Empirical Comparison of Graph Embeddings for Trust-Based Collaborative Filtering

Tomislav Duricic, Hussain Hussain, Emanuel Lacic, Dominik Kowald, Denis Helic, and Elisabeth Lex

Content

- 1. Motivation & Background
- 2. Experimental Setup
- 3. Results
- 4. Conclusion
- 5. Contact Page

Motivation & Background

"*Recommender systems* are crucial tools to overcome the *information overload* brought about by the Internet" [1]

[1] Blattner, M., Hunziker, A., & Laureti, P. (2007). When are recommender systems useful?. *arXiv preprint arXiv:0709.2562*.

Recommender systems examples [2]

[2] https://www.slideshare.net/CrossingMinds/recommendation-system-explained/4

User-based collaborative filtering

How does it generate recommendations for the <u>target user</u>?

- Find *k* most similar users, i.e., *k-nearest neighbors User similarity can be calculated in many different ways*
- 2. Look at the items they like and combine them to create a **ranked list** of recommendations

User-based collaborative filtering

User-based collaborative filtering

Graph Embeddings for Trust-Based Collaborative Filtering

User-based collaborative filtering (from item ratings)

Ratings Matrix **R**

Graph Embeddings for Trust-Based Collaborative Filtering

User-based collaborative filtering (from item ratings)

Ratings Matrix **R**

Pairwise similarity calculator

$$r = rac{\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^n (x_i - ar{x})^2}} \sqrt{\sum_{i=1}^n (y_i - ar{y})^2}$$

Graph Embeddings for Trust-Based Collaborative Filtering

User-based collaborative filtering (from item ratings)

25th International Symposium on Methodologies for Intelligent Systems (ISMIS 2020)

Graph Embeddings for Trust-Based Collaborative Filtering

User-based collaborative filtering (from item ratings) Used for finding k-nearest neighbors Similarity Matrix S Ratings Matrix **R** Pairwise similarity calculator Ť -0.195 4 4 -0.5 1 3 3 4 1 5 2 2 4 -0.19 -0.5 1 1 4 3 4 $r = rac{\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^n (x_i - ar{x})^2} \sqrt{\sum_{i=1}^n (y_i - ar{y})^2}}$ 5 -1 3 4 4

5

5

000

1

0.5

0.19

0.41

1

-1

1

0.5

0.19 0.41

User-based collaborative filtering (from item ratings)

CONS:

- Data sparsity ratings matrix is usually very sparse
 - Often tackled by creating latent user representations from user rating vectors

- Cold-start user problem No or poor recommendations for users with none or very little item interactions
 - One proposed solution is to use additional user data such as social connections between users (if they exist), e.g., <u>trust connections</u>

Trust-based collaborative filtering [3]

User-based Collaborative Filtering using user <u>trust network</u> as input

In evaluated datasets, trust network G = (V, E) is an undirected unweighted graph with no self-loops consisting of a set of nodes V (users) and a set of edges E (trust connections).

[3] Lathia, N., Hailes, S., & Capra, L. (2008, June). Trust-based collaborative filtering. In IFIP international conference on trust management (pp. 119-134). Springer, Boston, MA.

Trust network example

Trust network example

Trust network example

Trust network adjacency matrix

- Tipically very **sparse**, i.e., network density is low
 - Total number of edges is much lower than the total number of possible edges
- Cold-start user problem No or poor recommendations for users with none or very little trust connections
- No measure of <u>how much</u> one user trusts another

• Solution:

- a) By directly employing a <u>similarity metric</u> of choice to **A**
- b) Converting user vectors from **A** into <u>latent feature space</u> and then employing a similarity metric of choice to the embeddings matrix $\mathbf{Z} \in \mathbb{R}^{|V| \times d}$

a) Direct similarity metric approach

a) Direct similarity metric approach

Pairwise similarity calculator

a) Direct similarity metric approach

Si	mil	ari	ty 🛚	Mat	trix	S
	1	0	0.25	0	0.5	0
	0	1	0.25	0	0.2	0
	0.25	0.25	1	0.25	0.17	0.25
	0	0	0.25	1	0.2	1
	0.5	0.2	0.17	0.2	1	0.2
	0	0	0.25	1	0.2	1

Formulating the problem

We explore the **<u>utility</u>** of **<u>graph embeddings</u>** for finding <u>**k-nearest**</u> **<u>neighbors</u>** in <u>**trust-based**</u> <u>**collaborative filtering**</u> for <u>**cold-start**</u> users.

Experimental Setup

Datasets

Dataset	#Users	#Items	#Edges	#Ratings	Graph density
Epinions [4]	49,288	139,738	487,183	664,824	2×10^{-4}
Ciao $[5]$	$19{,}533$	$16,\!121$	40,133	$72,\!665$	1.85×10^{-3}
Filmtrust [6]	1,642	2,071	$1,\!853$	$35,\!497$	2.43×10^{-3}

* This table shows the number of direct edges, however, in our experiments we convert each directed network to an undirected network by removing edge direction

[4] P. Massa and P. Avesani, "Trust-aware collaborative filtering for recommender systems," in OTM Confederated International Conferences" On the Move to Meaningful Internet Systems", pp. 492–508, Springer, 2004.

[5] J. Tang, H. Gao, and H. Liu, "mTrust: Discerning multi-faceted trust in a connected world," in Proceedings of the fifth ACM international conference on Web search and data mining, pp. 93–102, ACM, 2012.

[6] G. Guo, J. Zhang, and N. Yorke-Smith, "A novel bayesian similarity measure for recommender systems," 2013.

25th International Symposium on Methodologies for Intelligent

Datasets

Dataset splits

• Train/test/validate

- Train (learn embeddings) on the undirected trust network
 - We remove edge direction before learning embeddings on the input network
- Validate (select hyperparameters) on warm-start users (>10 ratings)

■ <u>Test</u> (*evaluate model*) on **cold-start** users (≤10 ratings)

	Users wit	h ratings	Users with ration	m ngs~&~trust
Dataset	Warm start	Cold start	Warm-start	Cold-start
Dataset	Warm-Start	Cold-Start	(Validation set)	(Test set)
Epinions	14,769	$25,\!393$	14,769	25,393
Ciao	1,020	$16,\!591$	571	$2,\!124$
Filmtrust	963	545	499	241

Recommender evaluation strategy

- Simulate <u>unseen</u> item recommendation (n = 10) in a **kNN** manner:
 - 1. Remove *n* random items from the target user's (u_t) item history.
 - 2. Find *k*-nearest neighbors N_k (k = 40) for the target user u_t from **S**.
 - 3. Assign a score for each item i users in N_k have interacted with:

$$score(i, u_t) = \sum_{v \in N_k} S_{u_t, v} \cdot R_v(i)$$

where $R_v(i)$ corresponds to the rating assigned by user v to item i and $S_{u_t,v}$ represents the similarity score between the target user u_t and the neighbor user v.

4. Recommend *n* items ranked according to the above formula and compare them with the removed items.

Evaluation metrics

- Accuracy:
 - <u>nDCG@n</u> a ranking-dependent metric measuring recommendation accuracy based on the Discounted Cumulative Gain (DCG) measure [7]

• Beyond accuracy:

- <u>novelty@n</u> corresponds to a recommender's ability to recommend long-tail items that the target user has probably not yet seen. We compute novelty using the Expected Popularity Complement (EPC) metric [8]
- <u>diversity@n</u> describes how dissimilar items are in the recommendation list. We calculate it as the average dissimilarity of all pairs of items in the recommendation list [9]
- <u>User Coverage</u> defined as the number of users for whom at least one item recommendation could have been generated divided by the total number of users in the evaluation set [10]

[7] K. Järvelin, S. L. Price, L. M. Delcambre, and M. L. Nielsen, "Discounted cumulated gain based evaluation of multiple-query ir sessions," in Proceedings of ECIR'2008, pp. 4–15, Springer, Springer, 2008.

[8] S. Vargas and P. Castells, "Rank and relevance in novelty and diversity metrics for recommender systems," in Proceedings of the fifth ACM conference on Recommender systems, pp. 109–116, 2011.

[9] B. Smyth and P. McClave, "Similarity vs. diversity," in International conference on case-based reasoning, pp. 347–361, Springer, 2001.

[10] P. Massa and P. Avesani, "Trust-aware collaborative filtering for recommender systems," in OTM Confederated International Conferences" On the Move to Meaningful Internet Systems", pp. 492–508, Springer, 2004.

Evaluated approaches – latent user representations with graph embeddings

• <u>Four</u> distinct method families [11], i.e., factorization-based methods, random-walk-based approaches, deep-learning-based approaches, and the LINE approach which falls in neither of the first three families

[11] P. Goyal and E. Ferrara, "Graph embedding techniques, applications, and performance: A survey," Knowledge-Based Systems, vol. 151, pp. 78 – 94, 2018.

Factorization-based approaches

Produce node embeddings using **matrix factorization**. The inner product between the resulting node embedding vectors approximates a deterministic graph proximity measure.

- Graph Factorization (GF) [12]
- Laplacian Eigenmaps (LE) [13]
- Locally Linear Embedding (LLE) [14]
- *High-Order Proximity preserved Embedding* (HOPE) [15]
- Graph Representations with Global Structural Information (GraRep) [16]

[12] A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski, and A. J. Smola, "Distributed large-scale natural graph factorization," in Proceedings of the 22nd international conference on World Wide Web, pp. 37–48, ACM, 2013.

[13] M. Belkin and P. Niyogi, "Laplacian eigenmaps and spectral techniques for embedding and clustering," in Advances in neural information processing systems, pp. 585–591, 2002.

[14] S. T. Roweis and L. K. Saul, "Nonlinear dimensionality reduction by locally linear embedding," science, vol. 290, no. 5500, pp. 2323–2326, 2000.

[15] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, "Asymmetric transitivity preserving graph embedding," in Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 1105–1114, ACM, 2016.

[16] S. Cao, W. Lu, and Q. Xu, "Grarep: Learning graph representations with global structural information," in Proceedings of the 24th ACM international on conference on information and knowledge management, pp. 891–900, ACM, 2015.

Random walk-based approaches

First identify the context of a node with a **random walk** and then learn the embeddings typically using a **skip-gram** model.

- DeepWalk [17]
- Node2vec [18]
- *Role2vec* [19]

[17] B. Perozzi, R. Al-Rfou, and S. Skiena, "Deepwalk: Online learning of social representations," in Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '14, pp. 701–710, ACM, 2014.

[18] A. Grover and J. Leskovec, "node2vec: Scalable feature learning for networks," in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016.

[19] N. K. Ahmed, R. Rossi, J. Boaz Lee, T. L. Willke, R. Zhou, X. Kong, and H. Eldardiry, "Learning Role-based Graph Embeddings," arXiv e-prints, p. arXiv:1802.02896, Feb. 2018.

Deep Learning-based Approaches

Such approaches use **deep neural network** models to generate node embeddings.

- Deep Neural Networks for Graph Representations (DNGR) [20]
- Structural Deep Network Embedding (SDNE) [21]
- Graph sample and aggregate (GraphSAGE) [22]

[20] S. Cao, W. Lu, and Q. Xu, "Deep neural networks for learning graph representations," 2016.

[21] D. Wang, P. Cui, and W. Zhu, "Structural deep network embedding," in Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 1225–1234, ACM, 2016.

[22] W. Hamilton, Z. Ying, and J. Leskovec, "Inductive representation learning on large graphs," in Advances in Neural Information Processing Systems, pp. 1024–1034, 2017.

LINE

Large-Scale Information Network Embedding (LINE) [23] – creates embeddings that preserve 1st-order and 2nd-order proximities which are represented as joint and conditional probability distributions respectively.

[23] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, "Line: Large-scale information network embedding," in Proceedings of the 24th international conference on world wide web, pp. 1067–1077, International World Wide Web Conferences Steering Committee, 2015.

Evaluated approaches (baselines)

- Direct similarity metric approaches:
 - Explicit directed trust (Trust_{dir})
 - Explicit undirected trust (Trust_{undir})
 - Explicit trust with Jaccard (Trust_{iac})
 - Explicit trust with Katz similarity (Trust_{Katz}) [24]
- Most Popular (MP)

[24] T. Duricic, E. Lacic, D. Kowald, and E. Lex, "Trust-based collaborative filtering: Tackling the cold start problem using regular equivalence," in Proceedings of the 12th ACM Conference on Recommender Systems, RecSys '18, pp. 446–450, ACM, 2018.

Results

Cat.	Approach	Rank		Epin	ions			Cia	10			Filmt	rust	
Cat.	Approach	nDCG	nDCG	Nov.	Div.	UC	nDCG	Nov.	Div.	UC	nDCG	Nov.	Div.	UC
	$\operatorname{Trust}_{dir}$	15	.0245	.0060	.6006	59.2%	.0140	.0028	.3700	3.9%	.2655	.0313	.2784	30.3%
ine	$Trust_{undir}$	15	.0260	.0063	.5960	97.0%	.0127	.0045	.3632	11.4%	.2739	.0284	.2731	42.0%
seli	$\operatorname{Trust}_{jac}$	11	.0373	.0056	.6548	99.9%	.0176	.0027	.3996	12.8%	.3387	.0369	.2266	36.1%
Ba	$\operatorname{Trust}_{Katz}$	12	.0290	.0046	.6979		.0158	.0026	.3842	13.0%	.3681	.0322	.2185	42.9%
_	MP	17	.0134	.0015	$.7621^{*}$.0135	.0012	.5666	100%	.3551	.0137	.1672	100%
uo	LLE	7	.0309	.0044	.6977		.0239	.0036	.4013		.3649	.0159	.1926	
orizatio	LE	3	.0318	.0045	.6961		.0231	.0034	.3962		.3715	.0161	.1853	
	GF	14	.0138	.0023	.7024		.0154	.0022	.3970		.3686	.0154	.1945	
icto	HOPE	3	.0331	.0047	.6728		.0220	.0033	.3956		.3718	.0158	.1827	
\mathbf{Fa}	GraRep	7	.0298	.0042	.6704	8	.0209	.0030	.3974		.3694	.0147	.1859	
7	Node2vec	1	.0413	.0064	.6581	100	.0228	.0036	.4042	8	.3904	.0151	.2235	8
RW	DeepWalk	2	$.0435^{*}$	$.0067^{*}$.6707		$.0247^{*}$.0037	.3992	13.	.3654	.0152	.1950	44.2
	Role2vec	6	.0363	.0054	.6910		.0149	.0024	.3933		.3695	.0151	.1919	
	DNGR	10	.0353	.0051	.6869		.0197	.0031	.4023		.3583	.0142	.1959	
DL	SDNE	12	.0184	.0022	.7412		.0175	.0028	.3921		.3687	.0152	.2003	
н _	GS	7	.0325	.0047	.6810		.0216	.0031	.3963		.3678	.0151	.1883	
LINE	LINE	5	.0407	.0063	.6566		.0222	.0033	.3992		.3667	.0150	.1947	

Cat.	Approach	Rank		Epini	ions			Cia	o			Filmt	\mathbf{rust}	
Cat.	Арргоасп	nDCG	nDCG	Nov.	Div.	UC	nDCG	Nov.	Div.	UC	nDCG	Nov.	Div.	UC
	$\operatorname{Trust}_{dir}$	15	.0245	.0060	.6006	59.2%	.0140	.0028	.3700	3.9%	.2655	.0313	.2784	30.3%
ine	$Trust_{undir}$	15	.0260	.0063	.5960	97.0%	.0127	.0045	.3632	11.4%	.2739	.0284	.2731	42.0%
seli	$\operatorname{Trust}_{jac}$	11	.0373	.0056	.6548	99.9%	.0176	.0027	.3996	12.8%	.3387	.0369	.2266	36.1%
Ba	$\operatorname{Trust}_{Katz}$	12	.0290	.0046	.6979		.0158	.0026	.3842	13.0%	.3681	.0322	.2185	42.9%
	MP	17	.0134	.0015	$.7621^{*}$.0135	.0012	.5666	100%	.3551	.0137	.1672	100%
on	LLE	7	.0309	.0044	.6977		.0239	.0036	.4013		.3649	.0159	.1926	
ctorizatic	LE	3	.0318	.0045	.6961		.0231	.0034	.3962		.3715	.0161	.1853	
	GF	14	.0138	.0023	.7024		.0154	.0022	.3970		.3686	.0154	.1945	
	HOPE	3	.0331	.0047	.6728		.0220	.0033	.3956		.3718	.0158	.1827	
\mathbf{Fa}	GraRep	7	.0298	.0042	.6704	%	.0209	.0030	.3974		.3694	.0147	.1859	
7	Node2vec	1	.0413	.0064	.6581	100	.0228	.0036	.4042	%	.3904	.0151	.2235	2
RW	DeepWalk	2	$.0435^{*}$	$.0067^{*}$.6707		$.0247^{*}$.0037	.3992	13.	.3654	.0152	.1950	44.1
	Role2vec	6	.0363	.0054	.6910		.0149	.0024	.3933		.3695	.0151	.1919	
	DNGR	10	.0353	.0051	.6869		.0197	.0031	.4023		.3583	.0142	.1959	
DL	SDNE	12	.0184	.0022	.7412		.0175	.0028	.3921		.3687	.0152	.2003	
	GS	7	.0325	.0047	.6810		.0216	.0031	.3963		.3678	.0151	.1883	
LINE	LINE	5	.0407	.0063	.6566		.0222	.0033	.3992		.3667	.0150	.1947	I

Cat.	Approach	Rank		\mathbf{Epin}	ions			Cia	10			Filmt	rust	
Cat.	Approach	nDCG	nDCG	Nov.	Div.	UC	nDCG	Nov.	Div.	UC	nDCG	Nov.	Div.	UC
	$\operatorname{Trust}_{dir}$	15	.0245	.0060	.6006	59.2%	.0140	.0028	.3700	3.9%	.2655	.0313	.2784	30.3%
ine	$Trust_{undir}$	15	.0260	.0063	.5960	97.0%	.0127	.0045	.3632	11.4%	.2739	.0284	.2731	42.0%
seli	$\operatorname{Trust}_{jac}$	11	.0373	.0056	.6548	99.9%	.0176	.0027	.3996	12.8%	.3387	.0369	.2266	36.1%
\mathbf{Ba}	$\operatorname{Trust}_{Katz}$	12	.0290	.0046	.6979		.0158	.0026	.3842	13.0%	.3681	.0322	.2185	42.9%
	MP	17	.0134	.0015	$.7621^{*}$.0135	.0012	.5666	100%	.3551	.0137	.1672	100%
uo	LLE	7	.0309	.0044	.6977		.0239	.0036	.4013		.3649	.0159	.1926	
ctorizatio	LE	3	.0318	.0045	.6961		.0231	.0034	.3962		.3715	.0161	.1853	
	GF	14	.0138	.0023	.7024		.0154	.0022	.3970		.3686	.0154	.1945	
	HOPE	3	.0331	.0047	.6728		.0220	.0033	.3956		.3718	.0158	.1827	
Fa	GraRep	7	.0298	.0042	.6704	%	.0209	.0030	.3974		.3694	.0147	.1859	
7	Node2vec	1	.0413	.0064	.6581	100	.0228	.0036	.4042	8	.3904	.0151	.2235	8
RW	DeepWalk	2	$.0435^{*}$	$.0067^{*}$.6707		$.0247^{*}$.0037	.3992	13.	.3654	.0152	.1950	44.2
	Role2vec	6	.0363	.0054	.6910		.0149	.0024	.3933		.3695	.0151	.1919	
	DNGR	10	.0353	.0051	.6869		.0197	.0031	.4023		.3583	.0142	.1959	
DL	SDNE	12	.0184	.0022	.7412		.0175	.0028	.3921		.3687	.0152	.2003	
	GS	7	.0325	.0047	.6810		.0216	.0031	.3963		.3678	.0151	.1883	
LINE	LINE	5	.0407	.0063	.6566		.0222	.0033	.3992		.3667	.0150	.1947	

Cat.	Approach	Rank		Epin	ions			Cia	o			\mathbf{Filmt}	\mathbf{rust}	
Cat.	Арргоасп	nDCG	nDCG	Nov.	Div.	UC	nDCG	Nov.	Div.	UC	nDCG	Nov.	Div.	UC
	$\operatorname{Trust}_{dir}$	15	.0245	.0060	.6006	59.2%	.0140	.0028	.3700	3.9%	.2655	.0313	.2784	30.3%
ine	$Trust_{undir}$	15	.0260	.0063	.5960	97.0%	.0127	.0045	.3632	11.4%	.2739	.0284	.2731	42.0%
seli	$\operatorname{Trust}_{jac}$	11	.0373	.0056	.6548	99.9%	.0176	.0027	.3996	12.8%	.3387	.0369	.2266	36.1%
Ba	$\operatorname{Trust}_{Katz}$	12	.0290	.0046	.6979		.0158	.0026	.3842	13.0%	.3681	.0322	.2185	42.9%
	MP	17	.0134	.0015	$.7621^{*}$.0135	.0012	.5666	100%	.3551	.0137	.1672	100%
on	LLE	7	.0309	.0044	.6977		.0239	.0036	.4013		.3649	.0159	.1926	
orizatic	LE	3	.0318	.0045	.6961		.0231	.0034	.3962		.3715	.0161	.1853	
	GF	14	.0138	.0023	.7024		.0154	.0022	.3970	•	.3686	.0154	.1945	
icto	HOPE	3	.0331	.0047	.6728		.0220	.0033	.3956		.3718	.0158	.1827	
Fa	GraRep	7	.0298	.0042	.6704	%	.0209	.0030	.3974		.3694	.0147	.1859	
7	Node2vec	1	.0413	.0064	.6581	100	.0228	.0036	.4042	22	.3904	.0151	.2235	5
RW	DeepWalk	2	$.0435^{*}$	$.0067^{*}$.6707		$.0247^{*}$.0037	.3992	13.]	.3654	.0152	.1950	44.5
	Role2vec	6	.0363	.0054	.6910		.0149	.0024	.3933		.3695	.0151	.1919	
_	DNGR	10	.0353	.0051	.6869		.0197	.0031	.4023		.3583	.0142	.1959	
DL	SDNE	12	.0184	.0022	.7412		.0175	.0028	.3921		.3687	.0152	.2003	
	GS	7	.0325	.0047	.6810		.0216	.0031	.3963		.3678	.0151	.1883	
LINE	LINE	5	.0407	.0063	.6566		.0222	.0033	.3992		.3667	.0150	.1947	

Cat.	Approach	Rank		Epin	ions			Cia	io			\mathbf{Filmt}	\mathbf{rust}	
Cat.	Арргоасп	nDCG	nDCG	Nov.	Div.	UC	nDCG	Nov.	Div.	UC	nDCG	Nov.	Div.	UC
	$\operatorname{Trust}_{dir}$	15	.0245	.0060	.6006	59.2%	.0140	.0028	.3700	3.9%	.2655	.0313	.2784	30.3%
ine	$Trust_{undir}$	15	.0260	.0063	.5960	97.0%	.0127	.0045	.3632	11.4%	.2739	.0284	.2731	42.0%
sel	$\operatorname{Trust}_{jac}$	11	.0373	.0056	.6548	99.9%	.0176	.0027	.3996	12.8%	.3387	.0369	.2266	36.1%
Ba	$\operatorname{Trust}_{Katz}$	12	.0290	.0046	.6979		.0158	.0026	.3842	13.0%	.3681	.0322	.2185	42.9%
	MP	17	.0134	.0015	$.7621^{*}$.0135	.0012	.5666	100%	.3551	.0137	.1672	100%
uo	LLE	7	.0309	.0044	.6977		.0239	.0036	.4013		.3649	.0159	.1926	
ctorizatic	LE	3	.0318	.0045	.6961		.0231	.0034	.3962		.3715	.0161	.1853	
	GF	14	.0138	.0023	.7024		.0154	.0022	.3970	•	.3686	.0154	.1945	-
	HOPE	3	.0331	.0047	.6728		.0220	.0033	.3956		.3718	.0158	.1827	
Fa	GraRep	7	.0298	.0042	.6704	%	.0209	.0030	.3974		.3694	.0147	.1859	
7	Node2vec	1	.0413	.0064	.6581	100	.0228	.0036	.4042	8	.3904	.0151	.2235	5 %
RW	DeepWalk	2	$.0435^{*}$	$.0067^{*}$.6707		$.0247^*$.0037	.3992	13.	.3654	.0152	.1950	44.2
	Role2vec	6	.0363	.0054	.6910		.0149	.0024	.3933		.3695	.0151	.1919	
	DNGR	10	.0353	.0051	.6869		.0197	.0031	.4023		.3583	.0142	.1959	
DL	SDNE	12	.0184	.0022	.7412		.0175	.0028	.3921	•	.3687	.0152	.2003	-
	GS	7	.0325	.0047	.6810		.0216	.0031	.3963		.3678	.0151	.1883	
LINE	LINE	5	.0407	.0063	.6566		.0222	.0033	.3992		.3667	.0150	.1947	

Cat	Approach	Rank		Epin	ions			Cia	o			\mathbf{Filmt}	\mathbf{rust}	
Cat.	Арргоаси	nDCG	nDCG	Nov.	Div.	UC	nDCG	Nov.	Div.	UC	nDCG	Nov.	Div.	UC
	$\operatorname{Trust}_{dir}$	15	.0245	.0060	.6006	59.2%	.0140	.0028	.3700	3.9%	.2655	.0313	.2784	30.3%
ine	$Trust_{undir}$	15	.0260	.0063	.5960	97.0%	.0127	.0045	.3632	11.4%	.2739	.0284	.2731	42.0%
seli	$\operatorname{Trust}_{jac}$	11	.0373	.0056	.6548	99.9%	.0176	.0027	.3996	12.8%	.3387	.0369	.2266	36.1%
\mathbf{Ba}	$\operatorname{Trust}_{Katz}$	12	.0290	.0046	.6979		.0158	.0026	.3842	13.0%	.3681	.0322	.2185	42.9%
	MP	17	.0134	.0015	$.7621^{*}$.0135	.0012	.5666	100%	.3551	.0137	.1672	100%
uc	LLE	7	.0309	.0044	.6977		.0239	.0036	.4013		.3649	.0159	.1926	
ati	LE	3	.0318	.0045	.6961		.0231	.0034	.3962		.3715	.0161	.1853	
riz	GF	14	.0138	.0023	.7024		.0154	.0022	.3970		.3686	.0154	.1945	
lete	HOPE	3	.0331	.0047	.6728		.0220	.0033	.3956		.3718	.0158	.1827	
\mathbf{F}_{2}	GraRep	7	.0298	.0042	.6704	% (.0209	.0030	.3974		.3694	.0147	.1859	
7	Node2vec	1	.0413	.0064	.6581	100	.0228	.0036	.4042	%	.3904	.0151	.2235	5
RW	DeepWalk	2	$.0435^{*}$	$.0067^{*}$.6707		$.0247^{*}$.0037	.3992	13.	.3654	.0152	.1950	44.5
	Role2vec	6	.0363	.0054	.6910		.0149	.0024	.3933		.3695	.0151	.1919	
	DNGR	10	.0353	.0051	.6869		.0197	.0031	.4023		.3583	.0142	.1959	
DL	SDNE	12	.0184	.0022	.7412		.0175	.0028	.3921		.3687	.0152	.2003	
	GS	7	.0325	.0047	.6810		.0216	.0031	.3963		.3678	.0151	.1883	
LINE	LINE	5	.0407	.0063	.6566	1	.0222	.0033	.3992		.3667	.0150	.1947]

Cat.	Approach	Rank		Epini	ions			Cia	ao			\mathbf{Filmt}	\mathbf{rust}	
Cat.	Арргоаси	nDCG	nDCG	Nov.	Div.	UC	nDCG	Nov.	Div.	UC	nDCG	Nov.	Div.	UC
	$\operatorname{Trust}_{dir}$	15	.0245	.0060	.6006	59.2%	.0140	.0028	.3700	3.9%	.2655	.0313	.2784	30.3%
ine	$Trust_{undir}$	15	.0260	.0063	.5960	97.0%	.0127	.0045	.3632	11.4%	.2739	.0284	.2731	42.0%
seli	$\operatorname{Trust}_{jac}$	11	.0373	.0056	.6548	99.9%	.0176	.0027	.3996	12.8%	.3387	.0369	.2266	36.1%
Ba	$\operatorname{Trust}_{Katz}$	12	.0290	.0046	.6979		.0158	.0026	.3842	13.0%	.3681	.0322	.2185	42.9%
	MP	17	.0134	.0015	$.7621^{*}$.0135	.0012	.5666	100%	.3551	.0137	.1672	100%
on	LLE	7	.0309	.0044	.6977		.0239	.0036	.4013		.3649	.0159	.1926	
ctorizatic	LE	3	.0318	.0045	.6961		.0231	.0034	.3962		.3715	.0161	.1853	
	GF	14	.0138	.0023	.7024		.0154	.0022	.3970	•	.3686	.0154	.1945	
	HOPE	3	.0331	.0047	.6728	-	.0220	.0033	.3956		.3718	.0158	.1827	
\mathbf{Fa}	GraRep	7	.0298	.0042	.6704	%	.0209	.0030	.3974		.3694	.0147	.1859	
7	Node2vec	1	.0413	.0064	.6581	100	.0228	.0036	.4042	%	.3904	.0151	.2235	5
RW	DeepWalk	2	$.0435^{*}$	$.0067^{*}$.6707		$.0247^{*}$.0037	.3992	13.]	.3654	.0152	.1950	44.5
	Role2vec	6	.0363	.0054	.6910		.0149	.0024	.3933		.3695	.0151	.1919	
	DNGR	10	.0353	.0051	.6869		.0197	.0031	.4023		.3583	.0142	.1959	
DL	SDNE	12	.0184	.0022	.7412		.0175	.0028	.3921		.3687	.0152	.2003	
	GS	7	.0325	.0047	.6810		.0216	.0031	.3963		.3678	.0151	.1883	
LINE	LINE	5	.0407	.0063	.6566		.0222	.0033	.3992		.3667	.0150	.1947	

Cat.	Approach	Rank		Epini	ions			Cia	o			\mathbf{Filmt}	\mathbf{rust}	
Cat.	Арргоасп	nDCG	nDCG	Nov.	Div.	UC	nDCG	Nov.	Div.	UC	nDCG	Nov.	Div.	UC
	$\operatorname{Trust}_{dir}$	15	.0245	.0060	.6006	59.2%	.0140	.0028	.3700	3.9%	.2655	.0313	.2784	30.3%
ine	$Trust_{undir}$	15	.0260	.0063	.5960	97.0%	.0127	.0045	.3632	11.4%	.2739	.0284	.2731	42.0%
seli	$\operatorname{Trust}_{jac}$	11	.0373	.0056	.6548	99.9%	.0176	.0027	.3996	12.8%	.3387	.0369	.2266	36.1%
Ba	$\operatorname{Trust}_{Katz}$	12	.0290	.0046	.6979		.0158	.0026	.3842	13.0%	.3681	.0322	.2185	42.9%
	MP	17	.0134	.0015	$.7621^{*}$.0135	.0012	.5666	100%	.3551	.0137	.1672	100%
on	LLE	7	.0309	.0044	.6977		.0239	.0036	.4013		.3649	.0159	.1926	
orizatic	LE	3	.0318	.0045	.6961		.0231	.0034	.3962		.3715	.0161	.1853	
	GF	14	.0138	.0023	.7024		.0154	.0022	.3970		.3686	.0154	.1945	
lete	HOPE	3	.0331	.0047	.6728	-	.0220	.0033	.3956		.3718	.0158	.1827	
\mathbf{Fa}	GraRep	7	.0298	.0042	.6704	%	.0209	.0030	.3974		.3694	.0147	.1859	
7	Node2vec	1	.0413	.0064	.6581	100	.0228	.0036	.4042	%	.3904	.0151	.2235	5
RW	DeepWalk	2	$.0435^{*}$	$.0067^{*}$.6707		$.0247^{*}$.0037	.3992	13.]	.3654	.0152	.1950	44.5
	Role2vec	6	.0363	.0054	.6910		.0149	.0024	.3933		.3695	.0151	.1919	
	DNGR	10	.0353	.0051	.6869		.0197	.0031	.4023		.3583	.0142	.1959	
DL	SDNE	12	.0184	.0022	.7412		.0175	.0028	.3921		.3687	.0152	.2003	
	GS	7	.0325	.0047	.6810		.0216	.0031	.3963		.3678	.0151	.1883	
LINE	LINE	5	.0407	.0063	.6566		.0222	.0033	.3992		.3667	.0150	.1947	

Cat.	Approach	Rank		Epin	ions			Cia	ao			\mathbf{Filmt}	\mathbf{rust}	
Cat.	Арргоасп	nDCG	nDCG	Nov.	Div.	UC	nDCG	Nov.	Div.	UC	nDCG	Nov.	Div.	UC
	Trust_{dir}	15	.0245	.0060	.6006	59.2%	.0140	.0028	.3700	3.9%	.2655	.0313	.2784	30.3%
ine	$Trust_{undir}$	15	.0260	.0063	.5960	97.0%	.0127	.0045	.3632	11.4%	.2739	.0284	.2731	42.0%
seli	$\operatorname{Trust}_{jac}$	11	.0373	.0056	.6548	99.9%	.0176	.0027	.3996	12.8%	.3387	.0369	.2266	36.1%
Ba	$\operatorname{Trust}_{Katz}$	12	.0290	.0046	.6979		.0158	.0026	.3842	13.0%	.3681	.0322	.2185	42.9%
	MP	17	.0134	.0015	$.7621^{*}$.0135	.0012	.5666	100%	.3551	.0137	.1672	100%
on	LLE	7	.0309	.0044	.6977		.0239	.0036	.4013		.3649	.0159	.1926	
orizatic	LE	3	.0318	.0045	.6961		.0231	.0034	.3962		.3715	.0161	.1853	
	GF	14	.0138	.0023	.7024		.0154	.0022	.3970	•	.3686	.0154	.1945	
lete	HOPE	3	.0331	.0047	.6728	-	.0220	.0033	.3956		.3718	.0158	.1827	
\mathbf{Fa}	GraRep	7	.0298	.0042	.6704	%	.0209	.0030	.3974		.3694	.0147	.1859	
7	Node2vec	1	.0413	.0064	.6581	100	.0228	.0036	.4042	%	.3904	.0151	.2235	5
RW	DeepWalk	2	$.0435^{*}$	$.0067^{*}$.6707		$.0247^{*}$.0037	.3992	13.]	.3654	.0152	.1950	44.5
	Role2vec	6	.0363	.0054	.6910		.0149	.0024	.3933		.3695	.0151	.1919	
	DNGR	10	.0353	.0051	.6869		.0197	.0031	.4023		.3583	.0142	.1959	
DL	SDNE	12	.0184	.0022	.7412		.0175	.0028	.3921		.3687	.0152	.2003	
	GS	7	.0325	.0047	.6810		.0216	.0031	.3963		.3678	.0151	.1883	
LINE	LINE	5	.0407	.0063	.6566		.0222	.0033	.3992		.3667	.0150	.1947	

Cat	Approach	Rank		Epin	ions			Cia	ao			Filmt	\mathbf{rust}	
Cat.	Арргоаси	nDCG	nDCG	Nov.	Div.	UC	nDCG	Nov.	Div.	UC	nDCG	Nov.	Div.	UC
	$\operatorname{Trust}_{dir}$	15	.0245	.0060	.6006	59.2%	.0140	.0028	.3700	3.9%	.2655	.0313	.2784	30.3%
ine	$Trust_{undir}$	15	.0260	.0063	.5960	97.0%	.0127	.0045	.3632	11.4%	.2739	.0284	.2731	42.0%
seli	$\operatorname{Trust}_{jac}$	11	.0373	.0056	.6548	99.9%	.0176	.0027	.3996	12.8%	.3387	.0369	.2266	36.1%
\mathbf{Ba}	$\operatorname{Trust}_{Katz}$	12	.0290	.0046	.6979		.0158	.0026	.3842	13.0%	.3681	.0322	.2185	42.9%
	MP	17	.0134	.0015	$.7621^{*}$.0135	.0012	.5666	100%	.3551	.0137	.1672	100%
uc	LLE	7	.0309	.0044	.6977		.0239	.0036	.4013		.3649	.0159	.1926	
atio	LE	3	.0318	.0045	.6961		.0231	.0034	.3962		.3715	.0161	.1853	
riz	GF	14	.0138	.0023	.7024		.0154	.0022	.3970	•	.3686	.0154	.1945	
lete	HOPE	3	.0331	.0047	.6728		.0220	.0033	.3956	•	.3718	.0158	.1827	
Fa	GraRep	7	.0298	.0042	.6704	%	.0209	.0030	.3974	•	.3694	.0147	.1859	
7	Node2vec	1	.0413	.0064	.6581	10(.0228	.0036	.4042	8	.3904	.0151	.2235	2 %
RW	DeepWalk	2	$.0435^{*}$	$.0067^{*}$.6707		$.0247^{*}$.0037	.3992	13.	.3654	.0152	.1950	44.
	Role2vec	6	.0363	.0054	.6910		.0149	.0024	.3933		.3695	.0151	.1919	
	DNGR	10	.0353	.0051	.6869		.0197	.0031	.4023		.3583	.0142	.1959	
DL	SDNE	12	.0184	.0022	.7412		.0175	.0028	.3921		.3687	.0152	.2003	
	GS	7	.0325	.0047	.6810		.0216	.0031	.3963		.3678	.0151	.1883	
LINE	LINE	5	.0407	.0063	.6566	1	.0222	.0033	.3992		.3667	.0150	.1947	

Cat	Approach	Rank		Epin	ions			Cia	10		${f Filmtrust}$			
Cat.	Approach	nDCG	nDCG	Nov.	Div.	UC	nDCG	Nov.	Div.	UC	nDCG	Nov.	Div.	UC
	$\operatorname{Trust}_{dir}$	15	.0245	.0060	.6006	59.2%	.0140	.0028	.3700	3.9%	.2655	.0313	.2784	30.3%
ine	$Trust_{undir}$	15	.0260	.0063	.5960	97.0%	.0127	.0045	.3632	11.4%	.2739	.0284	.2731	42.0%
seli	$\operatorname{Trust}_{jac}$	11	.0373	.0056	.6548	99.9%	.0176	.0027	.3996	12.8%	.3387	.0369	.2266	36.1%
\mathbf{Ba}	$\operatorname{Trust}_{Katz}$	12	.0290	.0046	.6979		.0158	.0026	.3842	13.0%	.3681	.0322	.2185	42.9%
	MP	17	.0134	.0015	$.7621^{*}$.0135	.0012	.5666	100%	.3551	.0137	.1672	100%
uc	LLE	7	.0309	.0044	.6977		.0239	.0036	.4013		.3649	.0159	.1926	
ati	LE	3	.0318	.0045	.6961		.0231	.0034	.3962		.3715	.0161	.1853	
oriz	GF	14	.0138	.0023	.7024		.0154	.0022	.3970		.3686	.0154	.1945	
icto	HOPE	3	.0331	.0047	.6728		.0220	.0033	.3956		.3718	.0158	.1827	
Fa	GraRep	7	.0298	.0042	.6704	%	.0209	.0030	.3974		.3694	.0147	.1859	
1	Node2vec	1	.0413	.0064	.6581	100	.0228	.0036	.4042	8	.3904	.0151	.2235	2
RW	DeepWalk	2	$.0435^{*}$	$.0067^{*}$.6707		$.0247^{*}$.0037	.3992	13.	.3654	.0152	.1950	44.1
	Role2vec	6	.0363	.0054	.6910		.0149	.0024	.3933		.3695	.0151	.1919	
	DNGR	10	.0353	.0051	.6869		.0197	.0031	.4023		.3583	.0142	.1959	
DL	SDNE	12	.0184	.0022	.7412		.0175	.0028	.3921		.3687	.0152	.2003	
	GS	7	.0325	.0047	.6810		.0216	.0031	.3963		.3678	.0151	.1883	
LINE	LINE	5	.0407	.0063	.6566	1	.0222	.0033	.3992		.3667	.0150	.1947	

Cat	Approach	Rank		Epinions					ao		${f Filmtrust}$			
Cat.	Approach	nDCG	nDCG	Nov.	Div.	UC	nDCG	Nov.	Div.	UC	nDCG	Nov.	Div.	UC
ne	$\operatorname{Trust}_{dir}$	15	.0245	.0060	.6006	59.2%	.0140	.0028	.3700	3.9%	.2655	.0313	.2784	30.3%
	$Trust_{undir}$	15	.0260	.0063	.5960	97.0%	.0127	.0045	.3632	11.4%	.2739	.0284	.2731	42.0%
seli	$\operatorname{Trust}_{jac}$	11	.0373	.0056	.6548	99.9%	.0176	.0027	.3996	12.8%	.3387	.0369	.2266	36.1%
\mathbf{Ba}	$\operatorname{Trust}_{Katz}$	12	.0290	.0046	.6979		.0158	.0026	.3842	13.0%	.3681	.0322	.2185	42.9%
	MP	17	.0134	.0015	$.7621^{*}$.0135	.0012	.5666	100%	.3551	.0137	.1672	100%
nc	LLE	7	.0309	.0044	.6977		.0239	.0036	.4013		.3649	.0159	.1926	
atio	LE	3	.0318	.0045	.6961		.0231	.0034	.3962	•	.3715	.0161	.1853	
oriz	GF	14	.0138	.0023	.7024		.0154	.0022	.3970	*	.3686	.0154	.1945	
ictc	HOPE	3	.0331	.0047	.6728		.0220	.0033	.3956		.3718	.0158	.1827	
Fa	GraRep	7	.0298	.0042	.6704	%	.0209	.0030	.3974		.3694	.0147	.1859	
7	Node2vec	1	.0413	.0064	.6581	100	.0228	.0036	.4042	%	.3904	.0151	.2235	8
RW	DeepWalk	2	$.0435^{*}$	$.0067^{*}$.6707		$.0247^{*}$.0037	.3992	13.]	.3654	.0152	.1950	44.5
	Role2vec	6	.0363	.0054	.6910		.0149	.0024	.3933		.3695	.0151	.1919	
	DNGR	10	.0353	.0051	.6869		.0197	.0031	.4023		.3583	.0142	.1959	
DL	SDNE	12	.0184	.0022	.7412		.0175	.0028	.3921		.3687	.0152	.2003	
	GS	7	.0325	.0047	.6810		.0216	.0031	.3963		.3678	.0151	.1883	
LINE	LINE	5	.0407	.0063	.6566		.0222	.0033	.3992		.3667	.0150	.1947	

Cat	Approach	Rank		\mathbf{Epin}	ions			Cia	o			\mathbf{Filmt}	\mathbf{rust}		
Cat.	Approach	Арргоаси	nDCG	nDCG	Nov.	Div.	UC	nDCG	Nov.	Div.	UC	nDCG	Nov.	Div.	UC
ne	$\operatorname{Trust}_{dir}$	15	.0245	.0060	.6006	59.2%	.0140	.0028	.3700	3.9%	.2655	.0313	.2784	30.3%	
	$Trust_{undir}$	15	.0260	.0063	.5960	97.0%	.0127	.0045	.3632	11.4%	.2739	.0284	.2731	42.0%	
seli	$\operatorname{Trust}_{jac}$	11	.0373	.0056	.6548	99.9%	.0176	.0027	.3996	12.8%	.3387	.0369	.2266	36.1%	
Ba	$\operatorname{Trust}_{Katz}$	12	.0290	.0046	.6979		.0158	.0026	.3842	13.0%	.3681	.0322	.2185	42.9%	
	MP	17	.0134	.0015	$.7621^{*}$.0135	.0012	.5666	100%	.3551	.0137	.1672	100%	
luc	LLE	7	.0309	.0044	.6977		.0239	.0036	.4013		.3649	.0159	.1926		
ati	LE	3	.0318	.0045	.6961		.0231	.0034	.3962		.3715	.0161	.1853	-	
oriz	GF	14	.0138	.0023	.7024		.0154	.0022	.3970		.3686	.0154	.1945		
lete	HOPE	3	.0331	.0047	.6728		.0220	.0033	.3956		.3718	.0158	.1827		
Fa	GraRep	7	.0298	.0042	.6704	%	.0209	.0030	.3974		.3694	.0147	.1859		
7	Node2vec	1	.0413	.0064	.6581	100	.0228	.0036	.4042	1 %	.3904	.0151	.2235	5	
RW	DeepWalk	2	$.0435^{*}$	$.0067^{*}$.6707		$.0247^{*}$.0037	.3992	13.	.3654	.0152	.1950	44.5	
	Role2vec	6	.0363	.0054	.6910		.0149	.0024	.3933		.3695	.0151	.1919		
	DNGR	10	.0353	.0051	.6869		.0197	.0031	.4023		.3583	.0142	.1959		
DL	SDNE	12	.0184	.0022	.7412		.0175	.0028	.3921		.3687	.0152	.2003		
	GS	7	.0325	.0047	.6810		.0216	.0031	.3963		.3678	.0151	.1883		
LINE	LINE	5	.0407	.0063	.6566		.0222	.0033	.3992		.3667	.0150	.1947		

Cat	Approach	Rank		Epinions				Ciao				${f Filmtrust}$			
Cat.	Арргоасп	nDCG	nDCG	Nov.	Div.	UC	nDCG	Nov.	Div.	UC	nDCG	Nov.	Div.	UC	
	$\operatorname{Trust}_{dir}$	15	.0245	.0060	.6006	59.2%	.0140	.0028	.3700	3.9%	.2655	.0313	.2784	30.3%	
ine	$Trust_{undir}$	15	.0260	.0063	.5960	97.0%	.0127	.0045	.3632	11.4%	.2739	.0284	.2731	42.0%	
seli	$\operatorname{Trust}_{jac}$	11	.0373	.0056	.6548	99.9%	.0176	.0027	.3996	12.8%	.3387	.0369	.2266	36.1%	
Ba	$\operatorname{Trust}_{Katz}$	12	.0290	.0046	.6979		.0158	.0026	.3842	13.0%	.3681	.0322	.2185	42.9%	
	MP	17	.0134	.0015	$.7621^{*}$.0135	.0012	.5666	100%	.3551	.0137	.1672	100%	
uc	LLE	7	.0309	.0044	.6977		.0239	.0036	.4013		.3649	.0159	.1926		
ati	LE	3	.0318	.0045	.6961	-	.0231	.0034	.3962		.3715	.0161	.1853	-	
riz	GF	14	.0138	.0023	.7024		.0154	.0022	.3970		.3686	.0154	.1945		
lete	HOPE	3	.0331	.0047	.6728		.0220	.0033	.3956		.3718	.0158	.1827		
\mathbf{Fa}	GraRep	7	.0298	.0042	.6704	% (.0209	.0030	.3974		.3694	.0147	.1859		
7	Node2vec	1	.0413	.0064	.6581	100	.0228	.0036	.4042	%	.3904	.0151	.2235	5	
RW	DeepWalk	2	$.0435^{*}$	$.0067^{*}$.6707		$.0247^{*}$.0037	.3992	13.]	.3654	.0152	.1950	44.2	
	Role2vec	6	.0363	.0054	.6910		.0149	.0024	.3933		.3695	.0151	.1919		
	DNGR	10	.0353	.0051	.6869		.0197	.0031	.4023		.3583	.0142	.1959		
DL	SDNE	12	.0184	.0022	.7412		.0175	.0028	.3921		.3687	.0152	.2003		
	GS	7	.0325	.0047	.6810		.0216	.0031	.3963		.3678	.0151	.1883		
LINE	LINE	5	.0407	.0063	.6566		.0222	.0033	.3992		.3667	.0150	.1947		

Evaluation metrics and user preferences

- Finally, we compute the Kendall rank correlation coefficient (Bonferroni corrected, p < 0.01) and observe the following:
 - Statistically significant positive mean correlation across all three datasets between <u>nDCG</u> and <u>novelty</u>, ranging from 0.43 on Epinions to 0.36 on Filmtrust
 - We also observe a statistically significant negative mean correlation between diversity and novelty on Epinions (-0.15)

Conclusion

Limitations and future work

- In our experiments, we treated the trust networks as undirected while, in reality, they are directed
 - We aim to further explore how to preserve different properties of trust networks (e.g., asymmetry)
- It is possible that we did not examine an ample enough space of hyperparameters¹
- We used only A as input for the recommendation algorithms, we also plan to incorporate user features from R
- We are also going to focus on interpretability of our results by studying node properties of user neighborhoods

¹ Details on the hyperparameter optimization can be found at: <u>https://github.com/tduricic/trust-recommender/blob/master/docs/hyperparameter-optimization.md</u>

Key takeaways

- We explored the utility of graph embedding approaches from four method families to generate latent user representations for trustbased recommender systems in a cold-start setting:
 - Random-walk-based approaches Node2vec and DeepWalk consistently achieve the best accuracy
 - Node2vec and DeepWalk scored high on novelty and diversity as well
 - Graph embeddings <u>increase user coverage</u>
 - In all three evaluated datasets, <u>users tend to prefer novel recommendations</u>

Thank you! Questions? Contact/follow us.

Get the paper:

https://arxiv.org/pdf/2003.13345.pdf

Social Computing

know-center.tugraz.at/research/areas/social-computing/

<u>s-computing@know-center.at</u>

@socialcomplab

Tomislav Duricic

tduricic@tugraz.at

<u>Ødjurazzi</u>

scholar.google.com/citations?user=_mY5j2UAAAAJ

researchgate.net/profile/Tomislav Duricic

in linkedin.com/in/tomislav-đuričić-954b54172