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Motivation & Background
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,Recommender systems are crucial tools to overcome the

information overload brought about by the Internet” [1]

[1] Blattner, M., Hunziker, A., & Laureti, P. (2007). When are recommender systems useful?. arXiv preprint arXiv:0709.2562.
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Recommender systems examples [2]

[2] https://www.slideshare.net/CrossingMinds/recommendation-system-explained/4
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User-based collaborative filtering

How does it generate recommendations for the target user?

1. Find k most similar users, i.e., k-nearest neighbors
Il User similarity can be calculated in many different ways

2. Look at the items they like and combine them to create a
ranked list of recommendations
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User-based collaborative filtering
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User-based collaborative filtering

How is user similarity
calculated?
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User-based collaborative filtering
(from item ratings)
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User-based collaborative filtering
(from item ratings)
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Pairwise similarity calculator
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User-based collaborative filtering
(from item ratings)
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User-based collaborative filtering
(from item ratings)

Used for finding k-nearest neighbors
A

A[Similarity Matrix S
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User-based collaborative filtering
(from item ratings)

CONS:

* Data sparsity — ratings matrix is usually very sparse
= Often tackled by creating latent user representations from user rating vectors

e Cold-start user problem - No or poor recommendations for users with
none or very little item interactions

= One proposed solution is to use additional user data such as social connections
between users (if they exist), e.q., trust connections
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Trust-based collaborative filtering [3]

* User-based Collaborative Filtering using user trust network as input

" In evaluated datasets, trust network G = (V, E) is an undirected unweighted
graph with no self-loops consisting of a set of nodes V (users) and a set of
edges E (trust connections).

[3] Lathia, N., Hailes, S., & Capra, L. (2008, June). Trust-based collaborative filtering. In IFIP international conference on trust management (pp. 119-134). Springer, Boston, MA.
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Trust network example

-
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Trust Connection
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Trust network example

Can be represented as

an adjacency matrix A

-

Trust Connection
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Trust network example

Adjacency matrix A

oL ey
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Can be represented as 1111

an adjacency matrix A oo l1] o
0 0 1 0
1 0 0 0
1 o |1 0
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Graph Embeddings for Trust-Based Collaborative Filtering

Tr U St n EtWO r k exa m p | e Can be used directly for finding k-nearest neighbors.

However...
L[Adjacency matrix A

Can be represented as

an adjacency matrix A

Sep. 23rd-25th 2020
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Trust network adjacency matrix

 Tipically very sparse, i.e., network density is low
= Total number of edges is much lower than the total number of possible edges

e Cold-start user problem - No or poor recommendations for users with
none or very little trust connections

* No measure of how much one user trusts another

* Solution:
a) By directly employing a similarity metric of choice to A
b) Converting user vectors from A into latent feature space and then employing a
similarity metric of choice to the embeddings matrix Z € RIVIxd
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a) Direct similarity metric approach

Adjacency matrix A
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a) Direct similarity metric approach

Adjacency matrix A
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Pairwise similarity calculator
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a) Direct similarity metric approach

Adjacency matrix A

g

;o o | 1
C)o|oo
9.1 0o | o
&

20

Sep. 23rd-25th 2020

o o o o — Al@

Pairwise similarity calculator

|Aa,* N Ab,*|

Ag Ay ) =
J( a, x> p, ) |Aa,*UAb,*|

Similarity Matrix S

25th International Symposium on Methodologies for Intelligent

Systems (ISMIS 2020)

3OO®00
0 |025] 0 |0O5] O
1 1025 0 |02 O
0.25( 1 [0.25(0.17(0.25
0 025 + |02 1
0.2 (017102 1 0.2
0 025 1 | 02| 1
22



Duricic et al. Graph Embeddings for Trust-Based Collaborative Filtering

b) Latent user representations approach

Adjacency matrix A
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b) Latent user representations approach

Adjacency matrix A
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b) Latent user representations approach

Adjacency matrix A Embeddings matrix Z € RIVI*d
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b) Latent user representations approach

Adjacency matrix A Embeddings matrix Z € RIVI1*4
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b) Latent user representations approach

Adjacency matrix A Embeddings matrix Z € RIVIxd Similarity matrix S
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Formulating the problem

We explore the utility of graph embeddings for finding k-nearest
neighbors in trust-based collaborative filtering for cold-start users.
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Datasets

Graph Embeddings for Trust-Based Collaborative Filtering

Dataset #Users #Items #Edges #Ratings Graph density
Epinions [4] 49,288 139,738 487,183 664,824 2% 1071
Ciao [5] 19,533 16,121 40,133 72,665 1.85 x 1077
Filmtrust [6] 1,642 2,071 1,853 35,497 2.43 x 1072

* This table shows the number of direct edges, however, in our experiments we convert each

directed network to an undirected network by removing edge direction

[4] P. Massa and P. Avesani, “Trust-aware collaborative filtering for recommender systems,” in OTM Confederated International Conferences” On the Move to

Meaningful Internet Systems”, pp. 492-508, Springer, 2004.

[5] ). Tang, H. Gao, and H. Liu, “mTrust: Discerning multi-faceted trust in a connected world,” in Proceedings of the fifth ACM international conference on Web search

and data mining, pp. 93-102, ACM, 2012.
[6] G. Guo, J. Zhang, and N. Yorke-Smith, “A novel bayesian similarity measure for recommender systems,” 2013.
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Datasets

Epinions Ciao FilmTrust
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Dataset splits

* Train/test/validate

Graph Embeddings for Trust-Based Collaborative Filtering

* Train (learn embeddings) on the undirected trust network
= We remove edge direction before learning embeddings on the input network

= Validate (select hyperparameters) on warm-start users (>10 ratings)
* Test (evaluate model) on cold-start users (<10 ratings)

Users with ratings

Users with ratings & trust

Dataset Warm-start Cold-start \formjstart Cold-start
(Validation set) (Test set)
Epinions 14,769 25,393 14,769 25,393
Ciao 1,020 16,591 571 2,124
Filmtrust 963 545 499 241
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Recommender evaluation strategy

e Simulate unseen item recommendation (n = 10) in a kNN manner:

1. Remove n random items from the target user’s (u;) item history.
2. Find k-nearest neighbors N, (k = 40) for the target user u; from S.

3. Assign a score for each item i users in N, have interacted with:

score(i,u) = Z Susw - Ro(i)

vE N},

where R, (i) corresponds to the rating assigned by user v to item i and Su,v represents the similarity
score between the target user u; and the neighbor user v.

4. Recommend n items ranked according to the above formula and compare them with the removed items.
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Evaluation metrics

* Accuracy:

= nDCG@n - a ranking-dependent metric measuring recommendation accuracy based on the
Discounted Cumulative Gain (DCG) measure [7]

* Beyond accuracy:

= novelty@n - corresponds to a recommender’s ability to recommend long-tail items that the
target user has probably not yet seen. We compute novelty using the Expected Popularity
Complement (EPC) metric [8]

= diversity@n - describes how dissimilar items are in the recommendation list. We calculate it
as the average dissimilarity of all pairs of items in the recommendation list [9]

= User Coverage - defined as the number of users for whom at least one item recommendation
could have been generated divided by the total number of users in the evaluation set [10]

[7] K. Jarvelin, S. L. Price, L. M. Delcambre, and M. L. Nielsen, “Discounted cumulated gain based evaluation of multiple-query ir sessions,” in Proceedings of ECIR’2008,
pp. 4-15, Springer, Springer, 2008.

[8] S. Vargas and P. Castells, “Rank and relevance in novelty and diversity metrics for recommender systems,” in Proceedings of the fifth ACM conference on
Recommender systems, pp. 109-116, 2011.

[9] B. Smyth and P. McClave, “Similarity vs. diversity,” in International conference on case-based reasoning, pp. 347-361, Springer, 2001.

[10] P. Massa and P. Avesani, “Trust-aware collaborative filtering for recommender systems,” in OTM Confederated International Conferences” On the Move to
Meaningful Internet Systems”, pp. 492-508, Springer, 2004.
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Evaluated approaches — latent user
representations with graph embeddings

* Four distinct method families [11], i.e., factorization-based methods,
random-walk-based approaches, deep-learning-based approaches,
and the LINE approach which falls in neither of the first three families

[11] P. Goyal and E. Ferrara, “Graph embedding techniques, applications, and performance: A survey,” Knowledge-Based Systems, vol. 151, pp. 78 — 94, 2018.
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Factorization-based approaches

Produce node embeddings using matrix factorization. The inner product between
the resulting node embedding vectors approximates a deterministic graph
proximity measure.
* Graph Factorization (GF) [12]
Laplacian Eigenmaps (LE) [13]
Locally Linear Embedding (LLE) [14]
High-Order Proximity preserved Embedding (HOPE) [15]
Graph Representations with Global Structural Information (GraRep) [16]

[12] A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski, and A. J. Smola, “Distributed large-scale natural graph factorization,” in Proceedings of the 22nd
international conference on World Wide Web, pp. 37-48, ACM, 2013.

[13] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques for embedding and clustering,” in Advances in neural information processing systems, pp.
585-591, 2002.

[14] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally linear embedding,” science, vol. 290, no. 5500, pp. 2323-2326, 2000.

[15] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, “Asymmetric transitivity preserving graph embedding,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 1105-1114, ACM, 2016.

[16] S. Cao, W. Lu, and Q. Xu, “Grarep: Learning graph representations with global structural information,” in Proceedings of the 24th ACM international on conference
on information and knowledge management, pp. 891-900, ACM, 2015.
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Random walk-based approaches

First identify the context of a node with a random walk and then learn the
embeddings typically using a skip-gram model.

* DeepWalk [17]
* Node2vec [18]
* Role2vec [19]

[17] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social representations,” in Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD '14, pp. 701-710, ACM, 2014.

[18] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2016.

[19] N. K. Ahmed, R. Rossi, J. Boaz Lee, T. L. Willke, R. Zhou, X. Kong, and H. Eldardiry, “Learning Role-based Graph Embeddings,” arXiv e-prints, p. arXiv:1802.02896,
Feb. 2018.
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Deep Learning-based Approaches

Such approaches use deep neural network models to generate node
embeddings.

* Deep Neural Networks for Graph Representations (DNGR) [20]

» Structural Deep Network Embedding (SDNE) [21]

e Graph sample and aggregate (GraphSAGE) [22]

[20] S. Cao, W. Lu, and Q. Xu, “Deep neural networks for learning graph representations,” 2016.
[21] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,” in Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and

data mining, pp. 1225-1234, ACM, 2016.
[22] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large graphs,” in Advances in Neural Information Processing Systems, pp. 1024-1034,

2017.
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LINE

Large-Scale Information Network Embedding (LINE) [23] — creates
embeddings that preserve 15t-order and 2"d-order proximities which are
represented as joint and conditional probability distributions respectively.

[23] ). Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-scale information network embedding,” in Proceedings of the 24th international conference on
world wide web, pp. 1067-1077, International World Wide Web Conferences Steering Committee, 2015.
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Evaluated approaches (baselines)

* Direct similarity metric approaches:
* Explicit directed trust (Trustg; )
* Explicit undirected trust (Trust, 4:.)
* Explicit trust with Jaccard (Trustjac)
* Explicit trust with Katz similarity (Trust,_,,) [24]

* Most Popular (MP)

[24] T. Duricic, E. Lacic, D. Kowald, and E. Lex, “Trust-based collaborative filtering: Tackling the cold start problem using regular equivalence,” in Proceedings of the 12th
ACM Conference on Recommender Systems, RecSys '18, pp. 446—450, ACM, 2018.
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.
Evaluation results
Cat. | Approach f‘&n}f Epinions- Ciao ‘ Filmtrusit
nDCG| Nov. | Div. | UC |[nDCG | Nov. | Div. | UC |nDCG | Nov. | Div. | UC
Trustg;, 15 0245 | .0060 | .6006 |59.2%]| .0140 |.0028 | .3700 | 3.9% | .2655 |.0313 |.2784|30.3%
g Trustundir 15 .0260 | .0063 | .5960 |97.0%] .0127 |.0045| .3632 |11.4%] .2739 |.0284 | .2731 |42.0%
é Trust;qe. 11 0373 | .0056 | .6548 [99.9%| .0176 |.0027 | .3996 |12.8% ] .3387 |.0369| .2266 |36.1%
,:g Trust iar- 12 0290 | .0046 | .6979 0158 |.0026 | .3842 [13.0%| .3681 |.0322 | .2185 |42.9%
MP 17 0134 | .0015 |.7621* .0135 |.0012 |.5666| 100% | .3551 |.0137 |.1672 | 100%
g LLE 7 0309 | .0044 | .6977 .0239 |.0036 | .4013 3649 1.0159 | .1926
'*g LE 3 0318 | .0045 | .6961 .0231 |.0034 | .3962 A715 1.0161 | 1853
E GF 14 0138 | 0023 | .7024 0154 |.0022 | .3970 3686 |.0154 | .1945
% HOPE 3 .0331 | .0047 | .6728 .0220 |.0033 | .3956 3718 ].0158 | 1827
LT? GraRep 7 0298 | 0042 | .6704 12 0209 |.0030 | .3974 3694 1.0147 | 1859
Node2vec 1 0413 | .0064 | .6581 % 0228 |.0036 | .4042 f .3904 | .0151 | .2235 f
E DeepWalk 2 .0435* |.0067* | .6707 02477 | .0037 | .3992 | = 3654 1.0152 ] .1950 :j
Role2vec 6 0363 | .0054 | .6910 0149 |.0024 | .3933 3695 1.0151].1919
DNGR 10 .0353 | .0051 | .6869 0197 |.0031 | .4023 3583 1.0142 ] .1959
S SDNE 12 0184 | 0022 | 7412 0175 |.0028 | .3921 3687 |.0152 ] .2003
GS 7 0325 | .0047 | .6810 0216 | .0031 | .3963 3678 1.0151 | .1883
LINE LINE 5 .0407 | .0063 | .6566 0222 |.0033 | .3992 3667 |.0150 | .1947

Values marked with * denote that the corresponding approach was significantly better than every
other approach with respect to the appropriate metric according to a Wilcoxon signed-rank test
(Bonferroni corrected, p < 0:01).
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2 Trustundir 15 .0260 | .0063 | .5960 |97.0%] .0127 |.0045| .3632 |11.4%] .2739 |.0284 | .2731 |42.0%
@ Trustqe 11 0373 | .0056 | .6548 [99.9%| .0176 |.0027 | .3996 |12.8% ] .3387 |.0369| .2266 |36.1%
ES Trust iar- 12 0290 | .0046 | .6979 0158 | .0026 | .3842 |13.0%] .3681 |.0322 |.2185 |42.9%
MP 17 0134 | .0015 |.7621* .0135 |.0012 |.5666| 100% | .3551 |.0137 |.1672 | 100%
g LLE 7 0309 | .0044 | .6977 0239 |.0036 | .4013 3649 1.0159 | .1926
'43 LE 3 0318 | .0045 | .6961 0231 |.0034 | .3962 A715 1.0161 | 1853
E GF 14 0138 | 0023 | .7024 0154 |.0022 | .3970 3686 |.0154 | .1945
*g HOPE 3 .0331 | .0047 | .6728 .0220 |.0033 | .3956 3718 ].0158 | 1827
Ff GraRep 7 0298 | 0042 | .6704 12 0209 |.0030 | .3974 3694 1.0147 | 1859
Node2vec 1 0413 | .0064 | .6581 % 0228 |.0036 | .4042 f .3904 | .0151 | .2235 ’::
E DeepWalk 2 .0435* |.0067* | .6707 02477 | .0037 | .3992 | = 3654 1.0152 ] .1950 :j
Role2vec 6 0363 | .0054 | .6910 0149 |.0024 | .3933 3695 1.0151].1919
DNGR 10 .0353 | .0051 | .6869 0197 |.0031 | .4023 3583 1.0142 ] .1959
S SDNE 12 0184 | 0022 | 7412 0175 1.0028 | .3921 3687 |.0152 ] .2003
GS 7 0325 | .0047 | .6810 0216 | .0031 | .3963 3678 1.0151 | .1883
LINE LINE 5 .0407 | .0063 | .6566 0222 |.0033 | .3992 3667 |.0150 | .1947

Values marked with * denote that the corresponding approach was significantly better than every
other approach with respect to the appropriate metric according to a Wilcoxon signed-rank test
(Bonferroni corrected, p < 0:01).
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Cat. | Approach ,P,{[E)‘(n(k Epinions- Ciao ‘ Filmtrusit
7 InDCG| Nov. | Div. | UC InDCG| Nov. | Div. | UC |[nDCG| Nov. | Div. | UC
Trust g 15 0245 | .0060 | .6006 |59.2%]| .0140 |.0028 | .3700 | 3.9% | .2655 |.0313 |.2784|30.3%
g Trustundir 15 .0260 | .0063 | .5960 |97.0%] .0127 |.0045| .3632 |11.4%] .2739 |.0284 | .2731 |42.0%
é Trustge 11 0373 | .0056 | .6548 [99.9%| .0176 |.0027 | .3996 |12.8% ] .3387 |.0369| .2266 |36.1%
,:g Trust iar- 12 0290 | .0046 | .6979 0158 | .0026 | .3842 |13.0%] .3681 |.0322 |.2185 |42.9%
MP 17 0134 | .0015 |.7621* .0135 |.0012 |.5666| 100% | .3551 |.0137 |.1672 | 100%
g LLE 7 0309 | .0044 | .6977 0239 |.0036 | .4013 3649 1.0159 | .1926
% LE 3 0318 | .0045 | .6961 .0231 |.0034 | .3962 A715 1.0161 | 1853
E GF 14 0138 | 0023 | .7024 0154 |.0022 | .3970 3686 |.0154 | .1945
% HOPE P .0331 | .0047 | .6728 .0220 |.0033 | .3956 3718 ].0158 | 1827
Lf. GraRep 7 0298 | 0042 | .6704 12 0209 |.0030 | .3974 3694 1.0147 | 1859
Node2vec 1 0413 | .0064 | .6581 % 0228 |.0036 | .4042 *-: .3904 | .0151 | .2235 i
E DeepWalk 2 .0435* |.0067* | .6707 02477 | .0037 | .3992 | = .3654 | .0152 | .1950 :j
Role2vec 6 0363 | .0054 | .6910 0149 |.0024 | .3933 3695 1.0151].1919
DNGR 10 0353 | .0051 | .6869 0197 |.0031 | .4023 3583 1.0142 ] .1959
S SDNE 12 0184 | 0022 | 7412 0175 1.0028 | .3921 3687 |.0152 ] .2003
GS 7 0325 | .0047 | .6810 0216 | .0031 | .3963 3678 1.0151 | .1883
LINE LINE 5 .0407 | .0063 | .6566 0222 |.0033 | .3992 3667 | .0150 | .1947

Values marked with * denote that the corresponding approach was significantly better than every

other approach with respect to the appropriate metric according to a Wilcoxon signed-rank test
(Bonferroni corrected, p < 0:01).
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Evaluation results
Cat. | Approach E{&n(lf Epinions- Ciao ‘ Filmtrusit
nDCG| Nov. | Div. | UC |[nDCG| Nov. | Div. | UC [nDCG| Nov. | Div. | UC
Trustas, || 15 || 0245 | .0060 | .6006 |59.2%| 0140 | .0028 | .3700 | 3.9% | .2655 |.0313 |.2784[30.3%
2 | Trustuna || 15 || 0260 | L0063 | 5960 [o7.0%] 0127 [.0045] 3632 [11.4%] 2730 |.0284 | 2731 |42.0%
S| st || 11 || 0373 0056 | 6548 [00.0%| 0176 | 0027 | 3006 | 12.8%| 3387 |.0369]| 2266 |36.1%
& | Toustrea || 12 || 0200 | 0046 | 6079 0158 |.0026 | .3842 [13.0%] 3681 |.0322 | .2185 |42.9%
MP 17 || 0134 | 0015 |.7621* 0135 |.0012 |.5666| 100% | .3551 |.0137 |.1672 | 100%
= LLE 7 | 0300 | .0044 | 6977 0239 [.0036 [ 4013 3649 |.0159 | 1926
= LE 3 || 0318 | 0045 | 6961 0231 |.0034 | .3962 3715 |.0161 | 1853
2 GF 14 || o138 ] 0023 | 7024 0154 [.0022 ] .3970 3686 |.0154 [ .1945
2 | woPE 3 || 0331 | 0047 | 6728 0220 |.0033 | 3956 3718 | 0158 | 1827
= | GraRep 7 || 0208 [ o042 | 6704 | == | 0200 ].0030 | 3974 3694 | .0147 | 1859
Node2vee |1 [ 0413 T 0064 | 6581 | = [ 0228 [0036[ 4042] = |B904Y.0151] 2235 =
E DeepWalk | 2 [|(0435%).0067*| 6707 1002477 .0037 | .3092 = | 3057 |.o152 [ 1050 | =
Role2vec || 6 || 0363 | .0054 | .6910 0149 | .0024 | .3033 3695 |.0151 | .1919
DNGR || 10 [ 0353 | .0051 | .6869 0197 [.00317.4023 3583 | 01421959
& SDNE 12 || 0184 | .0022 | 7412 0175 | .0028 | 3021 3687 |.0152 | 2003
Gs 7 || 0325 | 0047 | 6310 0216|0031 .3963 3678 | .0151 | .1883
LINE| LINE 5 || 0407 T .0063 | 6566 0222 [.0033 | 3992 3667 |.0150 | 1947

Values marked with * denote that the corresponding approach was significantly better than every

other approach with respect to the appropriate metric according to a Wilcoxon signed-rank test
(Bonferroni corrected, p < 0:01).
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Evaluation results
Cat. | Approach E{&n(lf Epinions- Ciao ‘ Filmtrusit
nDCG| Nov. | Div. | UC |[nDCG| Nov. | Div. | UC [nDCG| Nov. | Div. | UC
Trusty;, 15 || 0245 | .0060 | .6006 |59.2%| .0140 |.0028 | .3700 | 3.9% | .2655 |.0313 |.2784|30.3%
& | Trusty,an || 15 || 0260 | 0063 | .5060 |97.0%| .0127 |.0045|.3632 |11.4%| .2739 |.0284 | .2731 |42.0%
@ Trustjae 11 [|C0373Y) 0056 | .6548 [99.9% WC0176 ).0027 | .3996 |12.8% | .3387 [.0369|.2266 [36.1%
& | Trustrea. || 12 [IC0200)) 0046 | 6979 (0158 ).0026 | .3842 |13.0%] .3681 |.0322|.2185 |42.9%
MP 17 || 0134 | 0015 |.7621" 0135 | .0012 |.5666| 100% | 3551 | 0137 ] 1672 100%
g LLE 7 0309 | .0044 | .6977 0239 |.0036 | 4013 3649 |.0159 | .1926
= LE 3 0318 | .0045 | .6961 0231 |.0034 | .3962 3715 | .0161 | .1853
= GF 14 || 0138 | 0023 | .7024 0154 |.0022 | .3970 3686 | .0154 | .1945
2 HOPE 3 0331 | .0047 | .6728 0220 |.0033 | .3956 3718 |.0158 | .1827
= | GraRep 7 0208 | .0042 | .6704 | =X | .0209 |.0030 | .3974 3694 | .0147 | .1859
Node2vee || 1 0113 | 0064 | 6581 | = [ 0228 | 0036 1042 = [-3904 L0151 ].2235 7 =
E DeepWalk || 2 |].0435* |.0067*| .6707 .0247%|.0037 [ 3092 | 3 | 3654 |.0152|.1950 | =
Role2vec 6 0363 | .0054 | .6910 0149 |.0024 | .3933 3695 |.0151|.1919
DNGR 10 ]| 0353 | .0051 | .6869 0197 .0031 | .4023 3583 |.0142 | 1959
& SDNE 12 || 0184 | .0022 | .7412 0175 |.0028 | 3921 3687 |.0152 | .2003
Gs 7 0325 | .0047 | .6810 0216 | .0031 | 3963 3678 |.0151 | .1883
LINE| LINE 5 0407 | .0063 | .6566 0222 |.0033 | .3992 3667 |.0150 | .1947

Values marked with * denote that the corresponding approach was significantly better than every
other approach with respect to the appropriate metric according to a Wilcoxon signed-rank test
(Bonferroni corrected, p < 0:01).
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.
Evaluation results
Cat. | Approach E{&{‘f Epinions- Ciao ‘ Filmtrusit
nDCG | Nov. | Div. | UC |nDCG| Nov. | Div. | UC [nDCG | Nov. | Div. | UC
Trustaie || 15 || .0245 | .0060 | .6006 |59.2%] .0140 |.0028 | .3700 | 3.9% | .2655 |.0313 |.2784[30.3%
g | Trustunan || 15 ][ 0260 | 0063 | 5960 [97.0%[ 0127 |.0045] 3632 [11.4%] 2730 |.0284 | 2731 42.0%
S| Trustee || 10 || 0373 | 0056 | 6518 [09.0%] 0176 | 0027 | 3096 | 12.8%] 3387 |.0369.2266 36.1%
g | Tustrea || 12 || 20200 | 0046 | 6070 0158 | .0026 | .3842 |13.0%| .3681 |.0322].2185 [42.9%
MP 17 || 0134 | 0015 |.7621* 0135 |.0012|.5666| 100% | .3551 |.0137].1672 | 100%
= LLE 7 || 0300 | .0044 | 6977 0230 [.0036 | 4013 3649 |.0159 | .1926
K LE 3 [[C0318) 0045 | 6961 K .0231) .0034 | .3062 KK.3715 ) 0161 | 1853
b GF 14 || 0138 [ 0023 | 7024 0154 [.0022 ] .3970 3686 [.0154 | 1945
| £ | HOPE 3 |IC0331) .0047 | .6728 [(.0220 ) .0033 | .3956 IK.3718 ) .0158 | .1827
= | GraRep || 7 || .0208 | .0042 | 6704 | = | 0200 |.0030 | .3074 3694 |.0147 | .1859
> Nodezvee [ 1 || 0413 | 0064 | 6581 | = [ 0225 [ 0036|4042 | = [73904 | 0151 ] 2235 =
Z | DeepWalk || 2 ||.0435* .0067%| .6707 .0247*| 0037 | 3002 | = | 3654 |.0152|.1050 =
Role2vee || 6 || .0363 | .0054 | .6910 0149 [.0024 | 3033 3695 |.0151 | .1919
DNGR[[ 10 [ -0353 T 0051 | 6869 0197 [.0031 [ .4023 3583 [.0142 1050
2 | SDNE 12 || 0184 | 0022 | 7412 0175 | .0028 | 3921 3687 | .0152 | .2003
GS 7 | 0325 | 0047 | L6810 0216 {0031 | .3063 3678 |.0151 | .1883
LINE| LINE 5 || 0407 T .0063 ] 6566 0222 [.0033 ] 3992 3667 |.0150 | .1947

Values marked with * denote that the corresponding approach was significantly better than every

other approach with respect to the appropriate metric according to a Wilcoxon signed-rank test
(Bonferroni corrected, p < 0:01).
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Cat. | Approach E{&n(lf Epinions- Ciao ‘ Filmtrusit
nDCG| Nov. | Div. | UC |[nDCG | Nov. | Div. | UC |nDCG | Nov. | Div. | UC
Trustg;, 15 0245 | .0060 | .6006 |59.2%]| .0140 |.0028 | .3700 | 3.9% | .2655 |.0313 |.2784|30.3%
g Trustundir 15 .0260 | .0063 | .5960 |97.0%] .0127 |.0045| .3632 |11.4%] .2739 |.0284 | .2731 |42.0%
@ Trustqe 11 0373 | .0056 | .6548 [99.9%| .0176 |.0027 | .3996 |12.8% ] .3387 |.0369| .2266 |36.1%
ES Trustrar- 12 0290 | .0046 | .6979 0158 | .0026 | .3842 |13.0%] .3681 |.0322 |.2185 |42.9%
MP 17 0134 | .0015 |.7621* .0135 |.0012 |.5666| 100% | .3551 |.0137 |.1672 | 100%
g LLE 7 0309 | .0044 | .6977 0239 |.0036 | .4013 3649 1.0159 | .1926
% LE 3 0318 | .0045 | .6961 0231 |.0034 | .3962 A715 1.0161 | 1853
E GF 14 0138 | 0023 | .7024 0154 |.0022 | .3970 3686 |.0154 | .1945
% HOPE 3 .0331 | .0047 | .6728 .0220 |.0033 | .3956 3718 ].0158 | 1827
ﬁ GraRep 7 0298 | 0042 | .6704 12 0209 |.0030 | .3974 3694 1.0147 | 1859
Node2vec 1 0413 | .0064 | .6581 % 0228 |.0036 | .4042 C: .3904 | .0151 | .2235 ’::
E DeepWalk 2 .0435* |.0067* | .6707 02477 | .0037 | .3992 | = .3654 | .0152 | .1950 :j
Role2vec 6 0363 | .0054 | .6910 0149 |.0024 | .3933 3695 1.0151].1919
DNGR 10 0353 | .0051 | .6869 0197 |.0031 | .4023 3583 1.0142 ] .1959
S SDNE 12 0184 | 0022 | 7412 0175 1.0028 | .3921 3687 |.0152 ] .2003
GS 7 0325 | .0047 | .6810 0216 | .0031 | .3963 3678 1.0151 | .1883
|LINE LINE 5 @ 0063 | .6566 .0222 ) .0033 | .3992 3667 ».0150 | .1947 |

Values marked with * denote that the corresponding approach was significantly better than every

other approach with respect to the appropriate metric according to a Wilcoxon signed-rank test
(Bonferroni corrected, p < 0:01).
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Evaluation results
Cat. | Approach E{&n(lf Epinions- Ciao ‘ Filmtrusit
nDCG| Nov. | Div. | UC |[nDCG | Nov. | Div. | UC |nDCG | Nov. | Div. | UC
Trustg;, 15 0245 | .0060 | .6006 |59.2%]| .0140 |.0028 | .3700 | 3.9% | .2655 |.0313 |.2784|30.3%
g Trustundir 15 .0260 | .0063 | .5960 |97.0%] .0127 |.0045| .3632 |11.4%] .2739 |.0284 | .2731 |42.0%
é Trustqe 11 0373 | .0056 | .6548 [99.9%| .0176 |.0027 | .3996 |12.8% ] .3387 |.0369| .2266 |36.1%
,:g Trustrar- 12 0290 | .0046 | .6979 0158 | .0026 | .3842 |13.0%] .3681 |.0322 |.2185 |42.9%
MP 17 0134 | .0015 |.7621* .0135 |.0012 |.5666| 100% | .3551 |.0137 |.1672 | 100%
g LLE 7 0309 | .0044 | .6977 0239 |.0036 | .4013 3649 1.0159 | .1926
% LE 3 0318 | .0045 | .6961 0231 |.0034 | .3962 A715 1.0161 | 1853
E GF 14 0138 | 0023 | .7024 0154 |.0022 | .3970 3686 |.0154 | .1945
% HOPE 3 .0331 | .0047 | .6728 .0220 |.0033 | .3956 3718 ].0158 | 1827
ﬁ GraRep 7 0298 | 0042 | .6704 12 0209 |.0030 | .3974 3694 1.0147 | 1859
Node2vec 1 0413 | .0064 | .6581 % 0228 |.0036 | .4042 *-: .3904 | .0151 | .2235 i
E DeepWalk 2 .0435* |.0067* | .6707 02477 | .0037 | .3992 | = 3654 1.0152 ] .1950 :j
Role2vec 6 0363 | .0054 | .6910 0149 |.0024 | .3933 3695 1.0151].1919
DNGR 10 .0353 | .0051 | .6869 0197 |.0031 | .4023 3583 1.0142 ] .1959
5 SDNE 12 0184 | 0022 | 7412 0175 |.0028 | .3921 3687 |.0152 ] .2003
| GS 7 0325 ) .0047 | .6810 0216 ) .0031 | .3963 3678 ».0151 | .1883 |
LINE LINE 5 .0407 | .0063 | .6566 0222 |.0033 | .3992 3667 |.0150 | .1947

Values marked with * denote that the corresponding approach was significantly better than every
other approach with respect to the appropriate metric according to a Wilcoxon signed-rank test
(Bonferroni corrected, p < 0:01).
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Cat. | Approach E{&n}f Epinions- Ciao ‘ Filmtrusit
nDCG| Nov. | Div. | UC |[nDCG | Nov. | Div. | UC |nDCG | Nov. | Div. | UC
Trust g 15 0245 | .0060 | .6006 |59.2%]| .0140 |.0028 | .3700 | 3.9% | .2655 |.0313 |.2784|30.3%
g Trustundir 15 .0260 | .0063 | .5960 |97.0%] .0127 |.0045| .3632 |11.4%] .2739 |.0284 | .2731 |42.0%
é Trustge 11 0373 | .0056 | .6548 [99.9%| .0176 |.0027 | .3996 |12.8% ] .3387 |.0369| .2266 |36.1%
,:g Trust iar- 12 0290 | .0046 | .6979 0158 | .0026 | .3842 |13.0%] .3681 |.0322 |.2185 |42.9%
MP 17 0134 | .0015 |.7621* .0135 |.0012 |.5666| 100% | .3551 |.0137 |.1672 | 100%
g LLE 7 0309 | .0044 | .6977 0239 |.0036 | .4013 3649 1.0159 | .1926
% LE 3 0318 | .0045 | .6961 .0231 |.0034 | .3962 A715 1.0161 | 1853
E GF 14 0138 | 0023 | .7024 0154 |.0022 | .3970 3686 |.0154 | .1945
% HOPE 3 .0331 | .0047 | .6728 .0220 |.0033 | .3956 3718 ].0158 | 1827
Lf. GraRep 7 0298 | 0042 | .6704 12 0209 |.0030 | .3974 3694 1.0147 | 1859
Node2vec 1 0413 | .0064 | .6581 % 0228 |.0036 | .4042 *-: .3904 | .0151 | .2235 i
E DeepWalk 2 .0435* |.0067* | .6707 02477 | .0037 | .3992 | = .3654 | .0152 | .1950 :j
Role2vec 6 0363 | .0054 | .6910 0149 |.0024 | .3933 3695 1.0151].1919
DNGR 10 .0353 | .0051 | .6869 0197 |.0031 | .4023 3583 1.0142 ] .1959
| S SDNE @ 0184 | 0022 | 7412 0175 |.0028 | .3921 3687 | .0152 | .2003
GS 7 0325 | .0047 | .6810 0216 | .0031 | .3963 3678 1.0151 | .1883
LINE LINE 5 .0407 | .0063 | .6566 0222 |.0033 | .3992 3667 | .0150 | .1947

Values marked with * denote that the corresponding approach was significantly better than every

other approach with respect to the appropriate metric according to a Wilcoxon signed-rank test
(Bonferroni corrected, p < 0:01).
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Evaluation results
Cat. | Approach E{&{‘f Epinions- Ciao ‘ Filmtrusit
nDCG| Nov. | Div. | UC |nDCG|Nov. | Div. | UC |[nDCG | Nov. | Div. | UC
Trustg,. || 15 || .0245 | .0060 | .6006 [59.2%| .0140 [ .0028|.3700 | 3.0% | 2655 |.0313[.278430.3%
2 | Truste,a I 15 || 0260 | 0063 | 5060 07.0%] 0127 [.0045] 3632 [11.4%| 2730 | .0284 [ 2731 [42.0%
S| st || 11 || 0373 0056 | 6548 [00.0%| 0176 | 0027 | 3006 | 12.8%| 3387 |.0369]| 2266 |36.1%
& | mustrea. || 12 || 0200 | 0046 | 6979 0158 |.0026 | .3842 [13.0%| .3681 |.0322 | .2185 |42.9%
MP 17 || 0134 | 0015 [.7621* 0135 |.0012 |.5666] 100% | 3551 |.0137|.1672 | 100%
= LLE 7 0309 | .0044 | .6077 0239 |.0036 | .4013 3649 |.0159 | .1026
= LE 3 0318 | .0045 | .6961 0231 |.0034 | .3962 3715 |.0161 | .1853
= GF 14 || 0138 | 0023 | 7024 0154 | .0022 | .3970 3686 | .0154 | .1045
2 HOPE 3 0331 | .0047 | .6728 0220 |.0033 | .3956 3718 |.0158 | .1827
& | Grarep 7 0208 | .0042 | 6704 | = | 0200 | .0030].3974 3694 |.0147 | 1859
| Node2vee [[ 1 0413 o064 | 6581y = [ 0228 0036].4042) = [.3904 |Q0151 =
Z [ Deepwalc || 2 |[.0435*].0067 707 0247 [ 003713002 | 5 | 3654 |.0TB2 1050 | =
Role2vec 6 0363 | .0054 | .6910 0149 | .0024 | .3033 3695 |.0151 | .1919
DNGR) 10 || 0353 | .0051 | 6869 0197 | .0031 | .4023 3583 | 0142 | .1050
& SDNE 12 || 0184 | 0022 | 7412 0175 |.0028 | .3921 3687 |.0152 | .2003
GS 7 0325 | .0047 | .6810 0216 | .0031 | .3963 3678 |.0151 | .1883
LINE| LINE 5 0407 | .0063 | .6566 0222 | .0033 | .3992 3667 |.0150 | .1947

Values marked with * denote that the corresponding approach was significantly better than every
other approach with respect to the appropriate metric according to a Wilcoxon signed-rank test
(Bonferroni corrected, p < 0:01).
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Fvaluation results
Cat. | Approach E{&{‘f Epinions- Ciao ‘ Filmtrus‘t
nDCG | Nov. | Div. | UC |InDCG | Nov. | Div. | UC |[nDCG | Nov. | Div. | UC
Trustar || 15 || .0245 | .0060 | .6006 |59.2%| .0140 | .0028 [ .3700 | 3.0% | 2655 |.0313[.2784]30.3%
S | Trustun I 15 || 0260 | 0063 | 5960 |97.0%] 0127 |.0045] 3632 [11.4%| 2730 | .0284 | 2731 [42.0%
S| st || 11 || 0373 0056 | 6548 [00.0%| 0176 | 0027 | 3006 | 12.8%| 3387 |.0369]| 2266 |36.1%
& | Trustrae || 12 || 0200 | 0046 | 6970 0158 |.0026 | 3842 [13.0%| 3681 |.0322] 2185 |42.9%
MP 17 || 0134 | 0015 [.7621* 0135 |.0012 |.5666] 100% | 3551 |.0137 | .1672 | 100%
= LLE 7 0300 L0044 | .6077 10239 (0036 | .4012) 3649 L0159 | .1920)
= LE 3 0318 | .0045 | .6961 0231 |.0034 | .3962 3715 .0161 | 1853
= GF 14 || 0138 [ 0023 | 7024 0154 [.0022 | 3070 3686 [.0154 | .1045
2 HOPE 3 0331 | .0047 | 6728 0220 |.0033 | 3056 3718 [.0158 | 1827
£ | GraRep 7 0208 \oo42 [ 6704) = [ 0200 L0030 [ .3074 3604 (0147 [ 1859
Node2vee || 1 041370064 | 6581 | = [ 0228 [.0036] 4042 = |.3904 [.0151 [ 2235 =
E DeepWalk || 2 ||.0435* [.0067*| .6707 .0247* | 0037 | 3002 | = | 3654 | 0152 .1050 =
Role2vec 6 0363 | .0054 | 6910 0149 | .0024 | .3033 13695 | .0151 | .1919
DNGR T0 || 0353 | 0051 | 6369 0197 | 0031 | 4023 3583 | 0142 | 1050
& SDNE 12 || o184 | 0022 | 7412 0175 |.0028 | .3021 3687 |.0152 | .2003
GS 7 0325 | .0047 | 6810 0216 | .0031 | .3063 3678 | 0151 | .1883
LINE| LINE 5 0407 | .0063 | 6566 0222 | .0033 | 3992 3667 |.0150 | 1047

Values marked with * denote that the corresponding approach was significantly better than every
other approach with respect to the appropriate metric according to a Wilcoxon signed-rank test
(Bonferroni corrected, p < 0:01).
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Cat. | Approach E{&{‘f Epinions- Ciao ‘ Filmtrusit
nDCG | Nov. | Div. | UC |[nDCG|Nov. | Div. | UC |nDCG| Nov. | Div. | UC
Trusta:, 15 || .0245 | .0060 | .6006 59.2%] 0140 |.0028 | .3700 | 3.0% | 2655 |.0313[.2784[30.3%
2 | Trustunan || 15 || 0260 | 0063 | 5960 [07.0%] 0127 [.0045] 3632 [11.4%] 2730 | .0284 | .2731 [42.0%
S| st || 11 || 0373 0056 | 6548 [00.0%| 0176 | 0027 | 3006 | 12.8%| 3387 |.0369]| 2266 |36.1%
& | Trustrae || 12 || 0200 | 0046 | 6970 0158 |.0026 | 3842 [13.0%] .3681 |.0322|.2185 |42.9%
MP 17 || 0134 | 0015 |.7621* 0135 |.0012].5666] 100% | 3551 |.0137 | .1672 | 100%
= LLE 7 0300 | .0044 | .6977 0239 |.0036 ] 4013 3649 1.0159 ] .1926
= LE 3 0318 | .0045 | .6961 0231 | .0034 | .3962 3715 |.0161 | .1853
= GF 14 || o138 | .0023 | 7024 0154 |.0022 ] .3970 3686 |.0154 | .1945
2 HOPE 3 0331 | .0047 | 6728 0220 | .0033 | .3936 3718 |.0158 | .1827
£ | GraRep 7 0208 | .0042 | 6704 | =X | 0209 |.0030 | .3074 3694 |.0147 | 1859
Node2vee || 1 0413 0064 | 6581 = | -0228 [f0036].4042) = | .3904 Vo151 |.2235 B
E DeepWalk || 2 ||.0435*].0067*| .6707 0247|0037 | 3002 = | .3654 J.0152.1050] =
Role2vec 6 0363 | 0054 | 6910} 0149 Loo24 3033 J 3695 {0151 [ 1919
DNGR 10 || 0353 | .0051 | .6869 0197 |.0031 | 4023 3583 1.0142].1939
& SDNE 12 || 0184 | .0022 | 7412 0175 |.0028 | 3921 3687 |.0152 | .2003
GS 7 0325 | .0047 | .6810 0216 |.0031 | .3963 3678 |.0151 | .1883
LINE| LINE 5 0407 | .0063 | .6566 0222 | .0033 | .3992 3667 |.0150 | .1047

Values marked with * denote that the corresponding approach was significantly better than every

other approach with respect to the appropriate metric according to a Wilcoxon signed-rank test
(Bonferroni corrected, p < 0:01).
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Rank Epinions Ciao Filmtrust
Cat. |Approach|| 55 - - -
nDCG | Nov. | Div. | UC |InDCG | Nov. | Div. | UC |[nDCG | Nov. | Div. | UC
Trustas. | 15 | 0245 L0060 | .6006N59.2%] 0140 L0028 ] .3700Y 3.9% | .2655 0313 |.2784)30.3%
& [Trustanas || 15 || .0260 | .0063 | 5960 J97.0%[ 0127 [.0045] 3632 fi1.a%[ 2730 |.0284 | 2731 fa2.0%
S | st || 11 || 0373 | 0056 | 6548 Joo.0%| 0176 |.0027 | 3006 Ji28%| 3387 0369 2266 f36.1%
& | mustra || 12 || 0200 | 0046 | 6979 0158 [.0026 | 3842 |13.0%| 3681 |.0322| 2185 fa2.9%
MP 17_|[ o134 Noois |.7621 0135 \0012 |.5666) 100% | 3551 \0137 | .1672) 100%
2 LLE 7 [ 0300 | .0044 | .6977 10239 |.0036 | .4013 3649 |.0159 | .1926
= LE 3 || 0318 | 0045 | 6961 0231 | .0034 | 3962 3715 | .0161 | .1853
2 GF 11 [ o8 | 0023 | 7024 0154 | .0022 ] 3970 3686 | 0154 | .1945
2 | norE 3 || 0331 | 0047 | 6728 0220 | .0033 | 2056 3718 | 0158 | 1827
£ [ GraRep 7 I 0208 | 0042 | 6704 | = [ 0200 [ 0030 3074 3604 | 0147 | 1850
Nodezvee || 1 [ 0413 | 0064 | 6581 ] = [ 0228 |.0036 ] 4042 = 3904 0151 | 2235 =
E DeepWalk || 2 ||.0435* |.0067*| 6707 02477 0037 | 3002 = | 3654 | 0152 1050 =
Role2vee || 6 || 0363 | .0054 | 6910 0149 | .0024 | 3933 3605 | 0151 |.1919
DNGR_ || 10 || 0353 | 0051 | 6869 0107 | .0031 | .4023 3583 | 0142 | 1950
2 SDNE 12 || o184 | 0022 | 7412 0175 | .0028 | 3021 3687 |.0152 | 2003
as 7 || 0325 | 0047 | 6310 0216 |.0031 ] 3963 3678 | 0151 | .1883
LINE| LINE 5 [ 0207 | .0063 | .6566 0222 | .0033 | 3002 3667 |.0150 | 1947

Values marked with * denote that the corresponding approach was significantly better than every

other approach with respect to the appropriate metric according to a Wilcoxon signed-rank test
(Bonferroni corrected, p < 0:01).
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Cat. | Approach E{&n(lf Epinions- Ciao ‘ , Filmtrusit ,
nDCG| Nov. | Div. | UC [nDCG | Nov. | Div. | UC |nDCG | Nov. | Div. | UC
Trust g 15 0245 | .0060 | .6006 [59.2%]| .0140 |.0028 | .3700 | 3.9% | .2655 |.0313 |.2784|30.3%
g Trustundir 15 .0260 | .0063 | .5960 [97.0%] .0127 |.0045|.3632 |11.4%| .2739 |.0284|.2731 |42.0%
é Trustge 11 0373 | .0056 | .6548 [99.9%| .0176 |.0027 | .3996 [12.8%| .3387 |.0369| .2266 |36.1%
,:g Trustrar- 12 0290 | .0046 | .6979 0158 |.0026 | .3842 |13.0%| .3681 |.0322 | .2185 |42.9%
MP 17 0134 | .0015 |.7621* .0135 |.0012 |.5666| 100% | .3551 |.0137 |.1672 [ 100%
g LLE 7 0309 | .0044 | .6977 0239 |.0036 | .4013 3649 1.0159 | .1926
'*g LE 3 0318 | .0045 | .6961 .0231 |.0034 | .3962 A715 1.0161 | 1853
E GF 14 0138 | 0023 | .7024 0154 |.0022 | .3970 3686 |.0154 | .1945
% HOPE 3 .0331 | .0047 | .6728 .0220 |.0033 | .3956 3718 ].0158 | 1827
ﬁ GraRep 7 0298 | 0042 | .6704 X 0209 |.0030 | .3974 3694 1.0147 | 1859
Node2vec 1 0413 | .0064 | .6581 % 0228 |.0036 | .4042 -j .3904 | .0151 | .2235 i
E DeepWalk 2 .0435* |.0067* | .6707 02477 | .0037 | .3992 | = .3654 | .0152 | .1950 :j
Role2vec 6 0363 | .0054 | .6910 0149 |.0024 | .3933 3695 1.0151].1919
DNGR 10 .0353 | .0051 | .6869 0197 |.0031 | .4023 3583 1.0142 ] .1959
S SDNE 12 0184 | 0022 | 7412 0175 1.0028 | .3921 3687 |.0152 ] .2003
GS 7 0325 | .0047 | .6810 0216 | .0031 | .3963 3678 1.0151 | .1883
LINE LINE 5 .0407 | .0063 | .6566 0222 |.0033 | .3992 3667 | .0150 | .1947

Values marked with * denote that the corresponding approach was significantly better than every

other approach with respect to the appropriate metric according to a Wilcoxon signed-rank test
(Bonferroni corrected, p < 0:01).
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Evaluation metrics and user preferences

* Finally, we compute the Kendall rank correlation coefficient
(Bonferroni corrected, p < 0.01) and observe the following:

= Statistically significant positive mean correlation across all three datasets
between nDCG and novelty, ranging from 0.43 on Epinions to 0.36 on
Filmtrust

» We also observe a statistically significant negative mean correlation between
diversity and novelty on Epinions (-0.15)
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Limitations and future work

* |[n our experiments, we treated the trust networks as undirected while, in
reality, they are directed

= We aim to further explore how to preserve different properties of trust networks
(e.g., asymmetry)

* |t is possible that we did not examine an ample enough space of
hyperparameters!

* We used only A as input for the recommendation algorithms, we also plan
to incorporate user features from R

* We are also going to focus on interpretability of our results by studying
node properties of user neighborhoods

I Details on the hyperparameter optimization can be found at: https://github.com/tduricic/trust-recommender/blob/master/docs/hyperparameter-optimization.md



https://github.com/tduricic/trust-recommender/blob/master/docs/hyperparameter-optimization.md
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Key takeaways

* We explored the utility of graph embedding approaches from four
method families to generate latent user representations for trust-
based recommender systems in a cold-start setting:

= Random-walk-based approaches Node2vec and DeepWalk consistently
achieve the best accuracy

" Node2vec and DeepWalk scored high on novelty and diversity as well
" Graph embeddings increase user coverage
= |n all three evaluated datasets, users tend to prefer novel recommendations
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