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Rényi Information Dimension1

X is L-dimensional and real-valued

d(X ) , lim
m→∞

H([X ]m)

logm

where

[X ]m ,
bmX c
m

and
H(Z ) , −

∑
z

P(Z = z) logP(Z = z).

(we assume throughout that the limit exists and is finite)

1Rényi, “On the Dimension and Entropy of Probability Distributions”, 1959
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1Rényi, “On the Dimension and Entropy of Probability Distributions”, 1959

c©Know-Center GmbH • Research Center for Data-Driven Business and Big Data Analytics 3



Properties of Information Dimension2,3,4

I Bounded:
0 ≤ d(X ) ≤ L

I Lipschitz Maps: (⇒ Scale & Translation Invariance)

d(f (X )) ≤ d(X )

I Subadditive:
d(X ,Y ) ≤ d(X ) + d(Y )

with equality if X ⊥ Y

2Rényi, “On the Dimension and Entropy of Probability Distributions”, 1959
3Wu and Verdú, “Rényi Information Dimension: Fundamental Limits of Almost Lossless Analog Compression”,

2010
4Wu, “Shannon Theory for Compressed Sensing”, 2011

c©Know-Center GmbH • Research Center for Data-Driven Business and Big Data Analytics 4



Properties of Information Dimension2,3,4

I Bounded:
0 ≤ d(X ) ≤ L

I Lipschitz Maps: (⇒ Scale & Translation Invariance)

d(f (X )) ≤ d(X )

I Subadditive:
d(X ,Y ) ≤ d(X ) + d(Y )

with equality if X ⊥ Y
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The Discrete, the Continuous, and the Singular5

I If X has a discrete distribution, then d(X ) = 0.

I If X has an absolutely continuous distribution, then d(X ) = L.

I “It can be shown that [d(X ) = K < L] for absolutely
continuous probability distributions on sufficiently smooth
K -dimensional manifolds lying in RL.”

5Rényi, “On the Dimension and Entropy of Probability Distributions”, 1959
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Gaussian Case

Theorem

If X is Gaussian and has covariance matrix CX , then

d(X ) = rank(CX ).
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Gaussian Case

Theorem

If X has covariance matrix CX , then

d(X ) ≤ rank(CX )

with equality if X is Gaussian.
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Information Dimension is Relevant:

Communications & Information Theory:

I Rate-distortion theory6,7

I Almost lossless analog compressed sensing8

I DoF of Gaussian interference channels9,10

Dynamical Systems Theory:

I Characterization of Chaotic Attractors11

6Kawabata and Dembo, “The rate-distortion dimension of sets and measures”, 1994
7Koch, “The Shannon Lower Bound Is Asymptotically Tight”, 2016
8Wu and Verdú, “Rényi Information Dimension: Fundamental Limits of Almost Lossless Analog Compression”,

2010
9Wu, Shamai (Shitz), and Verdú, “Information Dimension and the Degrees of Freedom of the Interference

Channel”, 2015
10Stotz and Bölcskei, “Degrees of Freedom in Vector Interference Channels”, 2016
11Farmer, Ott, and Yorke, “The dimension of chaotic attractors”, 1983
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Generalization to Stochastic Processes

{Xt , t ∈ Z} is an L-variate, real-valued, stationary process

d({Xt}) , lim
m→∞

H({[Xt ]m})
logm

where

H({[Xt ]m}) , lim
n→∞

H([X1]m, . . . , [Xn]m)

n
.

(we assume throughout that the limits exist and are finite)
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Properties of Information Dimension Rate

I Bounded:

0 ≤ d({Xt}) ≤ lim
n→∞

d(X1, . . . ,Xn)

n
≤ d(X1) ≤ L

I Lipschitz Maps: (⇒ Scale & Translation Invariance)

d({ft(Xt)}) ≤ d({Xt})

I Subadditive:

d({Xt ,Yt}) ≤ d({Xt}) + d({Yt})

with equality if {Xt} ⊥ {Yt}
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The Discrete, the Continuous, and the Bandlimited

Consider a scalar (L = 1) process {Xt}:

I If {Xt} is discrete-valued, then d({Xt}) = 0.

I If {Xt} is continuous-valued and i.i.d., hen d({Xt}) = 1.

I If {Xt} is Gaussian with bandlimited power spectral density
SX , is there a connection between d({Xt}) and the
bandwidth?
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Gaussian Process

Corollary

If {Xt} is a scalar, Gaussian process with power spectral density
SX , then

d({Xt}) = λ ({θ: SX (θ) > 0}) .

Example

Let {Xt} be Gaussian and have power spectral density
SX : [−1

2 ,
1
2 ]→ R+ positive on [−1

4 ,
1
4 ] and zero elsewhere

(low-pass process). Then,

d({Xt}) =
1

2
.
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Gaussian Process (cont’d)

Theorem

If {Xt} is Gaussian and has power spectral density SX, then

d({Xt}) =

∫ 1/2

−1/2
rank (SX(θ))dθ.

(
E
(

Xt+τXT
t

)
− E (Xt+τ )E

(
XT

t

)
=

∫ 1/2

−1/2
SX(θ)e−ı2πτθdθ

)
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Gaussian Process (cont’d)

Theorem

If {Xt} has power spectral density SX, then

d({Xt}) ≤
∫ 1/2

−1/2
rank (SX(θ))dθ

with equality if {Xt} is Gaussian.

(
E
(

Xt+τXT
t

)
− E (Xt+τ )E

(
XT

t

)
=

∫ 1/2

−1/2
SX(θ)e−ı2πτθdθ

)
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Lebesgue Decomposition

Corollary

If {Xt} has spectral distribution function

FX(θ) = F ac
X (θ) + F d

X (θ) + F s
X(θ)

then
d({Xt}) = d({Xac

t })

where {Xac
t } has spectral distribution function F ac

X .

(
E
(

Xt+τXT
t

)
− E (Xt+τ )E

(
XT

t

)
=

∫ 1/2

−1/2
e−ı2πτθdFX(θ)

)
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Information Dimension Rate is Relevant, too:

Communications & Information Theory:

I Rate-distortion theory

I limn→∞
d(X1,...,Xn)

n is a necessary rate for almost error-free
compressed sensing12

I d({Xt}) is a sufficient rate for asymptotically distortion-free
compressed sensing13,14

I Fact d({Xt}) < limn→∞
d(X1,...,Xn)

n for, e.g., bandlimited
Gaussian processes reveals fundamental difference between
error-free and distortion-free compressed sensing

Dynamical Systems Theory:

I Causality? (back-up slides)

12Wu and Verdú, “Optimal Phase Transitions in Compressed Sensing”, 2012
13Jalali and Poor, “Universal Compressed Sensing for Almost Lossless Recovery”, 2017
14Rezagah et al., “Compression-Based Compressed Sensing”, 2017
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Conclusions

I Information dimension for stochastic processes

I Intricately connected with bandwidth

I Relevant quantity in asymptotically distortion-free compressed
sensing

I Generalization to causality measure currently unclear

Proofs, results for non-existing limits:

1702.00645

Thanks for your attention!
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Potential Connection to Causality

d({Xt}|{Yt}) , lim
m→∞

lim
n→∞

H([X1]m, . . . , [Xn]m|{Yt})
n logm

d({Xt}||{Yt}) , lim
m→∞

lim
n→∞

H([X1]m, . . . , [Xn]m|{Yt , t ≤ n})
n logm

(we are not sure what proper definitions should look like!)

Conjecture

d({Xt}|{Yt}) ≤ d({Xt}||{Yt})

with equality if Xt = f (Yt ,Yt−1, . . . ) + Et .
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Potential Connection to Causality (cont’d)

Open Questions:

I Proper definitions of d({Yt}|{Xt}) and d({Yt}||{Xt})
I Investigating the Gaussian case

I Connections with causal/non-causal Wiener filters in the
Gaussian case?

I Connections with directed information/transfer entropy?
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