonstrated that
1093our framework can be used to fairly compare various previ-
1094ously proposed cost functions. For example, for the News-
1095group20 dataset, we observed that performance depended
1096little on the cost function, but rather on the optimization
1097heuristic, preprocessing steps, and/or choice of data sub-
1098sets. We furthermore provide guiding principles for choos-
1099ing the parameter b of our cost function depending upon
1100the characteristics of the dataset.
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