
 
 

This paper was presented at The ISPIM Innovation Conference – Innovation, The Name of The 

Game, Stockholm, Sweden on 17-20 June 2018. The publication is available to ISPIM members at 

www.ispim.org. 

 

1 

 

 

E-Mobility and Big Data – Data Utilization of Charging 
Operations 

Gerald Cuder *  

Know-Center GmbH, Inffeldgasse 13, 8010 Graz, Austria. 

E-mail: gcuder@know-center.at 

Gert Breitfuss, Roman Kern   

Know-Center GmbH, Inffeldgasse 13, 8010 Graz, Austria. 

Graz University of Technology, Institute of Interactive Systems and Data 

Science, Inffeldgasse 16c, 8010 Graz, Austria 

Roland Angerer   

Has.To.Be GmbH, Salzburger Straße 20, 5550 Radstadt, Austria 
 

* Corresponding author 

Abstract: Electric vehicles have enjoyed a substantial growth in recent years. 

One essential part to ensure their success in the future is a well-developed and 

easy-to-use charging infrastructure. Charging stations themselves and any 

charging activity generates a lot of (big) data. The analysis for this data provides 

useful information about current E-Mobility behaviour. It bears the potential for 

informed decisions on the utilisation of the infrastructure and its future planning. 

In this paper we present data analytics methods and visualization technologies 

on such a data set collected by a large-scale, real-world charging infrastructure. 

To this end we researched established forecasting models like ARIMA and recent 

advances in machine learning for their usefulness in this setting. One objective 

of our research is, to provide a consumption forecast based on the historical 

consumption data. Based on this information, the operators of charging stations 

are able to optimize the energy supply. Furthermore, advanced prediction 

algorithms were applied to provide services to the end user regarding availability 

of charging stations. We managed to build models for most charge points solving 

all use cases with a comparably low error. The combined outcome of these 

analyses is of help for the infrastructure’s operator to provide an improved 

service to its customers. The developed and tested solutions open up a broad 

agenda for future services based on charging operation data. 

Keywords: Data-driven; electric vehicles; E-mobility; ARIMA; time series; 

travel planning; consumption prediction 
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1 Introduction 

In recent years, electric vehicles (EVs) have become increasingly popular, as a rising 

number of car manufacturers will offer in future reasonably priced EVs for everyone. Many 

incentives, such as subsidisations, tax exemptions and free parking have been established 

that further stir the interest in EVs leading to an increased usage. Especially in European 

countries E-mobility has experienced a substantial grow since 2010 with both increased 

market shares and sales. In Norway the slope of the increase was progressed the most with 

a market share of 13% in the year 2014. By comparison, the market shares of following 

countries, Netherlands and Estonia, were with 1% quite far behind Norway (Figenbaum et 

al., 2015). However, according to a recent survey (UBS, 2017), the market share of EVs 

will grow further until 2025 with a predicted share of 30% in Europe, whereas the most 

uprising economies of the world, China and USA, will be very far behind in 2025 according 

to forecasts (see Figure 1).  

 

Figure 1 Trend of market share for EV in different regions (UBS, 2017)  

 

Another contributing factor for the observed increase in popularity of EVs is linked to the 

increase in charge points. The increase in density of the charge point network allows EV 

owners to travel further, since the most relevant perceived limitations of EVs is the range 

due to limited battery charge. According to (Figenbaum et al., 2015), about 74% of the 

traditional car owners and at least 21% of the EV owners see one of the biggest 

disadvantages in the limited range of EV. Nowadays, provider of charging infrastructure 

(hardware and software) facilitate the set-up and operation of charge points (CP) for EV 

for single households and businesses. This will increase the number of CPs rapidly which 

might benefit the market share of EV as well, as a tighter and larger network of easy-to-

use CPs increases the range of EVs drastically. An increasing share of EVs contributes to 

the local reduction of air pollutants produced by combustion engines especially in urban 

areas, which might be a lot more pronounced in the foreseeable future, according to a recent 

estimation for 2025 (Liberto et al., 2017). Furthermore the overall soundscape of urban 

areas will undergo a substantial reduction  due to nearly noiseless EV which might have a 

benefit for inhabitants of urban areas, (Genuit, 2013).  As every charging at those CPs is 

recorded, a lot of data is generated and transferred to a central database. In this work we 

developed a framework based on the Cross Industry Standard Process for Data Mining 



 

(CRISP-DM) (Wirth and Hipp, 2000) to analyse the data generated by charging stations 

and extract as many useful information in order to develop innovative services that benefits 

all involved parties equally. For instance, to allow the charge point operator (CPO) to 

implement a cost-optimized way to plan the energy supply for an individual CP, a 

sophisticated prediction strategy was developed to forecast a CP’s both short- and long-

term energy consumption. Moreover, the availability of a single charge point in terms of 

free connectors was also estimated based on historical charge events, as charging a EV 

usually takes much longer than to fuel a traditional car. So, the information on if a charge 

point is available or not might save the EV owner a lot of time, as he is able to plan his 

journey accordingly 

Finally, the present paper illustrates, how the described use cases are solved with the 

use of state-of-the-art data analysis and machine learning technologies in order to extract 

data-driven features and services for charging station operators and end-users at the same 

time. 

2 Related Work 

Considering the fact that the boom of e-mobility is quite new and that the geographic 

density of CPs is steadily increasing, a comparably small amount of related work 

concerning data utilization of CPs and EVs has been conducted in the recent past. However, 

some work in a similar direction than ours has been done by Arias et al.  (Arias and Bae, 

2016) who used big data technologies for EV charging demand forecasting in South Korea 

by including real-world traffic data and weather data into their model. A similar approach 

was introduced in (Xydas et al., 2016) where the charging demand of EV in the UK was 

estimated by cluster and correlation analysis combined in a fuzzy based characterization 

model. However, both (Xydas et al., 2016) and (Arias and Bae, 2016) developed 

approaches that focused more on the energy supplier point of view, as the overall trend of 

the future energy demand caused by EV is estimated. In (Amini, Kargarian and 

Karabasoglu, 2016), they used an autoregressive integrated moving average (ARIMA) 

based approach to forecast both the charging demand of EVs and conventional electric load 

on the power grid by using historical load data and charging event data. Furthermore, an 

also very interesting approach was introduced by (Majidpour et al., 2015), who not only 

developed a way of generating very fast predictions of the overall consumption load of EV 

charging stations, but also addresses the sparsity of those time series. By transforming the 

time series problem into a supervised learning problem, they managed to create a forecast 

by applying fast machine learning (ML) algorithms such as k-nearest neighbours, on the 

one hand, and the historical average as a baseline, the other hand.  

Concerning the optimization of travel time, (Qin and Zhang, 2011) have done some 

research by developing an algorithm that intelligently schedules car chargings by taking 

temporally and spatially charging activities into account.  

3 Data description 

Our dataset was provided by an Austrian independent e-mobility solution provider which 

offers a charging station management software solution This software solution allows 
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private persons (households) and companies an easy set-up, operation and maintenance of 

one or more CPs. Although the data contain information on single charge events, the 

identity of the corresponding user remains secret, as the data was anonymized beforehand, 

the data generated by more than 1000 CPs between 2015 and 2017 have been analysed to 

extract as much useful information as possible. In total, we analysed 121,812 charging 

events of exactly 1,076 CPs. As stated in Table 1, the majority of these CPs are located in 

Germany and Austria, followed by Switzerland, Sweden and Spain. Moreover, the 

maximum timespan of charge recordings differed depending on the country, ranging from 

765 days (Germany) to only 25 days (Slovakia). 

 

Table 1 Summary of charging station by country 

Country Number of CPs Number of chargings Total timespan (days) 

Germany 719 86574 765.59 

Austria 175 20621 757.42 

Switzerland 100 7033 597.38 

Sweden 52 4792 647.43 

Spain 15 1833 582.34 

Croatia 2 478 469.05 

Colombia 1 185 214.41 

Slovakia 1 113 24.99 

Italy 3 76 462.16 

The Netherlands 1 69 57.1 

Australia 1 22 52.75 

China 1 5 46.84 

Ireland 2 4 22.09 

Monaco 1 3 0.96 

Romania 1 3 20.19 

Bosnia  1 1 0.21 

Total 1076 121812 43365 

 

4 Methodology 

In general, the data mining framework is a derivation of the Cross Industry Standard 

Process for Data Mining (CRISP-DM) (Wirth and Hipp, 2000) and mainly consists of 

following parts: (i) the requirement analysis and the development of use cases, (ii) the data 

processing, (iii) the model approach and (iv) the visualization. In (i) we conducted a 

structured requirement analysis with charge point operators in Austria, Germany and 

Switzerland in order to adapt and reshape predefined use case ideas. In (ii), the given data 

were prepared for the use cases by merging different data sources, cleaning and aggregation 

activities. In (iii) machine learning (ML) models were trained and evaluated in order to 

solve the defined use cases. Finally, the results were visualized in (iv) by integrating them 

into a specially developed web-based scalable visualisation tool. The whole workflow is 

shown in Figure 2. 



 

 
Figure 2 Data utilization workflow describing the application of the CRISP-DM with the focus on 

business understanding, data processing, machine learning for use cases and visualization (Wirth 

and Hipp, 2000) 

Further steps such as the framework integration, deployment and real-life evaluation were 

not in the scope of our research and are therefore not discussed in this paper. 

Requirement Analysis 

In order to get a realistic business understanding a qualitative customer survey were carried 

out. Five personal interviews with charge point operators (2 in Austria, 2 in Germany, 1 in 

Switzerland) based on a semi-structured interviews guideline have been conducted. The 

focus of the qualitative survey was to obtain requirements and ideas on new data-driven 

reports and/or visualisations. The interviews were evaluated through qualitative content 

analysis by analysing the conversation logs systematically. 

Use-Case Development 

After evaluating the outcome of the requirement analysis and the consideration of the 

inputs of data provider, we defined following use cases: (i) Consumption Prediction and a 

(ii) Availability Prediction.  In (i) the general aim was to develop strategies for predicting 

the energy consumption of one or more CPs in a long- (next 7 days) and short-term (next 

24 hours) scenario, while in (ii), it was our goal to estimate the availability of a single 

charge point in an hourly manner. These use cases were chosen in order to gain the highest 
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benefit to extend the existing operating system and to satisfy the needs of the CPO and the 

e-car owner.  

Data processing 

Since the data generated by the charging stations contained a lot of large data sources, a 

sophisticated exploration and data processing strategy had to be developed which consisted 

of three consecutive phases, namely the combination phase followed by the cleaning and 

preparation phase. All data is stored in a MySQL database from which our framework 

directly acquires the required datasets.  The data set itself spawns multiple data sources, 

therefore data fusion methods need to be applied. To this end, in the first step of the 

preprocessing pipeline, we aimed to combine as much information into consolidated 

datasets by selecting subsets from the individual data sources based on their unique 

information content. This way, we managed to reduce a wide range of different data sources 

down to only two datasets for further analysis, namely a dataset containing the energy 

consumption records of every charge event in a minutely interval, and another data set 

having information on every charge event (i.e. start time, end time). The resulting data sets 

had then to be preprocessed even further in the second step, the cleaning phase, by 

removing duplicate and erroneous entries and by imputing missing data points. Lastly, the 

datasets were prepared in order to be suitable to build further use cases on. First of all, the 

dataset containing the minutely time series of the charging events, was formatted into three 

differently shaped sets, by aggregating the energy consumption of each charge point over 

time, creating a minutely, an hourly and a daily time series of each charge point with the 

corresponding peak energy consumption in kilowatt hours (kWh). Second of all, we used 

sophisticated domain-specific feature engineering techniques in order to extract data-

driven features for improving the model performance in later analysis. To all these steps, 

the inputs of the requirement analysis contributed specific domain knowledge in order to 

improve the whole process.  Figure 3 gives a detailed overview on the pre-processing 

pipeline, while in Table 2 and Table 3 the two final datasets are described.  

 

Table 2 Information contained in the charge event dataset 

Attribute name Attribute description 

User Unique ID for each user that connects to the CP 

Charge point Unique ID of the charge point 

Start of charging Timestamp (dd/mm/yyyy HH:MM:SS) when the user 

connects to the CP  

End of charging Timestamp (dd/mm/yyyy HH:MM:SS) when the user 

disconnects from the CP 

Location Longitude and latitude coordinates for the CP (WGS84) 

 

 

 

 

 

 



 

Table 3 Information contained in the consumption dataset 

Attribute name Attribute description 

User Unique ID for each user that connects to the CP 

Charge point Unique ID of the charge point 

Timestamp Timestamp (dd/mm/yyyy HH:MM:SS) when the 

energy consumption value is sent by a CP  

Energy consumption value Energy consumption value sent by the CP for a given 

timestamp 

Location Longitude and latitude coordinates for the CP (WGS84) 

 

Figure 3 Data processing workflow describing the way of the data from raw data to processed 

datasets ready for further analysis, with continuous input from the requirement analysis and 

specific domain knowledge 
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Consumption Prediction 

The objective concerning this use case was, to predict the energy consumption of a certain 

charge point for the next 24h and the next 7 days by using time series of past charging data. 

We dealt with this issue by treating it as a time series forecasting setting, consisting of the 

following steps. In the data pre-processing workflow (see Figure 3), the historical 

consumption data set, which contains consumption values in a minutely interval, is 

prepared by generating time series for each charge point with different aggregation levels. 

For the short-term prediction, time series in an hourly interval are created, while for the 

long-term forecast, a daily interval was considered sufficient. In order to solve this use 

case, we used separate optimized models for the long- and short-term forecast, as they 

could not be solved by using only one generalized model.  

In general, for most of the charge points the data was very sparse with an average time 

of 22 hours between the charge events. This  had to be  overcome especially for the short-

term prediction. Therefore, we used the historical average approach such as (Majidpour et 

al., 2015) to generate a forecast for the next 24 hours. This means that the forecast of the 

energy consumption value for a given charging station on for a specific hour depends on 

the mean of all past energy consumption values on hourly values every 24 hours. Using 

this approach, we ensured that even the lack of stationarity of time series did not affect the 

forecast, on the one hand, and that this also could be applied to newly built charging stations 

with a relatively small amount of data available with increasing forecast accuracy as the 

CP is used more often. In order to validate the predictive performance of the algorithm, we 

made a train-test-split, using the last three weeks for validation. The model was built on 

the rest of the data set (train) making sure not to include and information from the test set 

in the training phase.  Following equation shows how a historical average model is built, 

where 𝐷 stands for the number of historical data points used for the estimation. 

�̂�(𝑡) =
1

𝐷
∑ 𝑦(𝑡 − 24𝑑)

𝐷

𝑑=1

 

Concerning the long-term prediction for the next 7 days in a daily interval, several 

established time series models have been applied, including autoregressive integrated 

moving average models (ARIMA), exponential smoothing (ETS) and a linear model that 

decomposes the time series into trend and season. Especially ARIMA and ETS models 

have often been used in forecasting of energy consumption, mostly, however, of whole 

cities and households (Al-Musaylh et al., 2018; de Oliveira and Cyrino Oliveira, 2018). 

ARIMA combines auto-regressive (AR) and moving average model approaches with 

additional differencing in order to establish stationarity and predicts future values by 

learning from the past (Chatfield, 2016). ARIMA models are usually used to capture 

seasonalities (recurring values within a certain period) in the data, which is mostly the case 

in series of energy consumption values, as load patterns are highly dependent on the time 

of the day (Taylor, 2003).  

Availability Prediction 

Approximately 62% of traditional car owners and 22% of EV owners see the accessibility 

of CP as their biggest drawback. Motivated by this, we considered to develop a use case 

that aims to tackle this disadvantage by calculating an estimation for each charge point 

giving the EV owners the opportunity to choose the best time for charging their cars. This 



 

was achieved by using the historic average approach, applied on the charge event dataset 

which stores information on every charging, as stated in Table 2 Information contained in 

the charge event data The prediction of a CP’s availability is calculated hourly, resulting 

in estimation for every hour of the day. Additionally, two different weighting strategies 

that individually value each charge event have been implemented. This has been done due 

to the structure of the data, having a varying number of charging events per month over the 

overall time range. Two different patterns were identified: Many CPs have fewer charging 

events in the past compared to newer data, while some CPs have a varying density of charge 

events, regardless of the time in the data. As both issues can seriously bias the final 

estimation of the CP’s availability, a (i) time-based and a (ii) density-based weighting 

strategy were introduced, reducing the bias in the overall estimation for each CP 

individually.  

In (i), a two-stage weighing approach is applied which first weights data from each year 

separately, whereas newer years are valued the most. In the second step, the last three 

months of the data are weighted additionally. These weights were estimated heuristically 

based on domain expertise. This approach addresses the issue, that newer data is much 

more valuable than older data, by setting the weights for older charge events lower 

compared to newer ones. This strategy follows the principle of exponential smoothing (Box 

et al., 2015), however we applied it in a two-step approach.   The approach in (ii) follows 

a different strategy: Instead of addressing the topicality of the charge event, it values 

individual charging events in months with a higher charging density, regardless of the year 

the charging took place. The latter approach has a major advantage compared to the former 

one, as it also can be applied to CPs which has only a few months of data available.  

Visualization framework and applied technologies 

In order to create an interactive and scalable platform to visualize the results of all use 

cases, the R-shiny framework (Chang et al., 2017) was used. Using an interactive 

framework such as shiny allowed us to create highly sophisticated visualizations that are 

scalable and zoomable. This was necessary, as we had to deal with data of nearly two years, 

on the one hand, and there were over a thousand CPs to visualize on the other hand. Within 

the application, the user is able to interactively select the desired CP for each particular use 

case which makes the operation of multiple CPs a lot less complicated for the owner.  

Besides the shiny framework, we used R, a programming language for statistical 

computing (R Core Team, 2017), to solve the use cases and to do the data processing. 

Additionally, we chose MySQL for data storage, as it comes with a lot of useful tools to 

handle many data sources.  

5 Evaluation 

In order evaluate our results, we did not use the whole datasets to build our models. Instead, 

we applied classic validation strategies used in state-of-the-art modelling of timeseries. 

ARIMA and all other time series models were validated using the rolling forecast method 

(Hyndman and Athanasopoulos, 2018) which is similar to k-fold cross validation in 

traditional machine learning. The algorithm starts with an initial train set which size is 

defined by the user. The corresponding test set is the one observation next to the last one 
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in the train set. The model is trained and then tested on the single test observation. Then, 

the test observation is added to the train set and the model is retrained and again tested on 

the next observation which is not in the train set. This process is iterated till no observations 

are left to test the model on. Figure 4 summarizes the principle of the rolling forecast 

validation, whereas train and test set are represented by the blue and red points, 

respectively.  

 

 
Figure 4 Rolling forecast method as stated in (Hyndman and Athanasopoulos, 2018) 

The error of both approaches was estimated by calculating the root mean squared error 

(RMSE), whereas �̂�𝑡 is the predicted value and 𝑦𝑡  the actual value at time 𝑡. Thus the 

RMSE describes the standard deviation between the predicted and the actual value over 

several predictions 𝑛 (Chatfield, 2016; Hyndman and Athanasopoulos, 2018).  

𝑅𝑀𝑆𝐸 =  √
∑ (�̂�𝑡 − 𝑦𝑡)²𝑛

𝑡=1

𝑛
 

For the evaluation of the availability prediction, we used a similar approach, but instead 

of using only the next day, we tested the model on the whole next week in the validation 

set. The performance of the model was then estimated by calculating the mean percentage 

error (MPE) on the test set for each day with and without applied weighting strategies, 

respectively. The error was calculated like following: 

 

𝑀𝑃𝐸 =
100%

𝑛
∑

𝑦𝑡 − �̂�𝑡

𝑦𝑡

𝑛

𝑡=1
 

6 Results 

This section describes the most relevant results gathered from the use cases. Figure 5 and 

Figure 6 show the results of UC 1 which deals with the forecast of a CP’s energy 

consumption, while Figure 7 shows the results of the availability prediction. For 

demonstrative purpose, the following figures all represent a single CP (located in Graz, 

Austria).   

As it is shown in Figure 5, the daily prediction for the next 7 days using an ARIMA 

model worked quite well producing a valid forecast (left-hand side) with a very low 

corresponding validation error (right-hand side). In the graphic, the red line indicates the 

actual energy consumption while the blue line stands for the validation error. The green 

line and the shaded areas shows the 7-day prediction with the corresponding prediction 

intervals.  



 

 

 
Figure 5 Daily consumption prediction using ARIMA 

While the previous figure gave an example for the long-term forecast, Figure 6 shows how 

the short-term forecast performs using the historical average on hourly data. On the upper 

left-hand side of the figure, the forecast for the next 24 hours is shown, while on the right-

hand side the validation error on the test dataset indicates that the forecast to be quite 

accurate. The lower part of the figure visualizes how the historical average model 

performed on the test dataset by comparing the actual data with the model output.  

 
Figure 6 Hourly consumption forecast using the historical average 

Figure 7 describes the results of the third use case where an estimation of a CP’s availability 

has been developed using again the historic average on charge event data. The figure shows 

the estimated load in percent over all hours of the day in combination with the estimated 

average time how long people usually spend there. On the right-hand side of the figure, the 

validation error was computed showing an error in the range from 9% to 13% depending 

on the weighting strategy applied. It also shows that the density-based weighting strategy 

works best having the lowest validation error.  
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Figure 7 Estimation of a CP's availability using the historical average of charge events 

7 Discussion 

E-mobility is an upcoming field and is going to affect the lives of all of us in the foreseeable 

future. With the advancement of EVs and charging stations, more and more data is 

produced and can be utilized for research and service development. In this work, we have 

developed a workflow that both cleans and facilitates data generated by more than thousand 

CPs in order to produce outputs that are useful to all parties involved. Our research not 

only considers an isolated subset of CPs within a high spatial proximity, (Arias and Bae, 

2016; Xydas et al., 2016), using several external data sources like traffic and weather data. 

Hence, the mentioned approaches are more focused on the future influence of e-mobility 

on the overall power grid rather than predicting the power consumption of each individual 

CP within their data. We assume that the developed approaches can be applied to any CP 

regardless of its location. Our approach gains an immense benefit for all parties involved. 

First of all, the existing version of the operating system can now be extended by 

implementing an intelligent data pre-processing pipeline providing a powerful backend to 

provide useful features, such as a short- and long-term prediction of a CPs power 

consumption 

Other parties involved in the environment of e-mobility also benefit from the outcome 

of this work. For instance, the consumption prediction allows the operator of a charge point 

to establish a cost-optimized energy supply, as violation of the contractually guaranteed 

peak power results in large monetary fines. On the contrary, knowing the future energy 

demand of a CP allows the charge point operator to adapt the contract with the local energy 

supplier at short notice in order to avoid those fines. From the e-car owners point of view, 

the availability prediction seems to be most beneficial, as charging an EV still consumes a 

considerable amount of time, depending on the charging technology and the e-car itself, 

respectively. Knowing the time, when a CP is most likely to be available, helps to reduce 

at least unnecessary waiting times and enables e-car users to optimize their travel strategy. 

Furthermore, optimizing travel planning might result in a higher probability that people 

who still use a traditional car start considering buying an EV, as the majority of non EV 

owners still see in the access to CPs (62%) on the one hand, and in the time it takes an EV 

to charge (51%), on the other hand the biggest disadvantage in e-mobility (Figenbaum et 

al., 2015). The developed weighing strategies improve the availability prediction even 

further, however further validation will be necessary.  



 

8 Conclusion and outlook 

In this work, we proposed a framework for data utilization in order to extract data-driven 

features from CP data streams. The technological challenges could be solved by advanced 

data processing, by combining several data sources and by development of sophisticated 

strategies to weight historical data. The presented work shows how (big) data analytics and 

data-driven business can lead to service-innovation in the e-mobility domain. By using a 

two-way approach (customer and data focus) two use cases were identified for further 

development: to provide consumption forecast and to determine prediction information on 

charge point availability for EV owners. Providing a sophisticated solution for every of 

these use cases, we ensured that the charge point operator and the EV owner gained as 

much benefit as possible from the existing data.  
Besides the benefit that has already been gained from the current data, we are also going 

to do further research, as the partnership with our partner is aimed to be long-term. As CP 

data is highly time dependent, we get updates of our database on a regular basis which 

extends the scope of our research sequentially. From our side, there are lots of suggestions 

of how the data utilization framework proposed in this work could be extended. For 

instance, if more data become available, the consumption can be predicted using Deep 

Learning models such as Long-Short-Term-Memory (LSTM) recurrent neural networks 

which have been successfully applied to time series forecasting recently (Kong et al., 

2018). Furthermore, we plan to develop a spatial regression model that estimates the 

optimal location to build a new CP by gathering several external data sources, such as 

traffic data, weather data and demographic data. Another hot topic is located in the security 

domain, as RFID cards used to identify a user at a certain CP can easily be copied and are 

therefore prone to fraud. We plan to establish a fraud detection system similar to those 

already used in the financial domain (credit cards), however with domain specific 

adoptions to e-mobility. Furthermore predictive maintenance is a major goal in every field 

of industry 4.0, as the reduction of downtimes increases the productivity and decreases 

unnecessary high costs for maintenance. Depending on the industry, maintenance can make 

out up to 60% of the production costs (Mobley, 2002; Lu, Durocher and Stemper, 2009). 

Thus we are eager to apply a certain predictive maintenance strategy for CPs, as the 

reduction of downtimes bear a huge benefit for the CPO.  
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