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ABSTRACT
We connect the problem of semi-supervised clustering to con-
strained Markov aggregation, i.e., the task of partitioning the state
space of a Markov chain. We achieve this connection by consider-
ing every data point in the dataset as an element of the Markov
chain’s state space, by defining the transition probabilities be-
tween states via similarities between corresponding data points,
and by incorporating semi-supervision information as hard con-
straints in a Hartigan-style algorithm. The introduced Constrained
Markov Clustering (CoMaC) is an extension of a recent information-
theoretic framework for (unsupervised) Markov aggregation to the
semi-supervised case. Instantiating CoMaC for certain parameter
settings further generalizes two previous information-theoretic
objectives for unsupervised clustering. Our results indicate that
CoMaC is competitive with the state-of-the-art.

CCS CONCEPTS
• Computing methodologies → Semi-supervised learning
settings; •Mathematics of computing → Information theory; •
Information systems → Clustering;
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1 INTRODUCTION
A popular approach to clustering, especially if only pairwise simi-
larities between data points are available, is to view the problem
from the perspective of random walks. From this perspective, each
data point is represented by a state in the state space of a Markov
chain, whose transition probabilities are determined by the pairwise
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Figure 1: Result for (unsupervised) Markov aggregation clus-
tering (a) and the proposed semi-supervised CoMaC with 30
constraints (b). While also the unsupervised approach can
learn non-linear boundaries between clusters, the pairwise
constraints help avoiding bad local optima.

similarities between the corresponding data points. The clustering
problem can then be solved via aggregating the state space of the
thus defined Markov chain.

Although clustering via Markov aggregation has a solid theoret-
ical basis, allows for creating non-linear decision boundaries, and
was shown to achieve competitive performance [1], it appears to
be highly sensitive on a careful selection of hyperparameters or
optimization procedures. In random walk-based clustering, even
representing a dataset as aMarkov chain requires selecting hyperpa-
rameters, cf. (2) below. Tuning these hyperparameters to individual
datasets is cumbersome and severely limits the practical applica-
bility of the respective clustering method. Moreover, there are no
clear rules and objective evaluation measures for their selection
because of the unsupervised nature of clustering.

In this paper, we propose Constrained Markov Clustering (Co-
MaC), the extension of clustering via Markov aggregation [2] to the
semi-supervised setting, where the side information is given in the
form of partition-level information [4–7, 10] (some data points are
labeled by their cluster index) or pairwise constraints [8, 9, 13, 14]
(for some pairs of data points we know whether they belong to the
same or to different clusters, see Figure 1). Experimental results
confirm that the proposed adaptions to the Hartigan-style cluster-
ing algorithm of [2] achieve performance on common benchmarks
that is competitive with the state-of-the-art in semi-supervised
clustering. Furthermore, there are indications that introducing side
information makes the algorithm more robust to the selection of
some of its hyperparameters. Reducing the sensitivity to hyperpa-
rameters is important for (semi-supervised) clustering because the
limited available information about class labels typically precludes
performing proper validation.
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The value of CoMaC is additionally increased by the fact that the
considered clustering framework via Markov aggregation unifies
previous methods of [1, 12].

Despite these positive results, our experiments also indicate that
working with pairwise constraints bears several challenges. We
thus discuss potential avenues for future work in the extended
manuscript [11], with a focus on the effect of noisy side informa-
tion and algorithmic aspects of considering cannot- and must-link
constraints.

2 SEMI-SUPERVISED CLUSTERING VIA
MARKOV AGGREGATION

We aim to cluster elements of a dataset X = (𝑥1, . . . , 𝑥𝑁 ), 𝑥𝑖 ∈ R𝑛
into 𝐾 groups or clusters, using a clustering function 𝑔: X →
{1, . . . , 𝐾}. Data points within each cluster should have a higher sim-
ilarity with each other than with those of different clusters, where
similarity has to be defined appropriately. Clustering is successful if
the candidate clustering function 𝑔 is close (in a well-defined sense)
to the function 𝑔•: X → {1, . . . , 𝐾•} determining the true partition.

Semi-supervised clustering simplifies the task by providing ad-
ditional information in one of two flavors: First, partition-level side
information refers to a subset X′ of X for which the true cluster
indices are known, i.e., {(𝑥,𝑔• (𝑥)) | 𝑥 ∈ X′ ⊂ X}. Second, pairwise
constraints indicate which pairs of data points of X must or must
not be put in the same cluster; this setting is often referred to as
constrained clustering. Pairwise constraints are given as

M = { (𝑥, 𝑥 ′) | 𝑔• (𝑥) = 𝑔• (𝑥 ′)} (1a)
N = { (𝑥, 𝑥 ′) | 𝑔• (𝑥) ≠ 𝑔• (𝑥 ′)} (1b)

for a (small) subset of pairs (M ∪N) ⊂ X2.
Clustering viaMarkov Aggregation. Identifying each element of
the dataset X with a state of a Markov chain and by parameterizing
the transition probability between states via the similarity of cor-
responding data points, the clustering problem can be formulated
as a Markov aggregation problem. For example, if 𝑑 : X2 → [0,∞)
is a measure of dissimilarity between data points, then X can be
clustered via aggregating the Markov chain 𝑋 = (𝑋1, 𝑋2, . . . ) with
state space X and transition probability matrix P = [𝑃𝑖, 𝑗 ],

𝑃𝑖, 𝑗 ∝ e−
𝑑 (𝑥𝑖 ,𝑥 𝑗 )

𝜎2 (2)

where 𝜎2 is a scaling factor. Indeed, letting 𝑌 = (𝑔(𝑋1), 𝑔(𝑋2), . . . )
denote the aggregated process defined via the candidate clustering
𝑔, the authors of [1] proposed maximizing the mutual information
𝐼 (𝑌1;𝑌2), where 𝑑 (𝑥𝑖 , 𝑥 𝑗 ) is 0 if 𝑥𝑖 and 𝑥 𝑗 are 𝑘-nearest neighbors of
each other and∞ otherwise. In [12], 𝑑 was chosen as the Euclidean
distance, 𝜎2 as the 𝑘-nearest neighbor distance, and the authors
proposed to minimize 𝐼 (𝑌1;𝑋1) − 𝛽𝐼 (𝑌1;𝑋𝑇+1), where 𝑇 is selected
such that the Markov chain 𝑋 has relaxed to a meta-stable state.

In this work, we utilize a cost function that has recently been
proposed as a generalized information-theoretic framework for
Markov aggregation [2]:

C𝛽 (𝑋,ℎ) = (1 − 2𝛽) (𝐻 (𝑌2 |𝑌1) − 𝐻 (𝑌2 |𝑋1)) − 𝛽𝐼 (𝑌1;𝑌2). (3)

We let the transition probability matrix P depend on the clustering
dataset X via (2), where we choose 𝑑 to be the squared Euclidean
distance and 𝜎2

𝑘
as the average squared Euclidean distance between

the data point and its 𝑘 nearest neighbors (averaged over all data
points). The approaches of [1] and [12] (for 𝑇 = 1 and symmetric
dissimilarity measures 𝑑) correspond to solving (3) for 𝛽 = 0.5 and
for 𝛽 = 1, respectively. The main differences between [1, 12] and
minimizing (3) rely on the definition of P in (2) and, potentially, the
relaxation time 𝑇 proposed in [12].
Constrained Markov Clustering (CoMaC). The authors of [2]
proposed a Hartigan-style algorithm for minimizing (3) over all
deterministic clustering functions 𝑔:X → {1, . . . , 𝐾}. Starting from
an initial clustering ofX into𝐾 clusters, each data point 𝑥 is mapped
to every aggregate state 𝑦 ∈ {1, . . . , 𝐾} and the cost function is
evaluated. The data point is then assigned to the aggregate state
that minimizes the cost function.

In this work, the algorithm of [2] is extended in order to accept
pairwise constraintsM and N as given in (1). Since partition-level
side information can easily be converted to pairwise constraints
(but not vice-versa), the resulting algorithm can handle both types
of side information. Below we describe the algorithmic aspects of
CoMaC. Pseudocodes of our algorithms are deferred to [11].

Initialization. First, the candidate partition function 𝑔 is initial-
ized such that all pairwise constraints are satisfied. This is done
via solving a graph coloring problem, where no adjacent vertices
of a graph are allowed to be of the same color. In our procedure,
each vertex of this graph either corresponds to an individual data
point not involved in any must-link constraint, or to a set of data
points that are connected via must-link constraints, while each
edge of this graph corresponds to a cannot-link constraint. The
initial coloring of the graph is performed by a greedy algorithm,
where each vertex is assigned the first color available in sequence.
To avoid the algorithm getting stuck in bad local minima, vertices
with no cannot-link constraints are assigned a random color.

Iteration. Once the initial partition function is defined, the se-
quential algorithm minimizes the cost function in (3) iteratively.
Cannot-link constraints are incorporated by restricting the possi-
ble states of the aggregation function. Data points connected by
must-link constraints are assigned to an aggregate state simulta-
neously. Erroneous or noisy pairwise constraints can lead to the
case where a data point cannot be assigned to any aggregate state.
Then, the aggregate state with the least occurrences of cannot-link
constraints is selected. CoMaC contains the sequential algorithm
in [2] as special case for M = N = ∅. Utilizing the properties
of (3), each iteration has a computational complexity of O(𝐾𝑁 2)
for clustering a dataset with 𝑁 elements into 𝐾 clusters [2, Sec. V].

Constraint Propagation. In this work we assume noise-free, non-
conflicting constraints and can therefore propagate them to artifi-
cially increase the sets of pairwise constraints. Assuming a graph
with vertices X and edges defined by M, we first determine all
connected components in this graph using a depth-first search al-
gorithm. Each connected components is then completed to a clique,
thus extendingM. Additionally, if two data points from different
cliques are connected by a cannot-link constraint, then all elements
of the two respective cliques are connected by cannot-link con-
straints, and thus are not allowed to be in the same cluster. E.g., if
(𝑥, 𝑥 ′) ∈ M and (𝑥, 𝑥 ′′) ∈ N , then also 𝑥 ′ and 𝑥 ′′ should not link,
despite (𝑥 ′, 𝑥 ′′) not being a labeled cannot-link constraint.
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3 EXPERIMENTS
We experimentally evaluate the performance of CoMaC. First, we
show that the introduction of pairwise constraints makes Markov
aggregation-based clustering less sensitive to hyperparameter set-
tings. We then compare its performance with the state-of-the-art
semi-supervised clustering techniques following the experimental
setup of [10]. We measure the accuracy of the obtained clusterings
with the Normalized Mutual Information (NMI), averaged over 10
randomized runs. Additional results are available in [11]1.
Sensitivity Analysis of CoMaC. In this part, we investigate the
effect of hyperparameters on the clustering results produced by Co-
MaC. To be consistent with [10], we generate pairwise constraints
from randomly sampled partition-level side information.

Influence of parameter 𝑘 . One can observe an influence of the
hyperparameter 𝑘 on the clustering accuracy of CoMaC.2 Ideally,
𝑘 is chosen such that the transition probability matrix is nearly
completely decomposable, which strongly depends on the chosen
dataset. In this subsection, we analyse the influence of𝑘 on the three
circles dataset shown in Figure 1. Data points are placed uniformly
distributed at radii {0.5, 7, 15} and corrupted by spherical Gaussian
noise with standard deviation of 0.3.

We analyse the performance of CoMaC with 𝛽 = {0, 0.5, 1}
for semi-supervised clustering where 0%, 10%, 20%, 30% of data
points are labeled while 𝑘 is varied (see Figure 2, (a–c)). Indeed, we
observe that side information makes CoMaC more robust to the
selection of this hyperparameter, at least for this dataset: Clustering
accuracy degrades for increasing values of 𝑘 , and the degradation
is less severe the more data points are labeled.

The same experiment is repeated for the Iris dataset (see Figure 2,
(d–f)). As it can be seen, the NMI as a function of 𝑘 shows less
variations than for the three concentric circles. As expected, the
optimal value of 𝑘 depends on the dataset. However, for 𝑘 < 50,
the performance is quite stable for both datasets and all considered
levels of side information. Thus, for all subsequent experiments we
set 𝑘 = 20 rather than optimize it for each dataset.

Influence of parameter 𝛽 . We next analyse the influence of the
parameter 𝛽 for a constant setting of 𝑘 = 20. The results of the
experiment for the unsupervised case and for a semi-supervised
case where 20% of the data points are labeled and used to generate
the pairwise constraints are shown in Figure 4. Unsupervised, Co-
MaC performs particularly badly for small 𝛽 values as it is prone
to getting stuck in bad local minima. This parallels the behavior of
the Markov aggregation method proposed in [2]. To compensate
this behavior, the authors proposed an annealing scheme, reducing
𝛽 iteratively. Since these bad minima for small values of 𝛽 cannot
be escaped by introducing additional side-information, we have
implemented this annealing scheme also for CoMaC and report its
results in [11]. In this work, we stick with the vanilla version of
CoMaC and restrict our attention to 𝛽 ≥ 0.5, where the algorithm
achieves stable results.
Evaluation. Next, we compare CoMaC with the state-of-the-art
semi-supervised clustering techniques on several UCI datasets [3].

1The data and code used for these experiments is publicly available at https://github.
com/stegsoph/Constrained-Markov-Clustering
2See, e.g., the Section VII.D in the extended preprint of [2] (arXiv:1709.05907).

For a fair comparison, we follow the experimental setup in [10] and
directly use the clustering results of comparative methods reported
there. We assume that the number of clusters is known.

Experimental setup. We consider CoMaC with 𝑘 = 20 and 𝛽 = 0.5
throughout all experiments. The latter parameter setting corre-
sponds to the clustering method proposed in [1], albeit for a differ-
ent transition probability matrix P.

The following baselines are considered (see [10] for a descrip-
tion of hyperparameters selection): k-means [5] and fuzzy c-means
(fc-means, [6, 7]) with partition-level side information, Gaussian
Mixture Model (GMM) with partition-level side information (mix-
mod, [4]), GMM with pairwise constraints (c-GMM, [9]), spectral
clustering with pairwise constraints (spec, [8]), and model-based
clustering based on cross-entropy and information bottleneck using
partition-level side information (CEC-IB, [10]), with two values of
a hyperparameter, denoted as CEC-IB1 and CEC-IB0. Since some of
the comparison methods reported in [10] only accept partition-level
side information, those methods are provided with the ground truth
clusters 𝑔• (𝑥) for a subset X′ of data points (0%, 10%, 20%, 30%).
This partition-level side information is subsequently converted to
pairwise constraints and incorporated to the remaining methods.
To allow for a fair comparison, the constraint setsM andN are ex-
haustive, i.e., they contain all pairwise constraints that are implied
by partition-level side information. Specifically, if |X′ | =𝑚, then
|M| + |N | =𝑚(𝑚 − 1)/2.

Clustering with side information from all classes. First, we con-
sider a typical case, where the partition-level side information cov-
ers elements of all classes. Figure 3 shows the accuracy of the
clustering results for each algorithm and dataset for different frac-
tions of labeled data points. Overall, we can observe that CoMaC
clearly benefits from labeled data, at least for 𝑘 = 20 and 𝛽 = 0.5,
as NMI increases with increasing amounts of labeled data points.

The improvement of CoMaC performance due to side informa-
tion in comparison to the other techniques is most notable on the
Iris dataset. Only 20% of labeled data points noticeably improve
the accuracy of CoMaC while the other techniques do not benefit
as much from additional side information. CoMaC furthermore
achieves superior performance on the Glass, Segmentation, Verte-
bral and Wine datasets. Both k-means and spec are sensitive to the
scale of attributes, which may partially explain why these methods
perform worse on the Wine dataset (CoMaC was run on the nor-
malized Wine dataset). Interestingly, on the Vertebral dataset, all
algorithms perform equally well in the unsupervised case. How-
ever, when incorporating labeled data, both CoMaC and CEC-IB
outperform all other methods.

Clustering with side information from a subset of classes. Next,
we investigate the case where the side information does not cover
all classes. Now, a certain percentage of data points from only two
classes is selected and used for labeling. The goal is to determine the
ability of our clustering algorithm to correctly identify all classes,
although it is given information about only two of them.

The results reported in Table 1 show that CoMaC is robust
against missing labels from other classes. The advantage of CoMaC
is especially evident in the case of Vertebral, Wine and User dataset,
but it also performs well on Glass and Segmentation datasets.

https://github.com/stegsoph/Constrained-Markov-Clustering
https://github.com/stegsoph/Constrained-Markov-Clustering
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(a) 𝛽 = 0 (b) 𝛽 = 0.5 (c) 𝛽 = 1 (d) 𝛽 = 0 (e) 𝛽 = 0.5 (f) 𝛽 = 1

Figure 2: Dependence of the clustering accuracy on the parameter 𝑘 for the circles dataset (a–c) and the Iris dataset (d–f).

Figure 3: Normalized mutual information computed on UCI datasets with noise-free side information from all classes.

Figure 4: Influence of the parameter 𝛽 on the clustering accu-
racy in the unsupervised and semi-supervised setting (frac-
tion of labeled data = 20%).

Table 1: Normalized mutual information (best result is bold-
face, second in italics) with noise-free information from two
classes only (20% of data is labeled, 𝛽 = 0.5 and 𝑘 = 20).

Ecoli Glass Segm. User Vert. Wine Iris

CoMaC 0.6409 0.4106 0.6276 0.6482 0.5151 0.9027 0.8484
CEC-IB-1 0.6050 0.3400 0.6150 0.4600 0.5150 0.7700 0.7700
CEC-IB-0 0.5900 0.3200 0.5950 0.4440 0.4900 0.7450 0.7850
c-GMM 0.5700 0.3010 0.5500 0.3900 0.3700 0.6600 0.5700
k-means 0.6500 0.2800 0.6500 0.3600 0.4170 0.4450 0.6750
fc-means 0.6892 0.2703 0.4874 0.4307 0.4319 0.8063 0.8791
spec 0.7164 0.3624 0.5714 0.2940 0.4033 0.3690 0.7127
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