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ABSTRACT
Vibrotactile skin-reading uses wearable vibrotactile displays
to convey dynamically generated textual information. Such
wearable displays have potential to be used in a broad range
of applications. Nevertheless, the reading process is passive,
and users have no control over the reading flow. To compen-
sate for such drawback, this paper investigates what kind of
interactions are necessary for vibrotactile skin reading and the
modalities of such interactions. An interaction concept for
skin reading was designed by taking into account the reading
as a process. We performed a formative study with 22 par-
ticipants to assess reading behaviour in word and sentence
reading using a six-channel wearable vibrotactile display. Our
study shows that word based interactions in sentence read-
ing are more often used and preferred by users compared
to character-based interactions and that users prefer gesture-
based interaction for skin reading. Finally, we discuss how
such wearable vibrotactile displays could be extended with
sensors that would enable recognition of such gesture-based
interaction. This paper contributes a set of guidelines for the
design of wearable haptic displays for text communication.

Author Keywords
vibrotactile feedback; skin reading; stimulation; haptic
display; wearable; user study; interaction, interaction design;
gesture interaction; gesture recognition; HCI

INTRODUCTION
Reading is a fundamental skill in human development, as a
way to acquire knowledge from written text, and also a major
component in communication (e.g., letters, telegram, chat,
email). To most people, reading is a visual task that recruits the
most developed sense of vision to decode messages encoded
in graphical symbols. People with visual impairments resort
to the tactile sense for reading by using Braille. Besides them,
non-impaired individuals can benefit from a means to perceive
messages that do not recruit the visual or auditory senses. The
primary feedback modalities of mobiles and wearables are
visual and auditory. As such, they compete for visual and
auditory attention and distract the user from important tasks.
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Alternative display modalities, such as tactile displays, can
reduce demands on the predominant visual display, but are
largely under-utilised [4].

With the proliferation of wearable devices, devices with vi-
brotactile capabilities are accessible to a substantial number
of end users. With them, it becomes possible to transmit
generic symbols with abstract meanings [14, 29, 24] that can
be combined in arbitrary messages (words, sentences) [14,
29]. Luzhnica et al. refer to this as vibrotactile skin-reading.
While encoding alphanumeric symbols in tactile patterns to
transmit words is not new [14], recent developments in vibro-
tactile technology and stimulation methods overcome issues
in effective training, throughput, accuracy as well as portabil-
ity [28]. Vibrotactile skin reading uses a vibrotactile display
to convey dynamically generated textual information similar
to refreshable Braille displays [43, 41]. However, it is much
more portable, and mobile as the entire vibrotactile display
is packed within a wearable glove or sleeve [29]. Moreover,
it requires substantially less effort to learn. Recent research
has demonstrated that sighted individuals are able to learn
the entire English Alphabet (26 letters) within three hours of
training [29] as opposed to six months of training required for
learning Polish Alphabet (32 letters) using Braille [3]. While
being able to efficiently transmit an alphabet is a necessary
step, reading is inherently a much more complex task [38].
Learning to read is learning how to use the conventional forms
of printed language to obtain meaning. For skin-reading, the
print is transformed into vibrotactile patterns, so that reading
entails obtaining meaning from them.

A common belief that reading is a sequential task, where
glide smoothly across the page, is merely an illusion [37].
At the word level, well-established research postulated that
words are recognized as units [22, 11, 40, 5] and they are even
recognized before individual letters [5]. Reading depends on
the mechanics of the visual system to stop at fixed spots in
the text (fixations) and jump quickly to other spots (saccades,
covering about 8 letter spaces) [37]. Skilled readers fixate on
about 2/3 of the words in a text. Beside forward movements
to advance in reading, they reread nearby material backwards
in the text about 10 to 15% of the time, occasionally driven
by breakdowns on comprehension. Conversely, beginning
readers fixate every word (often more than once), perform
shorter saccades, and up to 50% of their eye movements are
regressions, as they rely more on context to identify words [37].
Obtaining meaning from printed words is not sequential; it
depends on processing words as units and uses backward
jumps at word level to aid understanding.



Sentence Word Character

Repeat n− th character (1−9)

When done

Current word (↓)Previous word (←)

Next word (→)

Slowdown (−)
Speedup (+)

Repeat

Slowdown(−)
Speedup (+)

Continue (→ i f at the end)

Previous word (←)

Figure 1. Interaction concept during sentence transmission. States (Sentence, Word and Characters) represent what the system is transmitting to user.

In Braille, it is not possible to form a global shape recognition
of the entire word, so the text has to be processed character by
character [7, 31, 30]. The perception and flow of information
in Braille are controlled by moving the hand forward and oc-
casionally backwards to revisit information [30, 20]. Thereby,
Braille readers control reading speed, focus on particular let-
ters or re-scan entire words. On the other hand, vibrotactile
skin reading is passive: a pattern of vibrations is stimulated
by the device from start to end while users have no control
over the transmission. Yet, vibrotactile displays can evoke
the perception of words as units, by means of tactile anima-
tions [21, 48]. The question that drives this research is what
interactions are needed for efficient skin-reading? Users may
not understand parts of the text due to lack of concentration
or training. They need ways to pause, resume and jump to
previous units of meaning or change the speed of transmission
to account for progress in their reading skills.

In this paper, we propose using navigation interactions for skin
reading to equip users with means of controlling the reading
process. An interaction concept was created to enable read-
ing interactions for vibrotactile displays. A formative study
trained novice users to recognise letters and words, and tested
their behaviour while skin-reading sentences. We analyse
participants’ interaction behaviours and a questionnaire to de-
termine what interactions are useful and what are the preferred
means of interactions. Finally, we map our interactions to
gestures and discuss the wearable design choices that could
allow the used wearable vibrotactile display to be extended
for supporting such gesture-based interaction concept.

RELATED WORK
Starting with Braille’s invention of the Braille coding in 1824,
haptic displays have long been widely used by people with
visual impairments. Research on tactile displays equipped
with actuators has been ongoing since at least 1924 [13], where
Gault [13] used a piezoelectric unit to convert entire recorded
speech to touch. Similarly, Kirman [21] used a 15×15 vibrator
matrix on the palm to teach six participants to differentiate
between the patterns of 15 different words. Other researchers
attempted to utilise a visually oriented approach, where a
low-resolution image of the object is projected to an array
of stimulators. For instance, White [52] transformed images
captured from a video feed to a 20× 20 vibrotactile display

placed on the back. After training, participants were able
to distinguish simple shapes like circle, square and triangle.
Bliss [2] developed the first commercial device capable of
capturing text from the video feed and then imprinting each
letter on the finger with a 6×24 matrix of vibrators.

A more successful approach of transmitting information
through haptics was provided by Geldard [14]. The device
was named Vibratese and used five vibromotors on the chest to
encode 45 symbols (letters, numbers and most frequent short
words). The author reported that after 65 hours of training one
participant was able to understand 38 wpm (words per minute).
More recently, Luzhnica et al. followed a different encoding
scheme using only the location of vibromotors to encode 26
letters of English alphabet [29]. The authors used six vibro-
motors on the back of the hand and were able to train users to
perceive letters, words and phrases through skin within only
five hours, although they needed repetition of stimuli.

A crucial aspect of tactile displays is how they encode infor-
mation. It requires providing patterns that are discriminative
while delivering them as fast as possible. Typically a combina-
tion of variations in amplitude [47, 49, 54], frequency [47, 49,
54], duration [16, 14] and body locations [14, 54, 34, 44] have
been used. For instance, Geldard [14] in his Vibratese used
five locations, a variation of three durations and three inten-
sities to encode the desired symbols. Recently, Novich [35]
showed that spatiotemporal encoding, where vibromotors in a
pattern are turned on and off sequentially one after the other,
results in significantly better discrimination than the spatially
encoded patterns where all vibromotors in a pattern onset
simultaneously. Liao [24] utilised such a spatiotemporal en-
coding to encode symbols on the wrist. Although such en-
coding works well [24, 35] in terms of being identified by
participants, it is many times slower than the spatial encoding.
Luzhnica [29] used a prioritised overlapping spatiotemporal
encoding where vibromotors are activated in sequence after a
gap, and they stay on until the pattern is finished. This method
resulted in better recognition accuracy than spatial encoding,
and it is faster than spatiotemporal encoding, as vibromotors
share most of the activated time. Recent research leverages
spatial acuity (sensitivity of locations of actuators) for achiev-
ing a better perception of encoded information [28, 27]. We
employ the same method as Luzhnica [29] for encoding char-



Figure 2. The vibrotactile display investigated in this paper containing
six vibromotors. The design has been borrowed from [29]. The number
of the vibromotor indicates the priority of activation.

.

acters, words and sentences namely for skin reading. Our
contribution and novel aspect of this paper lie on proposing to
equip users with interactions for skin reading.

INTERACTION CONCEPT
We design an interaction concept for textual vibrotactile skin
reading, illustrated in Figure 1. The concept is based on a
virtual fixation point metaphor. The fixation point represents
the word that is currently being transmitted to the user. We will
refer to it as the current word. While perceiving text/sentences,
at whatever point in time, users have the possibility to request
re-transmission of the current word. In this case, the system
transmits the current word and transfers itself into the pausing
state (corresponds to Word state in Figure 1) where no further
text is transmitted until resumed. Let us assume that the user
paused on the n-th word of a text. While on the pausing state,
the user can repeat the current (n) word or navigate to the
previous (n−1) word in the text. In this case, the fixation point
shifts to the left in the text and the (n−1) word is transmitted
and becomes the current word. At this point, the user can
repeat the current word (n− 1), regress to the previous one
(n−2), or go to the next one (n). Hereby, the user navigates
back an forth and scans the text. If the fixation point is at
position n and the user navigates to the next word (beyond
the point where it was paused), the system resumes and starts
transmitting the rest of the words. Additionally, when the
system is in the pause mode, the user can repeat particular
characters of the fixated word. Furthermore, users can also
change the speed of transmission which would proportionally
change gaps between characters and words; and the activation
time of each vibration motor (see Figure 4).

USER STUDY
To investigate our interaction concept and determine which of
the interactions are useful for the user, we conducted a user
study that combines participant training and testing of char-
acters, words and sentences. An additional goal of the study
was to investigate the word recognition process. However, the
topic is out of the scope of this paper, and thus we will not
discuss the results and findings concerning this investigation.

Figure 3. Pattern types composed of two vibromotors/locations: spa-
tiotemporal (ST), overlapping spatiotemporal (OST), spatial (S). Base
duration (d) represents the activation time of a vibromotor (t1 and t2).
The gap between the activation of vibromotors is denoted by g.

Figure 4. Stimulation process of characters, words and sentences. Base
duration (d) represents the activation time of a vibromotor. Words in
a sentence are transmitted in series separated by a gap (bw = 600 ms).
Within words, characters are transmitted in series with a gap in between
(bl = 200 ms). The characters are encoded using OST patterns where
vibromotors are activated in sequence with a gap in between (g = 10ms).

Wearable Haptic Display Design
We use the glove-based design of Luzhnica et al [29] for the
vibrotactile display. It contains six vibromotors placed on the
back of the hand (see Figure 2). The vibromotors can be fitted
in a fingerless glove, leaving the fingers free for interaction.

Vibrotactile Patterns and Encoding
Each character is encoded with one or two vibromotors using
an OST (overlapped spatiotemporal) stimulation as introduced
by Luzhnica and Veas. [28]. Figure 3 illustrates the details of
OST and the differences with other stimulation forms. The
activation of vibromotors is done in sequence, but they share
most of the activation time. Moreover, the activation is priori-
tised based on the sensitivity of the finger as such prioritisation
yields a higher accuracy of identification of locus [28]. Sensi-
tivity order is assumed as reported on studies on the subject [9,
51, 19], suggesting that sensitivity decreases from the index
finger towards the little finger: the index finger is more sensi-
tive than the middle, ring, and pinky finger. The thumb has the
lowest sensitivity [46]. For example, for a character encoded in
index and pinky finger, the vibromotor on index finger would
be activated first, and then after a gap, the vibromotor placed
on the pinky finger. Figure 5 illustrates which vibromotors are
used to encode each of the characters used in the study.

Figure 4 illustrates the technical details of the stimulation
process of characters, words and sentences. Character en-
coding uses a base duration (d) of 200 ms and a 10 ms gap
(g) between the activation of vibromotors. This means that
the duration of a character (ld) is 200 ms for one vibromotor
and 210 ms for two-vibromotor letters. When constructing
words, a between letter gap (bl) of 200 ms is used to separate
sequential letters. With such encoding, a word containing



Figure 5. The encoding scheme of each character used during the study.

2-char 3-char 4-char 5-char
is tea easy shiny
he say does stand
it hot this notes

Table 1. The list of words that are used during the experiment

four characters can be transmitted within 1400-1440 ms. Note
that, users can be trained to recognise letters and words with
shorter duration when exposed to longer training periods [29].
However, we aimed at having training and testing in a single
session. Hence, we decided for longer durations. Additionally,
sentence encoding uses a between word gap of 600 ms.

Characters
Similar patterns have been used to train users to recognise
the entire English alphabet [29], and a wearable glove based
layout capable of encoding 36 characters with only one or two
vibromotors have been proposed [28], which demonstrate the
capabilities of such wearable device for text reading. Never-
theless, in this study, we use only ten characters: A, E, I, O, T,
N, S, H, D and Y. A small alphabet ensures a shorter period of
training for characters and still enables us to create words and
sentences for investigating interactions.

Words
With the chosen characters, we composed a list of 12 words,
containing two to five characters. The words have been se-
lected from the list of basic English words1 and they will be
used to train the user with words.

Sentences
We created a list of 29 sentences (see Table 2). But only 15 of
them were stimulated during testing, whereas the rest are there
just to create more choices. The goal of the sentences testing
was to observe how participants interact with the system while
reading a sentence and how well they perform.

He is the one, She is the one, The tea is hot, The sea is hot, It is hot, He is
hot, She is hot, Today is hot, He says no, She says no, I say yes, I say no,
He says yes, She says yes, I say yes, This is easy, It was easy, It is easy, I
hate this, He hates this, Hide this idea, It does stand, This does stand, It
is done, This is done, This is shiny, It is shiny, It is noisy, This is noisy.

Table 2. Sentences used during the experiment. All sentences (29) were
presented to the user in a list to select from. Only the bold marked ones
(15) are used to test the user. The rest of the sentences (14) are used as
decoys to make the process more challenging.

Procedure
The entire study was organised in several blocks which we
will refer to as rounds, each serving different purposes:
1https://simple.wikipedia.org/wiki/Wikipedia:List_of_1000_
basic_words

Figure 6. A participant performing a round of sentence reinforcement

Character Training trained users to associate a symbol with
a vibrotactile pattern. During this process, participants were
stimulated with patterns representing a character, the char-
acter was displayed on the screen, and an audio spelling of
the character is simultaneously played as shown in Figure 7.
Such a simultaneous technique of tactile, auditory and visual
stimulation has been demonstrated to be efficient [29].
Character Reinforcement. Participants were stimulated with
a pattern and asked to input the character associated with it.
After entering the answer, they were notified whether their
input was correct and saw the correct answer (see Figure 7).
This way they would learn from their mistakes. Participants
were allowed to repeat the stimuli before answering.
Word Training exposed users to simultaneous stimulation
of vibrotactile, auditory and visual stimuli all representing a
word. The process was similar to character training, but in-
stead of characters words were used. Words were transmitted
as a series of characters (see Figure 4).
Word Reinforcement. This is similar to character reinforce-
ment, but words are used instead. Participants are allowed
repeat the stimuli. After stimulation, they were asked to select
the answer from a list constructed with all the words shown
in Table 1, plus 21 other words words including "No idea!".
Participants were instructed to choose "No idea!" if they do
not know what is stimulated. We also pointed out that for
every stimulated word there are other similar words in the list
and thus they should avoid guessing based on few characters.
Upon entering the answer, participants were informed on the
display what would have been the correct answer.
Words Testing: was similar to word reinforcement, but par-
ticipants were not allowed to repeat the stimuli, and they were
not notified the correct answer.
Sentence Reinforcement. The process was similar to the
word reinforcement but used sentences instead of words. Par-
ticipants were stimulated with a sentence and asked to select
an answer from a list of sentences. As shown in Table 2, the
list of choices contained 29 sentences plus the "No idea" op-



Figure 7. Character training and reinforcement process. Initially only
five characters were introduced (A-T) then the next five letters (N-Y).
For the the rest of letter training, all ten characters were used (A-Y).
Colour coding: - train round, - reinforcement round.

tion. However, users were tested only in 15 sentences and the
rest of them were used to make the process more challenging.
Each sentence was composed of three to four words (see Ta-
ble 2). The main purpose of sentence reinforcement was to
study interactions during skin reading.

Participants went through five rounds of character training
and reinforcement as shown in Figure 7. The first round was
split into two short rounds, where only half of the characters
are used in each (A-T and N-Y). This way participants were
introduced first to five characters and then to the next five. The
following four rounds used all ten characters. In every training
round, a character was displayed three times whereas in the
reinforcement rounds each character was tested twice.

Thereafter, participants went through a round of word testing
followed by a round of reinforcement using words from Ta-
ble 1. Then, users went through four rounds of word training
each followed by a round of word reinforcement. Finally,
users were subject to one round of word testing followed by
one round of word reinforcement where they were exposed to
a combination of words they trained on (from Table 1) and an
equal number (balanced by word length) of words they did not
trained on. To finish the study, participants were subject of one
round of sentence reinforcement where each of 15 sentences
(see Table 2) was tested once.

Interaction
During the sentence reinforcement rounds, participants could
use the interaction concept presented in Figure 1. They, could
repeat the current word by using the keyboard space key, navi-
gate words using left and right arrow keys, change transmis-
sion speed by using up and down arrow keys. They could
choose to re-stimulate only a particular letter by pressing a
number from 1-9, which would re-stimulate the n-th letter of
the current word. Additionally, participants were able to repeat
the entire sentence by pressing S. During word reinforcement
rounds, participants were also able to repeat the entire word
or particular characters of it. Similarly, during the character
reinforcement, participants could repeat the character.

Data Collection
First, all user responses and interactions during testing and
reinforcement rounds were logged. Additionally, at the end
of the session, users filled a questionnaire asking questions
about how they would use such a wearable device on a daily

basis. Initially, they were asked to rate whether they find the
interactions for skin reading as: (i) Necessary, (ii) Optional
or (iii) Not useful. Also, for each available interaction, users
were asked to rate how often they think they would use it by
selecting one of the available choices:
1. Continuously - every couple of seconds or minutes
2. Often - every couple of hours
3. Not very often - every couple of days or weeks
4. Rarely - few times only, and
5. Never.
Furthermore, we proposed three possible modes of interaction:
1. Gesture-based: the user uses hand gestures to interact,
2. Smartphone-based: an application in the user’s smartphone
is used to interact, and
3. Physical buttons based: physical buttons would be added to
the vibrotactile glove for interaction.

Participants were asked to rate (0-10) how suitable each of the
proposed modality would be for interactions with the wearable
display. Furthermore, they were asked to choose one modality
they would use for interactions/commands that they would use
more often and one for the interactions they would use rarely.

Apparatus
Our device consisted of an Arduino Due board which controls
3.4mm vibrotactile motors of type ROB-08449 (Voltage range:
2.3V ∼ 3.6V ; Amplitude vibration: 0.8G).

Participants
Twenty-two (22) individuals (12 male and 10 female) aged
between 17 and 38 (M=26.7, STD=5.5) years old participated
in this study. The overall study took approximately 90 minutes.
Only one of them was left-handed. All of them used the left
hand for stimulation and the right to interact with the computer
as depicted in Figure 6. One participant, for personal time
constraint reasons, completed the character and word rounds
but did not continue with sentence reinforcement round.

Results
Let us define four common variables: accuracy, repetition, to-
tal duration. Accuracy will be defined as a binary variable set
to be one if the user’s answer is correct. Repetition describes
how many times a user repeated the stimulation (character,
word or sentence) within a reinforcement round. The total
duration represents the entire duration from the time stimula-
tion was first initiated by the system until the user responded,
including repetitions. Additionally, we define an interaction to
be a repetition of any kind. E.g. during sentence reinforcement
round, each repetition such as: current word, previous word,
next word, a particular letter of the current word or the entire
sentence is considered to be an interaction. Although, we will
provide a brief overview of performance to give an impression
of users training level prior to sentence reading, we will mostly
focus on interactions during sentence reinforcement round as
the reading performance is out of the scope of this paper.

Performance
Each character reinforcement round collected 20 probes (2
× 10 characters) for each user. Table 3 presents the results



Round Accuracy Total Duration (s) Repetitions
1a 0.98 (0.15) 3.29 (4.03) 0.22 (0.60)
1b 0.82 (0.38) 5.06 (8.41) 0.57 (1.28)

2 0.86 (0.25) 5.57 (9.58) 0.72 (1.52)
3 0.95 (0.23) 5.58 (23.8) 0.72 (1.81)
4 0.95 (0.22) 4.39 (6.56) 0.63 (1.37)
5 0.95 (0.22) 3.33 (5.58) 0.39 (0.90)

Table 3. Results of character reinforcement rounds. Note that we con-
sider the first two rounds (1a and 1b) as two parts of round one as each
of them contained only half the characters. This table shows the cor-
rect recognition rate (accuracy), average total duration, average dura-
tion and average repetition rate.

Round Type Accuracy Total Duration (s) Repetitions
With Repetition 0.81 (0.39) 12.41 (12.27) 2.32 (4.28)

No Repetition 0.55 (0.50) 9.34 (8.45) 0.0 (0.0)

Table 4. Results of word recognition in the last reinforcement (with rep-
etitions) and testing (no repetitions) rounds.

of character recognition, including the average accuracy, rep-
etition, duration and total duration. By the third round, par-
ticipants could already recall characters with a high accuracy
(M=95%). While on the next two rounds the accuracy does not
improve, there is an improvement in repetition and duration
which could be interpreted as them being more confident.

For the word recognition, we focus on the last round of re-
inforcement and testing as we consider them to be the end
result of the word training process. Note that, in the re-
inforcement round users are allowed to repeat word or let-
ters whereas in the testing repetitions are not allowed. In
each of the two rounds, 24 probes were collected for each
user. The recognition accuracy, total duration and repetition
rate are presented in Table 4. Additionally, the user recogni-
tion accuracy (averaged per user) is shown in the Figure 8.
Both Table 4 and Figure 8 reveal that when repetitions are
allowed, participants achieve a higher accuracy. Furthermore,
a chi squared test reveals that participants achieve a signifi-
cant higher accuracy (M = 0.81,ST D = 0.39) in the round
where they can perform repetitions compared to the round
where they are not allowed to repeat (M = 0.55,ST D = 0.5);
χ2(2,1056) = 81.67, p = 0.0.

The sentence recognition round collected 15 probes for each
user. The average accuracy, number of interactions, duration
and total duration for sentence recognition are presented in
Table 5. On average, users needed 37.29 seconds to recognise
sentences with an accuracy of 82%.

Interactions
First, we analyse the interactions in the last round of word rein-
forcement. On average participants performed 2.32 (SD=4.28)
interactions for each word. From the interactions, participants
repeated 67% of words completely (at least once) whereas
they repeated one or more single characters only in 6.8% of
the words. Table 5 shows that participants needed on average
needed 7.14 interactions to recognise sentences. Moreover, the
histogram in Figure 11 shows that the vast majority of users
needed a relatively low number of interactions. Eleven users
needed on average five or fewer interactions per sentence but
some users performed even over 20 interactions per sentence.

Figure 8. Averaged user accuracy for the last reinforcement (with repe-
titions) and testing rounds (without repetitions).

Generally, word repetition was used (at least once) in 82.8%
of the sentences, character repetition in 6.3% of them and
sentences were repeated entirely in 21.2% cases. Within word
interactions, 62.8% of them were repetition of current word,
25.6% of them were repetition of the previous word and only
11.6% were a repetition of next word in the sentence.

Figure 9 shows the overall state transitions probabilities be-
tween interactions during sentence reading. The chart is con-
structed from the interaction data of the sentence reinforce-
ment rounds. The transition plot in Figure 10 shows the state
transitions probabilities for the first ten iterations of inter-
actions. The start state represents the time point when the
sentence is fully transmitted the first time. The finish state rep-
resents the user providing the answer for sentence recognition.

The most likely interaction at the start is repeating the cur-
rent word (probability = 0.57). Participants were also likely
to start with previous word interaction (0.23) which could
be interpreted as they already understood the current word.
Precipitants were also likely to start with repeating the entire
sentence (0.17). After a current word repetition, participants
were most likely to continue with another current word rep-
etition (0.6), meaning that they did not understand the word
from the last repetition. They were also fairly likely to con-
tinue with previous word (0.16) or next word repetitions (0.1).
They were quite likely to provide the answer (0.10). After
a previous word repetition, participants were most likely to
continue with another previous word repetition (0.38), mean-
ing that they understood the word that was repeated and they
were scanning the sentence backwards. They were also highly
likely to continue with current word repetition (0.36), in cases
where they did not understand the repeated word. On the other
hand, they were relatively less likely to continue with a next
word interaction (0.1). They were quite likely to provide the
answer (0.16), meaning that they finished backwards scanning.
After the next word repetition, participants were most likely to
use a current word repetition (0.48) in the case where the did
not understand the repeated word. They were also likely to
use the next word interaction (0.18) again; scanning forward
the sentence, or use the previous word interaction (0.1). They
were quite likely to provide the answer (0.22), meaning that
they finished forward scanning.

After the entire sentence repetition, users were most likely
to continue with another sentence repetition (0.47), which
could be interpreted as some users were simply repeating the



Accuracy Interactions Total Duration (s)

0.82 (0.38) 7.14 (7.59) 37.29 (27.04)

Table 5. Averaged sentence recognition results (M, STD).

sentence over and over until they were able to understand it
completely. Such an interaction was relatively less but still
likely followed by current word repetition (0.13) or previous
word repetition (0.09). Users also were likely (0.3) to provide
an answer. A similar behaviour pattern occurs after character
repetition. Users were most likely (0.9) to repeat character
again as users who used this interaction were repeating differ-
ent letters of the current word.

Only five users adjusted the transmission speed during sen-
tence recognition. Two of them set it to a higher than the
default speed whereas three of them did slow it down.

Additionally, we explored the relationship between sentence
recognition accuracy and the number of interactions. Figure 11
shows that there is a positive Pearson correlation between
the average recognition accuracy and the average number of
interactions, meaning that users that interacted more, also
recognised sentences more accurately; r = 0.47, p = 0.03.

Figure 9. State transitions probabilities between interactions for sen-
tence reading constructed from the sentence reinforcement round. In-
teraction states: S -start, CW - current word, PW -previous word, NW -
next word, C - character, SE - sentence, F- finish.

Questionnaire
On the question of how useful they found the interaction con-
cept when performing sentence reading, 76% (16) of users
rated it as "Necessary", 24% (5) of them rated it as "Optional"
and no user rated it as "Not useful". When asked why users
thought such an interaction was optional, they all argued that
with a proper amount of training they would get proficient and
there would not be a need for such interaction.

User ratings on how frequent they think each of the command-
s/interactions they would use are presented in Figure 12. For
all word repetition interactions: repeat the current word, pre-
vious word, and next word, the vast majority of participants
thought that they would use them continuously (every couple
of seconds or minutes). Quite contrary, for adjusting the speed
the majority if users think that they would rarely use. For
repeating the n-th character of the current word, there is some
divergence. While most of the users think that they would
never use it, two users think they would use it continuously,
and another four think they would use it often.

Figure 11. The relation between average sentence recognition accuracy
and the average number of interaction. The bar plots on the top and on
the side represent histograms and calculated the univariate distribution
of the variable in the given axis. The contours represent the multivariate
distribution of both variables. The straight line and the shades around
it represent the fitted regression and its confidence. The Pearson corre-
lation index and the confidence value are annotated as r and p.

Figure 12. User ratings on how frequent they think they would use each
of the interactions for text reading through a vibrotactile display.

User ratings on how suitable the proposed modalities of in-
teraction would be for skin reading application are presented
in Figure 13. Gesture interaction received the highest rating
(M = 7.9,ST D = 1.7). But, a paired t-test reveals that the dif-
ference with physical buttons interaction (M = 6.57,ST D =
2.99) is not significant ; t(42) = 1.72, p = 0.101. On the other
hand users rated gesture interaction (M = 7.9,ST D = 1.7)
significantly higher than interaction using a smart phone
(M = 4.76,ST D = 2.64); t(42) = 4.1, p = 0.0012. Addition-
ally, when users were asked to choose one preferred modality
of interaction for commands they would regularly and for
ones they would rarely use, users mainly prefer gesture-based
interaction for regular interactions and smartphone-based in-
teraction for rarely used interactions (see Figure 13).

Discussion
Our study was designed to investigate and identify useful
interactions for skin reading with a wearable vibrotactile dis-
play. The evidence from all sources such as user performance,
interaction behaviour and questionnaire point out that when
performing skin reading, users benefit from means of interac-
tions with the vibrotactile display. First, the majority (76%)
of the users explicitly expressed in the questionnaire that they
2The significance level is considered α = 0.025 according to Bonfer-
roni correction for two comparisons



Figure 10. State transitions diagram between interactions for the first ten interaction during the sentence reading. Interaction states: S -start, CW -
current word, PW -previous word, NW - next word, C - character, SE - sentence, F- finish. The size of the bar represents the probability of being in that
state for the given interaction whereas the width of the arrow represents the probability of the state transition.

Figure 13. The box plot on the left visualises user ratings (0-10) on how
suitable different modalities would be for interactions with a vibrotac-
tile display during skin reading. The bar plot on the right visualises user
preferences choices on which modality would be more useful for interac-
tions/commands that they would use very often (at least every couple of
hours) versus the interactions they would use rarely.

think having interactions similar to our experiment is neces-
sary for skin reading. While some users (24%) expressed that
when proficient, they would not need interactions, none of the
believed that such interactions were not useful at all.

The necessity for interactions is also expressed in users’ per-
formance during sentence and words recognition. Interactions
had a positive effect on the recognition accuracy. Participants
performed significantly better (see Figure 8) in the word recog-
nition rounds where repetition is allowed. Additionally, partici-
pants who on average performed more interactions in sentence
recognition, achieved a better accuracy (see Figure 11).

Interaction usage also demonstrates that the interactions were
necessary. Participants, on the last round of word recognition
with repetition, on average needed 2.32 (SD=4.28) interac-
tions for each word. Furthermore, they used on average 7.14
interactions for each sentence during sentence recognition.

As participants had no prior experience in skin reading, our
study shows that at least for novice users, interactions are cru-
cial. Users with minimal training can start perceiving words
and phrases and would be able to understand them if the navi-
gation interactions are at their disposal. Thereby, users do not
need to become proficient before they can start using such a
wearable device. On the other hand, as users’ skin reading
skills increase, they would presumably need fewer interactions.

They might learn to recognise entire words as units similar
to visual reading [53, 45, 11, 40, 5]. Nevertheless, that does
not invalidate the need for interactions. First, users might
need to repeat certain words from time to time as result of
attention breaks or simply due to misperception. In both visual
and Braille reading such interactions occur very often even
if readers are not aware of it as it occurs unconsciously and
naturally. Readers jump backwards to revisit already visited
letters and words [22, 37, 38, 39]. This phenomenon is known
as back regression, and skilled readers make regressions back
in 10−15% of the reading time [37, 38, 39]. Such regression
is common practice also in Braille reading [30, 20].

Besides emphasising the importance of interactions in skin
reading, our study can be used to derive details of which in-
teractions are most important. Both behaviour analysis and
questionnaire analysis confirm that word repetition, and navi-
gation interactions are critical. Participants used word interac-
tion in 82% of sentences and the vast majority of users were
convinced that such interactions would constantly be used. Re-
peating the n-th character of a word was rated as unnecessary
by users and was mostly irrelevant to sentence recognition. A
closer look at the usage of this interaction reveals that it was
only used by seven participants. One participant used it in
every sentence; one user used it only in two sentences whereas
five users used it only in one sentence. Thus, only one user
used character repetitions regularly in sentence recognition,
whereas the rest did try to use them in one or two sentences
to explore how well that would work but did not continue
afterwards with the rest of the sentences. Adjusting the speed
seems not to be frequently used. It was used only by five partic-
ipants. Participants set the speed they were comfortable with
and used it for the rest of the sentence recognition. This was
also mirrored in the questionnaire where most of the partici-
pants expressed that they would only use it a few times during
the lifetime of such device. Most of the participants pointed
out that they would use it in accordance with the progress of
their skin reading skill.

Interestingly and contrary to expectations, the repetition of the
entire sentence was used by some users. Although, they were
a small number, yet we did not expect any user to rely on it.



Our prior expectation was that at first, users might be tempted
to try it, but they would realise that it is challenging with
their level of training to perceive the entire sentence at once.
Such a scenario did occur with five users, where they used
it only in four sentences or less. As shown in the Figure 10,
at the first, second or third interactions some users switch to
word-based interactions. Initially, they were curious and tried
it for one or two iterations (see Figure 10), but then realised
it was difficult and switched to other interactions. However,
there were users who persisted using sentence repeats. Three
users relied on this interaction almost entirely (used in more
than 12 sentences), and two others used it moderately (in 7-9
sentences). Figure 10 shows that some participants repeatedly
used this interaction until they provided an answer. Although
it was interesting to provide such interaction in our study and
explore user behaviour, only a small number of users used
them. Moreover, in a real-world scenario, where text contains
multiple sentences, and they are much longer, repeating the
entire text might not very be useful as it does not scale.

The questionnaire reveals that the preferred modality for con-
stantly used interaction would be gesture-based, whereas par-
ticipants would prefer a settings smartphone application for
rarely used interactions (adjusting the speed). For the con-
stantly used interaction, one would need to provide a gesture-
based system that would support the basic interactions: repeat
the current word, go to previous word (and transmit it) and
go to next word. Such a system would be a simplified version
of the interaction system we initially designed (see Figure 1).
Stopping and resuming to transmit the rest of the text could be
automatically achieved using the current word and next word
interaction as explained in Section Interaction Concept.

GESTURE BASED INTERACTION
Besides user preferences, from the engineering, designing and
manufacturing perspective, a gesture-based interaction would
be a perfect fit for a glove-based vibrotactile wearable display
as the same glove could be equipped with sensing capabilities
to enable gesture recognition. In this section, we map our
interactions to hand gesture interactions and explore what
sensors would we need to recognise them.

Gesture Mapping
Our study concluded that only the interactions related to word
navigation are essential for skin reading. Here we map each
of them to a hand-based gesture. The used gestures should
be easy to remember, fast to perform, and contain simple
movements so that they can be recognised with a minimal set
of sensors. Thus, we map the previous word interaction to
swiping left gesture and next word interaction to swiping right.
The mapping is natural, as it corresponds to movement of
focus point within the sentence. Additionally, the interactions
are easy to perform and considered in the research community
as natural hand gestures [42, 15, 26] meaning that most users
would be familiar with them. As for current word interaction,
we map it to swipe up gesture as it shares the simplicity and
popularity with the other selected gestures.

Gesture Recognition
Gesture recognition has been a subject of many researchers.
At a core abstract level, the main approaches for gesture recog-
nition has been based on either environmental sensors such as:
camera [8, 6, 12, 8, 1, 18], radar signals [10, 25] wifi [23, 36],
etc... or hand/body-worn sensors such as : motion sensors,
flexion and pressure sensors [26, 32, 56, 33, 57]. Even though
each of them has its advantages and disadvantages, for our
specific use case, wearable based sensors approach is a more
suitable solution. First, it is not bound to the location (where
sensors are placed) and second, adding the sensors to the same
wearable glove, makes the setup much more convenient.

Many gesture recognition systems using wearable sensor have
been proposed over the years, most of them rely on either hand
worn sensors [26, 32, 56, 33, 57] or wrist-based sensors [17,
50, 55, 58]. For recognizing gestures, typically statistical and
machine learning approaches such as neural networks [32,
56], support vector machines [26], linear discriminant analysis
(LDA) [26, 15], logistic regression [26, 58], decision trees [58],
etc.. have been employed.

Our gesture recognition system uses an existing framework
and dataset of Luzhnica et al. [26]. The authors, collected data
from 18 participants performing 31 gestures using a custom
made data glove, where each participant performed each ges-
ture 5-10 times. The data were annotated manually. Their data
glove was equipped with seven inertial measurement units
(IMU), one on each finger, one on the back of the palm and
one on the wrist. Additionally, the glove was equipped with 13
bend sensors to cover main finger joint and wrist movement;
and also five pressure sensors on each fingertip. The recording
frequency of data glove was 85Hz (85 frames per second). For
their recognition system, the authors used a sliding window
approach upon which they extracted time domain features
such as minimum, maximum, range, average, standard de-
viation and signal energy and time domain features such as
Fast Fourier Transform for every sliding window. The authors
evaluated different parameters for sliding window and differ-
ent machine learning algorithms. They concluded that using
LDA for dimensional reduction and then logistic regression
for classification yielded the best results, where they achieved
a f1 score accuracy of 98.5%.

For our use case, we will use the same approach in data pro-
cessing, algorithm, training and evaluation procedure and thus
we will skip some of the extensive details (c.f., [26]). From
the dataset provided by the authors [26], we use only three
(swipe left, right and up) gestures and thus also explore what
sensors we would need to correctly identify the given ges-
tures. More precisely, we explore two particular sensors from
their set: IMU on the back of the and the IMU on the wrist.
Such motion sensors should be sufficient to capture motion
characteristics of our gestures.

Considering that we reduce the number of gesture classes to
three, the number of windows with rest class is very imbal-
anced. The rest class represents the data where the user is not
performing any gesture such as: not moving or performing
arbitrary movements. Thus we reduce the number of windows
with rest class by randomly sampling a portion (5%) of them.



Wrist Palm

I L R U I L R U
I 385 4 2 2 386 3 1 2
L 5 61 2 0 1 68 0 0
R 2 3 54 0 2 0 57 0
U 0 0 0 60 0 0 0 60

Table 6. Confusion matrix for classification in the test set using IMU on
the wrist (left) and IMU on back of the hand (right). Classes: I - rest, L
- swipe left, R - swipe right, U - swipe up.

In total, the entire resulting dataset (both training and test) con-
tains 2959 windows. We use LDA for dimensional reduction
and logistic regression for classification trained on the training
set which represents the 80% the data. The test set (the rest
20% the data) will be used to report on performance.

With only the IMU on back of the hand, our classifier achieves
a f1 score accuracy of 98.4% on the test set. Using only the
IMU on the wrist results in an accuracy of 96.5%.

Lessons Learnt
Overall using a single motion sensor (IMU) one would be able
to recognise the necessary gesture-based interactions with a
very high accuracy. The gestures can be better recognised
by placing the sensor on the back of the hand (98.4%) as
opposed to placing on the wrist (96.5%). The confusion matrix
presented on Table 6 reveals that when using only the IMU on
the wrist, there are some more misclassifications for classes
left, right and the rest. Such misclassifications are less evident
when using the IMU on the back of the hand. This could
be explained by the fact that such gestures involve physical
flexion and extension of the wrist which can easily be captured
by the sensor on the hand but not on the wrist.

However, besides the accuracy, there are design and practical
implications that might influence the decision of sensor loca-
tion. First, there is a vibromotor located on the back of the
hand of our vibrotactile wearable glove (see Table 2), which
is approximately located nearby the IMU on the data glove
used to record the data [26]. Having both IMU and a vibromo-
tor nearby might introduce noise in measurements when the
vibromotor is active. A possible overcome could be achieved
by shifting in opposite direction (left and right) to maximise
the space in between. Alternatively, one could move the IMU
on the palm side of the hand. On the other hand, a wrist-
worn device makes it impossible to wear it along watches or
wristbands. However, considering that a lot of users might
already possess smart watches or wristbands equipped with a
motion sensor, the motion data from their existing watch or
wristband could be used to classify the required hand gestures.
This would reduce both costs and power consumption of the
wearable vibrotactile display.

LIMITATIONS AND FUTURE WORK
One limitation of our interaction system is that it deals only
with text reading and not text comprehension, and thus it does
not offer means of navigation beyond neighbouring words. For
instance, while reading, users might want to revisit text 3-4
sentences backwards to better comprehend the text. Although,
jumping larger portions of the text such as sentences could be

provided analogously to our current interactions. Such inter-
action could be mapped to rotation-based gestures like hand
pronation and supination which could be easily be recognised
using the motion sensors we proposed. For that, we would
need to train users for longer periods so that they would be
able to perceive and understand larger messages in the first
place. Furthermore, we do not evaluate whether hand motion
while performing the gesture could affect the ability of the user
to perceive information during skin reading. Such effects need
to be studied. If that were the case, a less convenient solution
would be to use one hand for skin reading and the other one
for interaction. We will consider both limitations mentioned
above for conducting additional studies in the future.

CONCLUSION
This paper investigates interactions for skin reading using a
wearable vibrotactile display. Initially, we designed an interac-
tion concept for skin reading. We conducted a formative study
with 22 users to evaluate our concept during word and sen-
tence reading with a six-channel wearable vibrotactile display.
Participants were trained to recognise ten characters, trained
on words and then tested on word and sentence recognition,
during which they were able to use the designed interactions.
Furthermore, participants filled a questionnaire expressing
their opinion about the interaction concept in general, differ-
ent interactions within it and preferred modality of interaction.

The results of our study and analysis of questionnaire indicated
that interactions are beneficial for skin reading. Furthermore,
this study shaped our interaction concept by characterising
interactions like character repetition as not necessary and trans-
mission speed adjustment as less important. As a result, our
end concept contains three main interactions all of them pro-
viding word repetition and navigation within the sentence. For
such interactions, users preferred gesture-based interaction
as an interaction modality. Following such a preference, we
mapped our interactions to swipe-based hand gestures. Fur-
thermore, we used motion sensors on the back of the hand
and wrist to examine how well such gesture-based interactions
would be recognisable using machine learning algorithms. Our
results showed that a single motion sensor either on the wrist
or hand is sufficient to recognise our gesture-based interac-
tions the with a high accuracy. Also, hand (98.4%) is a better
choice for locating the sensor compared to wrist (96.5%) in
terms of gesture recognition accuracy. Such a sensor could
be incorporated into the same wearable glove providing one
single solution for both skin reading and interaction. Thus,
our contribution could serve as a guideline for designers and
manufactures of such wearable vibrotactile displays.
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