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1 Introduction and Problem Statement

We consider the problem of inferring how a message m of user u0 spreads in a given
directed, feed-based social network G = (V,E) where each node v∈V corresponds to a
user and where the edge (u,v)∈E ⊆V 2 indicates that user v sees on her feed what user u
posted or forwarded. In addition to G , we have access to a partially ordered set of tuples
M = {(u0, t0), . . . ,(uN , tN)}, where (ui, ti) indicates that user ui forwarded message m at
time ti ≥ ti−1; the original author u0 posted the message at time t0. Given G and M, we
aim to determine the most likely paths this message has taken in the network, i.e., we
wish to infer the message cascade of m. The problem has attracted a lot of attention
and spawned literature regarding the inference [1–3], analysis [4–6], [7, Sec. 6.2], and
prediction of such cascades [8, 9]. The more general problem of inferring the graph G
from several sets M was considered in [10, 11].

Under assumptions similar to the independent cascade model [12], the most likely
message cascade coincides with a minimum spanning tree for the directed network,
where the weight of an edge is given by the log-probability of the event that a message
is forwared along this edge. We show that if the probability that a user forwards a
message is independent of its sender, then the minimum spanning tree problem can be
solved even without knowledge of the respective probabilities.

2 Message Cascades as Minimum Spanning Trees

We assume the independent cascade model for message forwarding. Specifically, let
p(ui,u j) denote the probability that user u j forwards a message from her feed that she
received via user ui; it may depend on the time ui forwarded the message, the message
content, the relationship between users ui and u j, the original author u0, the message
creation time t0, the local time of user u j, or on the time |ti− t j| that elapsed since ui
forwarded the message. Mathematically, p(ui,u j) = p(ui,u j)(u0, t0, ti, t j,m).

It can be shown that the most likely message cascade coincides with a minimum
spanning tree of a subgraph of G that is compatible with M. To this end, let GM =
(VM,EM), where VM = {u0,u1, . . . ,uN} and where an edge (ui,u j) ∈ EM if and only if
(ui,u j)∈ E and t j ≥ ti. Let TM denote the set of directed spanning trees of GM rooted at
u0. Depending on the behavior of the feed, further edges may need to be removed from
EM; e.g., if the feed of user u j only shows the first forwarded instance of m [8, Sec. 4].



All trees T ∈ TM are valid message cascades, i.e., compatible with G and M. It
remains to determine the most likely message cascade. Under the assumed probabilistic
model, the log-likelihood of T can be computed as (e.g., [11, p. 485])

LL(T ) = ∑
(ui,u j)∈edges(T )

log p(ui,u j)(u0, t0, ti, t j,m). (1)

Thus, inferring the most likely message cascade can be achieved by determining the
minimum spanning tree of GM rooted at u0, with the weight of edge (ui,u j) chosen as
− log p(ui,u j)(u0, t0, ti, t j,m). This can be done in O(|EM|+(N +1) log(N +1)) [13].

Learning or modeling the probabilities p(ui,u j)(u0, t0, ti, t j,m), which are required
to determine the most likely cascade T , is non-trivial [12]. Under certain simplifying
assumptions, however, the problem becomes tractable. Namely, suppose that the prob-
ability that user u j forwards a message does not depend on the user ui from which
it was received, nor at the time ti at which it was received. In other words, we have
p(ui,u j)(u0, t0, ti, t j,m) = p(ui,u j)(u0, t0, t j,m) = p(uk,u j)(u0, t0, t j,m) := pu j(u0, t0, t j,m),
where the second equality holds for all k such that (uk,u j) ∈ E. To see how this sim-
plifies the problem of maximizing (1) over TM , note that any directed spanning tree in
TM has N edges and each node ui, i = 1, . . . ,N has in-degree one (u0 has no incident
edges). It follows that (1) evaluates to

LL(T ) =
N

∑
j=1

log pu j(u0, t0, t j,m) (2)

for every T ∈ TM . Therefore, under this assumption, every spanning tree of GM rooted
at u0 is minimum and all corresponding message cascades are equally likely.

Under the additional assumption that the feed of user u j only shows a single for-
warded instance of m (e.g., the first [8, Sec. 4], the most recent, or even just a randomly
selected one), node u j has in-degree one in GM , i.e., GM is already a tree.

3 Practical Implications

Eq. (2) allows to determine the most likely message cascades compatible with G and
M by simply determining the set of spanning trees of GM without knowledge of the
forwarding probabilities pu j(u0, t0, t j,m).

We remain to discuss how realistic the simplifying assumptions are. The assumption
that p(ui,u j)(u0, t0, ti, t j,m) = pu j(u0, t0, t j,m) implies that user u j decides whether or not
to forward m exclusively based on the message content, the identity of the original
author, the message creation time t0, and on the time t j she considers forwarding it. The
user does not base her decision on i) the user ui from whom she received the message
or ii) the time ti at which the message appeared on her feed. Instantiating i) for, e.g.,
the Twitter network means that user u j retweets a message m irrespective of the user ui
who retweeted it such that it appeared on her feed. This assumption is realistic, since
for retweets appearing in the Twitter feed, the identity of the retweeter ui appears less
prominently than the identity of the original author u0. Instantiating ii) would require
that t j− ti is small enough such that the message m appears on the feed of user u j. This



assumption is unproblematic for an active user u j with appropriate feed settings or may
be enforced by eliminating edges from EM for which t j− ti exceeds a certain threshold.
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