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ABSTRACT
Online social networks are a dominant medium in everyday life to
stay in contact with friends and to share information. In Twitter,
users can connect with other users by following them, who in
turn can follow back. In recent years, researchers studied several
properties of social networks and designed random graph models
to describe them. Many of these approaches either focus on the
generation of undirected graphs or on the creation of directed
graphs without modeling the dependencies between reciprocal (i.e.,
two directed edges of opposite direction between two nodes) and
directed edges. We propose an approach to generate directed social
network graphs that creates reciprocal and directed edges and
considers the correlation between the respective degree sequences.

Our model relies on crawled directed graphs in Twitter, on which
information w.r.t. a topic is exchanged or disseminated. While these
graphs exhibit a high clustering coefficient and small average dis-
tances between random node pairs (which is typical in real-world
networks), their degree sequences seem to follow a χ2-distribution
rather than power law. To achieve high clustering coefficients, we
apply an edge rewiring procedure that preserves the node degrees.

We compare the crawled and the created graphs, and simulate
certain algorithms for information dissemination and epidemic
spreading on them. The results show that the created graphs exhibit
very similar topological and algorithmic properties as the real-world
graphs, providing evidence that they can be used as surrogates in
social network analysis. Furthermore, our model is highly scalable,
which enables us to create graphs of arbitrary size with almost the
same properties as the corresponding real-world networks.
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1 INTRODUCTION
Online social networks, such as Facebook and Twitter have become
leading platforms for people to stay in touch with others, com-
municate and exchange news and information. Since their emer-
gence, researchers have studied the structure of the network graphs,
utilised various topological features to describe and analyze them,
and simulated the spread of messages therein. Some platforms offer
the possibility to obtain the social network graph or parts of it, but
the process of crawling these graphs is often very time-consuming,
especially if they consist of millions of nodes and edges. Addition-
ally, the information in these graphs needs to be handled carefully
due to the sensitive nature of the user data and data protection
regulations. Thus, there is a need to model and synthetically gener-
ate realistic social network graphs. The Web Conference, which is
the premier international event focusing on the study of the World
Wide Web, devotes one of its major tracks to the “investigation of
graph-based techniques for social networks” and the development
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of “new theories, models, and algorithms to make these systems
more effective and efficient”1.

Random graph generation dates back way before the invention
of online social networks. Most approaches either create undirected
graphs or directed graphs without specifically modeling recipro-
cal edges (two directed edges of opposite direction between two
nodes). In a recent seminal paper [14], the authors analyzed the
spread of information in online social networks and concluded that
“the aggregation of users in homophilic clusters dominate online in-
teractions on Facebook and Twitter”. Motivated by the connection
between interaction networks and the spread of information in so-
cial networks, we analyze real-world graphs on which information
w.r.t. certain topics are exchanged and disseminated. We develop a
synthetic graph generation method for such interaction networks
that not only creates a graph with reciprocal and directed edges,
but also takes the correlation between reciprocal and directed node
degrees into account via Copulas. Nodes are then connected by
edges according to their sampled degrees and edges are rewired to
increase the average clustering coefficient to a realistic level.

We applied our method to 14 crawled subgraphs of the Twitter
follower graph of different sizes and structures, and created graphs
with the same number of nodes. Results show that our approach
creates graphs thatmatch several topological features of the crawled
network graphs, and that behave similarly when applying certain
processes, e.g., information dissemination. Our method can also
create graphs of arbitrary size with various degree distributions.

The paper is structured as follows. In Section 2 we give a short
summary about different graph generation methods and in Section
3 we present the crawled subgraphs. In Section 4 we describe our
graph creation method, and we present our results in Section 5. The
discussion in Section 6 concludes the paper.

2 RELATEDWORK
One of the first random graph generation models is the Erdős-
Rényi model [20], where for given numbers of nodes and edges,
one of the possible graphs is chosen uniformly at random. An
alternative version is presented in [25], where nodes are connected
independently according to a predefined probability. Erdős-Rényi
graphs have small clustering coefficients, but form the basis for
random graph generation. A model with high clustering coefficient
was designed by Watts and Strogatz [44]. In this model, the graph
starts as a regular ring lattice (i.e., every node is connected to its
closest k neighbors on a ring, for some constant k) and edges are
iteratively rewired. A different class of graph generation models is
based on growth and the Preferential Attachment (PA) mechanism.
The initial graph in the Barabási-Albertmodel [4] containsm0 nodes.
In each step a new node is added to the graph (growth), which
connects tom ≤ m0 nodes chosen with probability proportional to
their current degree (PA). This method has later been extended to
directed graphs, see e.g., [7].

Other random graph generation methods are based on establish-
ing connections between nodes according to node degree sequences.
One of these methods is the Configuration model [5, 8] whose func-
tionality is described in [10] and [12]. The concept for undirected
graphs is to sample node degrees from a distribution, create stubs

1See https://www2022.thewebconf.org/cfp/research/sna/

for each node and randomly connect two of them until no stubs
are left. The sampled node degrees are met exactly in the gener-
ated graphs, but they often contain self-loops (a node connected to
itself) and parallel edges (two or more edges between two nodes).
To create a simple graph (no self-loops and only one edge between
nodes) with this method, alternatives are presented in [10] and
[12]. The authors of [12] additionally introduce a directed version
of the Configuration model, where the sum of the in-degrees and
the sum of the out-degrees must be equal such that all stubs can
connect. Similar to the idea of the Configuration model, but with
a probabilistic approach, is the Chung-Lu model [13]. Each node
pair is connected with a probability proportional to the product
of their respective degrees. The sampled degree sequences are not
met exactly, but the created graphs do not contain parallel edges. A
directed version of the Chung-Lu model is presented in [19]. We
should also mention the block two-level Erdős-Rényi model [30, 40],
which includes a community structure into the graphs. First, it cre-
ates communities using Erdős-Rényi graphs (called affinity blocks),
and then edges are generated between communities using a varia-
tion of the Chung-Lu model. A structured summary of additional
graph generation approaches can be found in [9], where the authors
provide an extensive survey on state of the art graph generators,
discuss their strengths, weaknesses and open challenges.

Various approaches for directed graphs exist, but most of them
do not explicitly model reciprocal edges in directed graphs, even
though real-world graphs often exhibit a high amount of reciprocity
[19, 31]. The authors of [19], for example, extend the Chung-Lu
model and provide a powerful baseline model to match the recip-
rocal, in- and out-degree distributions of a graph; however, their
model does not take the correlation between the node degrees into
account. Also, it is known that many social network graphs exhibit
a high average clustering coefficient (CC) [1, 33, 34], which has
to be taken into account when generating random graphs with
corresponding topological properties. [37] propose a modified Con-
figuration model to create undirected graphs with high clustering
by not only specifying the number of edges per node, but also the
number of triangles per node. Extending this approach to directed
graphs does not seem straightforward since for every triangle, the
type of edge between two nodes would also need to be determined.

Alternatively, the technique of edge rewiring (also called edge
switching) was developed to increase the CC in a graph. The authors
of [2] introduce various rewiring algorithms where one edge is
switched per iteration (e.g., edge (i − j) is replaced by (j −k)), which
alters the node degrees. In another approach, two non-adjacent
edges are rewired at a time and the new graph is accepted if the CC
has increased. In [3] and [27], the idea is to randomly select a node
x in the graph, two unconnected neighbors of x , y1 and y2, and two
unconnected second degree neighbors of x , z1 and z2, with edges
(y1 − z1), (y2 − z2). Changing these edges to (y1 −y2) and (z1 − z2)
increases the CC of node x and preserves the degree sequences.
The authors of [42] propose switching more than two edges at a
time by applying a random permutation on the destination nodes,
thus preserving the degree sequences. The new graph is accepted
if it fulfills predefined graph constraints (e.g., graph is simple).

Our graph creation method resembles the idea of [19] by treating
reciprocal and directed edges separately, but additionally considers
the rank correlation between the node degrees when sampling
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them. Nodes are then connected according to the principle of the
Chung-Lu model [13], but avoiding self-loops or parallel edges. To
increase the clustering coefficient of the created graph, the rewiring
procedure in [3] is extended to directed graphs. Instead of randomly
selecting one node in each iteration and aiming for a predefined
CC, we apply several rewiring iterations on every node, depending
on its degree, up to a certain node degree. Considering only a
subset of options for rewiring induces a bias into our proposed
graph generation method. [32, 43] present and discuss methods
for uniform random graph generation (also by utilising higher-
order edge switches), which usually have a very high guaranteed
running time [22, 26]. We therefore accept this induced bias and
favor increasing the CC of smaller degree nodes, which also tend
to have a higher CC in social networks, cf. [33, 34].

3 DATASET DESCRIPTION
Ourwork is based on Twitter follower networks, which is motivated
by the results of [14] regarding the interaction networks, on which
information about specific topics is exchanged or disseminated. We
acquired six different Tweet datasets from the Twitter Historical
Power Track. Tweets were collected in a time frames of 41 days
between August 2019 and March 2020, which we believe results
in sufficiently complete graphs of users for the respective topics.
The topics include vegan diet, social distance, two soccer clubs
in Germany and two political parties in Austria. Eight datasets
were acquired through Premium Search API of Twitter, between
August 2021 and October 2021, and the time frames are 4, 10 or 14
days depending on the topic, allowing us to investigate networks
over shorter time periods. These topics cover mainly digitization
trends and computer science fields. For each of the 14 topics, we
extracted the users who actively posted, retweeted or quoted, and
then crawled their followers using the Twitter API. The lists of
followers were truncated to only keep the follower relationships
between the users of a topic. Finally, user IDs were anonymized.

The follower network graphs G = (V ,E) are directed, where
each node v ∈ V corresponds to a user and each edge e ∈ E
represents a follower relationship between two users. In Twitter
a user v1 can follow another user v2 which connects them by a
directed edge (v1 → v2) and if two users follow each other, they
are connected by two directed edges of opposite direction, which
we will treat as one reciprocal edge (v1 −v2). For each node in the
14 graphs (G1 through G14), we determined the reciprocal degree
(number of neighbors that are connected via a reciprocal edge), the
in-degree (total incoming edges minus reciprocal degree), the out-
degree (total outgoing edges minus reciprocal degree) and the total
degree (number of neighbors), which is the sum of the three node
degrees above. We computed Spearman’s rank correlation coefficient
ρ between the degrees and also several topological graph features,
studied and defined in [1, 33, 34] to characterize the crawled graphs:
The sizes of the largest strongly connected component (LSCC) and
the largest weakly connected component (LWCC), the density, the
average shortest path length (ASPL), the diameter and the average
clustering coefficient (CC), all related to the LWCC. The statistics of
5 of the crawled graphs are listed in the first line of the respective
cells in Table 1, and in Table 4 in AnnexA for the remaining 9 graphs.
Features related to the LWCC have an asterisk (e.g., Density* for

the density in the LWCC). As typical for social networks [1, 33, 34],
the crawled graphs are characterised by small shortest path lengths,
huge connected components, small diameter and high average CC.

4 GRAPH CREATION METHOD
In this section we introduce the method to synthetically create
realistic social network graphs with reciprocal and directed edges2.
Our goal is to create graphs with the same number of nodes as
the crawled ones, a comparable density and a similar average
CC in the LWCC. We present the information extracted from the
crawled graphs to generate node degrees and establish edges be-
tween the nodes without creating self-loops or parallel edges. An
edge rewiring procedure concludes the approach.

4.1 Node Degree Sampling

Figure 1: Comparison of the fitted power-law and the fitted
χ2-distribution for the reciprocal degree in G1

For the synthetic graph creation, we sample the reciprocal de-
gree, the in-degree and the out-degree for each of the n = |V | nodes
from fitted distributions. Most literature suggests that the degrees
of a social network graph follow a power-law or a log-normal dis-
tribution [1, 33, 34]. We performed Kolmogorov-Smirnov tests to fit
probability distributions to the three node degrees, but the returned
p-values were close to 0 for each distribution. By testing several dis-
tributions, we found that the degree sequences of the crawled and
subsequently truncated Twitter subgraphs considered in this pa-
per are best modeled by χ2-distributions, if hyperparameters were
selected such that mean and standard deviation agrees with those
of the crawled graphs. The log-scale histogram in Figure 1 shows
that there are only a few nodes with a high reciprocal degree, e.g.,
> 500, in the crawled graph G1 (orange bins). A similar behavior
regarding the node degree distribution was observed for the in- and
out-degree inG1, and also for the degrees in the other graphs. Even
though the fitted χ2-distribution (blue bins) tends to generate a
smaller amount of high-degree nodes, it fits the degree distribution
of the crawled graph well w.r.t. the quartiles, the mean degree and
the standard deviation, whereas the power-law distribution (pink
bins) overproduces nodes with a high degree.
2For the code see https://gitlab.com/eu_hidalgo/use_cases/-/tree/master/social_
network/network_generation
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Sampling the reciprocal, in- and out-degree for the nodes of
directed graphs independently results in nodes having unrealistic
joint degrees such as high in- and out-degrees but a reciprocal
degree of 0, which we did not observe in the crawled graphs. In-
deed, there is a high rank correlation (Spearman’s rank correlation
coefficient ρ) between the reciprocal, in- and out-degree in the
crawled graphs (see the first lines of the respective cells in Table
1 and Table 4 in Annex A). To prescribe the rank correlation be-
tween sampled node degrees, we make use of the NORTA principle
(normal to anything) [11], where multivariate normally distributed
data is sampled and transformed into the desired joint distribu-
tion in two steps. First, we fit χ2-distributions to the reciprocal,
in- and out-degree and compute the rank correlation coefficients
ρ1 = ρ(reciprocal, in), ρ2 = ρ(reciprocal, out), ρ3 = ρ(in, out) be-
tween the three degrees. Next, we map ρ1, ρ2, ρ3 into the linear
correlation coefficients R1,R2,R3 with Rk = 2 · sin(ρk · π/6) [38],
k = 1, 2, 3, to sample n times from a multivariate Gaussian distribu-
tion with mean vector µ = (0, 0, 0) and covariance matrix

Σ =
©«
1 R1 R2
R1 1 R3
R2 R3 1

ª®¬ .
Applying the cumulative distribution function (CDF) transforms
the sampled multivariate data into the ]0, 1[3-space, where each
dimension of the data approximately follows the uniform distribu-
tion U]0,1[. The joint distribution U3

]0,1[ is known as a Copula [35].
To receive the synthetic node degrees from the Copula, we use the
inversion method [17]. We apply the inverse of the CDF of the fitted
χ2-distributions to the respective dimensions of the Copula data
and round the results to integers. This returns the synthetically
generated reciprocal, in- and out-degree sequences R, I,O of length
n, which have approximately the same rank correlation as the node
degree sequences of the crawled graphs. We interpret the degree
sequences as indexed multisets, i.e., the degrees of each node are at
the same position in R, I,O, such that we can use set notation.

4.2 Connecting nodes via edges
We now sample edges by computing the connection probability of
two nodes based on their generated degrees while avoiding self-
loops and parallel edges. First we sample reciprocal edges and based
on these edges, we sample directed edges. Our approach resembles
the Chung-Lu model [13, 19], but results in a simple graph.

The method requires as input an empty graph G = (V ,E) that
contains n = |V | numbered nodesV = {1, . . . ,n} and the generated
reciprocal, in- and out-degree sequences R, I,O. We determine the
expected reciprocal degree sum r =

∑n
i=1 R(i) and the expected

number of directed edgesd = 1
2 ·
∑n
i=1(O(i)+I(i)). Edge sampling is a

Bernoulli experiment, only using the nodes with respective degrees
unequal to zero. I.e., for a node pair (i, j) we place a reciprocal edge
(i− j) (implemented as two directed edges (i → j) and (j → i)) with
probability proportional to R(i) · R(j), and a directed edge (i → j)
with probability proportional to O(i) · I(j).

To avoid self-loops, before sampling reciprocal edges, we com-
pute the probability sum of the reciprocal self-loops and uniformly
add it to the connection probabilities of the possible reciprocal
edges (where R(i) , 0 and R(j) , 0). Before sampling directed

Algorithm 1 Edge rewiring
Require: Directed graph G = (V , E) with V = {1, . . . , n }
1: t = 95−percentile deg(V )

2: V ′ = V \ ({deg(V ) < 2} ∪ {deg(V ) > t })
3: m = median(deg(V ′))

4: for all x ∈ V ′

5: if deg(x ) ≤ m
6: α = deg(x ) · (deg(x ) − 1)/2
7: else
8: α = ⌈deg(x ) · (deg(x ) − 1)/2 · 0.6⌉
9: for α -times
10: Randomly select y1 ∈ ne(x ) and y2 ∈ ne(x ) \ y1
11: if (y1 → y2) < E and (y2 → y1) < E
12: for 10-times
13: Randomly select z1 ∈ ne(y1) \ ne(y2)
14: Randomly select z2 ∈ ne(y2) \ ne(y1)
15: if (z1 → z2) < E and (z2 → z1) < E
16: Rewire (y1, y2, z1, z2) (see Algorithm 2)
17: break

edges, we first inspect if a directed edge (i → j) has already been
sampled as a reciprocal edge. If this is the case, we add its probabil-
ity to a reservoir of already sampled potential directed edges (the
same is done for the edge (j → i)) which will be uniformly added
to the possible directed edges (O(i) , 0 and I(j) , 0). For directed
self-loops, we apply the same technique as for reciprocal self-loops.

4.3 Edge Rewiring
The degree distributions of the nodes in the created graphsmatch

the desired degree distributions well, but the average CC in the
LWCC of the created graphs is lower than in the crawled graphs,
see Table 3 and Table 5 in Appendix A for comparison. To increase
the CC, we utilise the technique of edge rewiring. We are following
the approaches presented in [3] and [27], but instead of randomly
selecting one node per iteration, we consider all nodes up to a cer-
tain total degree (95-percentile of all node degrees) for the rewiring
procedure. For each node x ∈ V , we try to connect a fraction of its
first degree neighbors, depending on the degree of x . We do not
compute the CC after every rewiring iteration since this is time-
consuming, and we do not aim for a target CC. The pseudocode for
the edge rewiring procedure is depicted in Algorithm 1.

Since nodes with a high degree exhibit a smaller average CC
[33, 34], we do not apply the rewiring procedure on the nodes with
the highest degrees. Experiments have shown that it suffices to
only consider those 95 percent of all nodes with the lowest total
degree. For ease of notation, we use deg(V ) to denote the indexed
multiset of node degrees in V . From this set of nodes, we remove
all nodes in the upper 95-percentile of node degrees and all nodes
with a degree smaller than 2 since the rewiring procedure cannot
be applied for them. The resulting set of nodes is denoted as V ′.

We look at each node x ∈ V ′ in ascending order of its node ID,
i.e., potentially starting with node 1, and iterate multiple times over
each node, depending on its degree deg(x), to apply the rewiring
procedure. Since nodes with a high degree tend to have a smaller
average CC, we sample 60% of first degree neighbor pairs for nodes
with a degree above the median degree m in V ′ and all first de-
gree neighbor pairs otherwise. One rewiring iteration (line 9 in
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Table 1: Topological features of 5 crawled graphs (line 1) and
the corresponding created graphs (line 2)

G1 G2 G3 G4 G5

Nodes 11,015 21,291 50,133 459 3,580

Edges 377,457 2,570,452 4,832,226 5,435 54,735
381,627 2,527,541 5,049,608 5,499 57,249

Density 0.0031 0.0057 0.0019 0.0259 0.0043
0.0031 0.0056 0.0020 0.0262 0.0045

LSCC 9,347 19,237 43,461 361 2,314
8,182 19,296 41,805 390 1,999

LWCC 10,931 21,281 49,999 452 3,570
10,166 21,148 48,607 446 3,354

Density* 0.0032 0.0057 0.0019 0.0266 0.0043
0.0037 0.0057 0.0021 0.0277 0.0051

ASPL* 2.97 2.69 2.75 2.40 2.34
2.59 2.70 2.79 2.48 1.99

Diameter* 11 9 10 8 11
7 6 7 5 6

Average CC* 0.201 0.285 0.198 0.354 0.277
0.228 0.291 0.222 0.300 0.187

Runtime 1h 31h 110h 1min 3min

ρ1 0.540 0.630 0.616 0.465 0.407
0.470 0.604 0.579 0.259 0.319

ρ2 0.612 0.697 0.753 0.606 0.547
0.528 0.660 0.696 0.419 0.411

ρ3 0.284 0.395 0.397 0.240 0.250
0.234 0.369 0.371 0.140 0.149

Algorithm 1) for a node x ∈ V ′ starts with the random selection
of two distinct first degree neighbors y1 ∈ ne(x) and y2 ∈ ne(x). If
they are connected, they are not further considered in the rewiring
process and a new first degree neighbor pair is selected. If they are
not connected, we look at their neighbors, denoted as ne(y1) and
ne(y2) and remove the nodes that are connected to both, y1 and y2.
We additionally remove all nodes that have a smaller node ID than
x to not disrupt the already investigated nodes too much. Next, we
randomly sample two nodes z1 ∈ ne(y1) and z2 ∈ ne(y2). Rewiring
can only happen if i) z1 and z2 are not connected and ii) to preserve
the node degrees, if y1,y2 are connected to z1, z2 via reciprocal
edges or if they are connected via directed edges with opposite
directions (see Algorithm 2 in Appendix B). As these conditions
may not always be fulfilled, we sample the second degree neighbors
a maximum of 10 times (line 12 in Algorithm 1).

5 RESULTS
5.1 Topological Features
To evaluate the graph creation method, we aimed to replicate the 14
crawled graphs described in Section 3. For the topological features,
the main goal was to create graphs with the same number of nodes,
a similar density and a comparable average CC in the LWCC. The
topological features of 5 crawled graphs and the corresponding

synthetically created graphs are listed in Table 1 (the remaining
ones are listed in Table 4 in Annex A).

The results show that our approach creates graphs with a similar
size as the crawled graphs. The number of edges in the graphs are
in a similar range and the density only starts to differ in the fourth
decimal place. Due to the assignment of degrees to nodes according
to rank correlations and the probabilistic sampling of edges, some
nodes have a total degree of 0. Thus, the sizes of the largest con-
nected components in the created graphs have the tendency to be
smaller than in the crawled ones.

We observe that the average shortest path length (ASPL) and
the diameter also tend to be slightly smaller in the created graphs.
Since nodes connect to each other with a probability proportional
to their degrees, low-degree nodes are more likely to connect to
nodes with a high degree than to nodes with low degree, leading
to short path lengths between nodes and a small diameter in the
created graphs. In the crawled graphs however, we observed nodes
with a degree of one, known as leaves, that are connected to another
node with a small degree. These leaves have a high shortest path
length to each other causing a higher diameter.

In the crawled graphs, the average CC lies between 0.20 and 0.35,
while in created graphs the span reaches from 0.15 to 0.38. Since
we are not aiming for a fixed CC, these fluctuations are expected.
Both for crawled and created graphs, a higher density in the LWCC
(Density*) tends to correlate with a higher average CC. Even though
the difference between the crawled and the created graph in G7
is above 0.1 (see Table 4 in Annex A), the result is still acceptable,
since the created graph exhibits a reasonable average CC* (0.150).

The last three cells of Table 1 (and Table 4) contain the rank
correlations between reciprocal, in- and out-degree, where we see
that the correlation in the created graphs (line 2 in the cells) is
lower than in the crawled ones (line 1 in the cells). This difference
is caused by rounding the sampled data to integers (Section 4.1) and
by probabilistic edge sampling (Section 4.2), where the node degrees
are not replicated exactly. The second offset could be avoided by
applying an adjusted version of the Configuration model.

We also analyzed the community structure of the crawled and
the created graphs. When used for comparing random graph mod-
els to real-world networks, usually disjoint communities have been
considered (see e.g., [30]). Here we focus on overlapping communi-
ties, which often can be observed in social networks (i.e., each user
is usually part of several communities). To obtain these overlapping
communities, we cluster the neighbourhood of each node v , using
the parallelized Louvain algorithm [6] from the NetworkKit tool
suite [41], and assign v to each of these clusters, which leads to a
huge number of overlapping clusters. We therefore delete clusters
that are contained in others. Two overlapping clusters are merged3
if the second smallest eigenvalue of the normalized Laplacian of
the merged cluster is larger than those of the two input clusters by
some predefined margin. The clusters to be tested for merging are
picked at random, though some heuristics are used to avoid expen-
sive eigenvalue calculations for most of the candidates. Obviously,
the resulting clustering ends in a local optimum w.r.t. the second
smallest eigenvalues of the final clusters. The merging procedure

3For the code see https://github.com/ariez-xyz/parallel-merging
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Figure 2: Community size distribution in G1

stops when the time needed to find suitable candidates is estimated
to be very high.

In the following, we compare the distribution of the sizes of the
overlapping clusters in the crawled graphs, the created graphs, as
well as the so-called intermediary graphs, which are constructed
as described in Section 4, but without edge rewiring. We observe
that there is no significant difference between the distribution of
the cluster sizes in the crawled and the created graphs (see Figures
2 and 4-7; note that for the sake of visualization we use a smoothed
distribution curve by averaging each data point with the left and
right neighbor for the crawled graphs). This also indicates that the
random graphs developed in Section 4 properly model the studied
real-world networks.We also compare the distribution of the cluster
sizes between the crawled and created graphs on the one side and
the intermediary graphs on the other side in Section 5.3.

5.2 Algorithmic Properties
One of the major questions in social networks is how certain pro-
cesses such as information dissemination or epidemics behave in
the corresponding graphs. In this section, we compare the behavior
of such processes in crawled and created graphs. For information
dissemination, we consider the so-called push-pull model intro-
duced in [16] and popularized later in [29]. It is known that this
model is closely related to certain (structural and algorithmic) graph
properties such as the conductance or the cover time of random
walks, see e.g., [24]. Note that the computation of these properties
is NP-complete in general (cf. [23]).

The push-pull model is a simple randomized process for infor-
mation dissemination. The time is divided into rounds; in each
round every node selects a neighbor uniformly at random and
opens a communication channel to this neighbor. Since the same
node can be selected by several neighbors, each node may have
several incident communication channels. Then, communication
is bidirectional, i.e., if one of the nodes incident to a communica-
tion channel possesses some information, the other node will also
have this information by the end of the round. At the beginning
of the process we place a message on some selected nodes and
the question is how many rounds do we need until the message

has reached all nodes. Clearly, the number of required rounds is a
random variable, with a distribution well concentrated around its
mean for many important graph classes [21].

In our experiments, we simulated the push-pull model on the
LWCC of the crawled and created graphs. At the beginning, we
assigned a message to 2 logn nodes, where n is the number of nodes
in the graph, and ran the process until all nodes were informed.
Each simulation run has been repeated 100 times for all graphs
except G2 and G3, for which we repeated each simulation 10 times
(as these two graphs are much larger than the others). Although
there may be a huge difference between different graph classes
w.r.t. the completion time of the push-pull model in general [24],
ranging between Ω(logn) and O(n2 logn) rounds, we observe that
this process behaves similarly on the graphs we consider.

According to Table 2, the number of rounds needed to inform all
nodes is lower in the created graphs than in the crawled ones. How-
ever, we also observe that the created graphs have a higher density,
and they also exhibit a smaller diameter. The crawled graphs also
contain a certain number of paths with length 2 at the periphery4,
which influence the running time in these graphs, while the number
of such paths is much smaller in the created graphs.

The second process we consider in this section is the so-called
Susceptible-Infected-Recovered (SIR) model [28]. In its simplest vari-
ant, we assume that at the beginning a (small) number of nodes
is infected. In each round, any infected node spreads the infection
to each of its outgoing neighbors with some probability p, inde-
pendently. Then, the nodes that spread the infection in this round
become recovered and cannot become infected again. There are
several results focusing on the time until the disease dies out as
well as on the fraction of nodes becoming infected for different
graphs depending on the probability p [28, 36]. Since our main
focus in this paper is the comparison of the created graphs to the
crawled graphs, we do not aim to simulate different variants of the
SIR model. We consider the simplest variant instead and compare
the influence of the probability p on the number of recovered nodes
by the end of the epidemic process. Also in this case, we repeated
the simulations on all graphs 100 times (10 times for G2 and G3).

For better comparison, Table 2 shows the fraction of recovered
nodes (instead of the total number of recovered nodes, as the total
numbers of nodes differ). We observe that the difference in most of
the cases is almost negligible (i.e., less than 0.03), and the highest
difference we observe is less than 0.12. Overall this simple epidemic
process seems to have a similar behavior in the crawled graphs and
the corresponding created graphs.

Motivated by the fact that the behavior of several algorithms
is governed by the eigenvalues of the (normalized) Laplacian of
the underlying graphs [18, 39], we also analyze the distribution of
eigenvalues for the crawled and created graphs. Similar analysis,
using the first 50 eigenvalues of the corresponding adjacency ma-
trices, has been performed in e.g., [30]. We observe that there is
a difference between the graphs w.r.t. the number of eigenvalues
close to 1, while the distribution of the eigenvalues in the ranges
(0, 0.95) and (1.05, 2) are very similar (see Figure 3). The same holds
for the other graphs we consider in this paper.

4These paths consist of a node of degree 1 connected to a node of degree 2 whose
other neighbor is some node of the graph.
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Table 2: Algorithmic properties of 5 crawled graphs (line 1)
and the corresponding created graphs (line 2)

G1 G2 G3 G4 G5

Push-Pull Model

Rounds 13.92 10.64 17.24 9.79 12.40
10.78 8.95 11.22 6.30 7.62

SIR Model

p = 0.1 0.6573 0.8812 0.8423 0.5257 0.5317
0.6500 0.8881 0.8098 0.6078 0.5872

p = 0.05 0.5203 0.7994 0.7548 0.3360 0.3755
0.5302 0.8098 0.7248 0.3769 0.4327

p = 0.01 0.1470 0.5015 0.4427 0.0435 0.0370
0.1930 0.5275 0.4560 0.0458 0.0318

Table 3: Average CC of 5 created graphs before (*) and after
(**) applying the rewiring procedure

G1 G2 G3 G4 G5

Nodes 11,015 21,291 50,133 459 3,580
Average CC* 0.050 0.058 0.030 0.163 0.094
Average CC** 0.228 0.291 0.222 0.300 0.187

5.3 Ablation Analysis
The graph creation method consists of three separate steps, node
degree sampling, connecting nodes via edges and rewiring of edges.
To demonstrate the importance of correlated degree sampling and
edge rewiring, we analyzed the topological and algorithmic features
of the created intermediary graphs before applying the rewiring
procedure and additionally created a graph with randomly assigned
node degrees of the size of G1.

5.3.1 Random assignment of node degrees. The node degrees in
our proposed method were sampled using a Copula to match the
rank correlations between the degrees in the crawled graphs. To
show the importance of joint degree sampling, we created a graph
with the same number of nodes as G1, sampled the degrees from
the fitted χ2-distributions, and randomly assigned them to the
nodes, similar to the FRD null model in [19]. As expected, the rank
correlations between the degrees in the created graph are around
zero, ρ1 = 0.018, ρ2 = 0.001, ρ3 = 0.002. The largest connected
components are bigger (LSCC: 8, 944; LWCC: 10, 669), as less nodes
have a sampled total degree of zero.

5.3.2 Results without edge rewiring. After connecting nodes via
edges, the intermediary graphs have node degrees similar to the
node degrees in the crawled graphs. We investigated these graphs
to assess the influence of the rewiring procedure. While other topo-
logical features considered above remain stable, the average CC in
the LWCC is significantly lower in all intermediary graphs. Table 3
and Table 5 in Annex A contain the average CC of the graphs before
(*) and after (**) rewiring. Another evidence for the importance of
edge rewiring can be observed w.r.t. the distribution of community
sizes. While the distributions in the crawled and created graphs are

similar, the distribution of the community sizes in the intermediary
graphs differs significantly from those in the crawled or created
ones, cf. Figure 2. In contrast, the algorithmic properties analyzed in
Section 5.2 are similar in the intermediary and the created graphs.

The rewiring procedure takes up most of the graph creation time.
Creating graphs without edge rewiring is therefore much faster,
especially for bigger graphs, but the results are notably worse.

5.4 Runtime Analysis
The experiments were conducted on 1 core of an Intel(R) Xeon(R)
6248 CPU @ 2.50GHz processor with 256GB RAM, and runtimes
are listed in Table 1 and in Table 4 in Annex A. It can be seen
that the runtime for the graph creation method differs significantly
between the graphs. While smaller graphs (e.g., G1) are created
within 1 hour, it takes more than a day to create a graph of the
size of G2. We observe that the runtime can also vary significantly
between graphs with a similar number of nodes (e.g., G2 and G7).
This indicates that the runtime depends heavily on the number of
edges |E |, and in turn on the degree deg(x) of each node x ∈ V ′.

Since connecting nodes via edges has a fixed time complexity
of O

(
|V |2

)
in our algorithm, we conclude that the edge rewiring

procedure (Algorithm 1) dominates the graph creation time. Recall
that we are iterating over every node x in the lower 95-percentile
w.r.t. their degrees, and check for each pair of its first degree neigh-
bors if there is an edge between these nodes in the graph. If two
selected first degree neighbors are connected, they are not further
considered in the rewiring process. Otherwise, we look at the nodes
which are connected by (incoming and outgoing) incident edges to
either of these neighbors, denoted by y1 and y2. Among the neigh-
bors of these two nodes, we do not take into account the nodes with
a smaller ID than x as well as those which are connected to both,
y1 and y2. From the rest, we select a constant number (10 in our
implementation) of pairs uniformly at random, and check whether
the rewiring procedure described in Algorithm 1 can be applied.

In order to achieve a space complexity of O (|V | + |E |) and run-
time O(

∑
x ∈V ′ deg(x)2 · max(deg(V ′)) · logmax(deg(V ′))), where

max(deg(V ′)) denotes the maximum degree in V ′, we need to ex-
tend our data structure. We assume that the graph is given as an
adjacency list [15]. Clearly, the list of each node only contains the
nodes connected through an outgoing edge in some arbitrary or-
der. In a pre-processing phase, we examine each list entry in the
adjacency list exactly once, and construct an additional adjacency
list such that the list of a node contains the nodes connected by
an incoming edge. Furthermore, for a node u in the outgoing adja-
cency list of a nodev we set a pointer to the nodev in the incoming
adjacency list of u. Before we start the rewiring procedure, we sort
each adjacency list according to the IDs of the nodes in this list.
Furthermore, we duplicate each (sorted) adjacency list, and update
the duplicates in the rewiring process as follows. Whenever for a
chosen node x we finish the rewiring process w.r.t. two neighbors
y1 and y2 of x , then x is removed from the duplicated adjacency
lists of y1 and y2. Remember that in the rewiring process x is not
considered in any further step whenever y1 or y2 are selected as a
first degree neighbor of some node (different from x ).

Apart from duplicating the adjacency lists, in a step when two
nodes y1 and y2 are chosen as first degree neighbors of a node x
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(see line 10 in Algorithm 1), we first construct two sorted (dynamic)
arrays [15] containing the neighbors of y1 and y2, respectively.
Assume now without loss of generality that deg(y1) ≤ deg(y2). We
crawl the array of y1 and examine for each neighbor in this array
whether it is also connected to y2 (as the adjacency lists of y1 and
y2 are sorted, this can be performed for each neighbor of y1 in time
O (log deg(y2)) using binary search). If this is the case, then the
corresponding neighbor of y1 and y2 is marked in the two arrays.
After all neighbors of y1 have been examined, the marked nodes
are removed from the arrays of y1 and y2. Then, the selection of
10 random pairs of neighbors of y1 and y2 can be performed in
constant time (see line 12 of Algorithm 1).

Clearly, each node y1 is selected as a first degree neighbor of
some other node

∑
x ∈ne(y1) deg(x) ≤ deg(y1) ·max(deg(V ′)) times.

Removing the common neighbors of two selected first degree neigh-
bors takes time O (deg(y1) · logmax(deg(V ′))). Selecting the sec-
ond degree neighbors for possible rewiring takes constant time.
Sorting the adjacency lists, duplicating them, and creating the arrays
takes time O (deg(y1) · logmax(deg(V ′))) each time a node y1 is se-
lected as first degree neighbor. Thus, the total time is
O

(∑
x ∈V ′ deg(x)2 ·max(deg(V ′)) · logmax(deg(V ′))

)
. Assuming

that the average degree in the graph is constant (as for the χ2 degree
distributions we observed in the graphs considered in this paper),
we obtain O

(
n ·max(deg(V ′))2 · logmax(deg(V ′))

)
as

runtime.

6 DISCUSSION AND CONCLUSION
In this paper we presented a new method to synthetically create
simple directed social network graphs with given rank correlations
between the reciprocal, in- and out-degrees that can be used as
surrogates in social network analysis. We fit χ2-distributions to
the respective degrees of crawled Twitter subgraphs and generate
correlated degrees for each node which then connect to other nodes
proportional to their degrees. To increase the clustering coefficient
of the graphs to a real-world level, we apply an edge rewiring
procedure that preserves the node degree sequences.

We compared the created graphs to the crawled ones by ana-
lyzing several topological and algorithmic properties. The results
show that the graphs are similar regarding the number of edges, the
density and the largest connected components. Various topological
graph features in the LWCC, e.g., the clustering coefficient, are in
the same range. The diameter and the rank correlation between
the degrees in the created graphs are slightly lower in all cases.
The graphs also show a similar behavior w.r.t. the application of
information dissemination and epidemics spreading algorithms.

We saw that after the generation of node degrees and the sam-
pling of edges, some nodes have a degree of zero. When applying
spreading algorithms, e.g., push-pull or SIR model, these isolated
nodes will not be affected if information is only disseminated be-
tween neighbors. Since spreading algorithms are usually applied
on the largest connected component and not every node is part of
it, this circumstance does not seem to be a major concern. Even in
the crawled graphs not all nodes are part of the largest connected
component, implying that these nodes are not affected by spreading
algorithms. Applying a restricted sampling method, where each
node ends up with a node degree of at least one, would result in

less nodes having a degree of zero, but due to the probabilistic edge
sampling, there will still be isolated nodes.

From a theoretical perspective, a limitation of our algorithm is
that it does not guarantee unbiased graph generation. That is, there
is no guarantee that all random graphs satisfying the considered
constraints (degree sequences and their correlation, target range
for average CC, etc.) are sampled with the same probability. Such a
guarantee usually relies on a Markov chain with a high guaranteed
mixing time, cf. [22, 26], and is therefore not feasible when gener-
ating graphs with more than 2 · 104 nodes. Note that several other
well-known graph models for real-world networks (e.g., PA or the
directed model by [7]) also induce a certain bias.

Regarding the efficiency of our graph generation algorithm, the
rewiring procedure is the main bottleneck since it takes up most of
the runtime, especially for large graphs. We therefore implemented
several modifications of themethod of [3]. The hyperparameters (95-
percentile node degree and 60% of first degree neighbor pairs) were
determined based on experiments, trading between runtime and
outcome. Instead of limiting the rewiring procedure to the nodes
that have a degree in the lower 95-percentile of neighbors, it could
be applied to all nodes (runtime would increase), or fewer nodes,
e.g., 90-percentile (runtime would decrease, but the CC would likely
be smaller). We also only looked at 60% of first degree neighbor
pairs for each node that has a degree above the median degree.
Considering more first degree neighbor pairs would lead to a higher
CC for these nodes, but increase the runtime. Parallelizing the
rewiring procedure to decrease the runtime does not seem feasible.
Each iteration builds on the previous one and the graph constantly
evolves with edges being deleted and new edges being created. By
looking at multiple nodes at the same time, situations might occur
where the same edge is used twice for the rewiring step, leading to
errors and altered node degrees.

The results show that the presented approach can be used to
create realistic social network graphs that have the same number of
nodes and a similar density as crawled subgraphs from the Twitter
graph. Our method is highly scalable, i.e., it can generate graphs of
arbitrary size with similar properties as real-world networks. We
can choose arbitrary rank correlations for the node degrees or select
different parameters for the χ2-distributions. We can also sample
the node degrees from other distributions, e.g., a power-law distri-
bution, which has been used to describe the degree distributions
in other social network graphs. We are therefore convinced that
the proposed approach to create directed social network graphs is
a useful alternative to existing network generation methods.
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Figure 3: Eigenvalue histogram of the normalized Laplacian
of the LWCC for G1

Algorithm 2 Rewiring Step
Require: Directed graph G = (V , E)
1: y1, y2, z1, z2 ∈ V
2: z1 connected to y1, z2 connected to y2
3: if (y1 → z1) ∈ E , (z1 → y1) < E , (y2 → z2) < E , (z2 → y2) ∈ E
4: E = E \ {(y1 → z1) ∪ (z2 → y2)}
5: E = E ∪ (y1 → y2) ∪ (z2 → z1)
6: if (y1 → z1) < E , (z1 → y1) ∈ E , (y2 → z2) ∈ E , (z2 → y2) < E
7: E = E \ {(z1 → y1) ∪ (y2 → z2)}
8: E = E ∪ (y2 → y1) ∪ (z1 → z2)
9: if (y1 → z1) ∈ E , (z1 → y1) ∈ E , (y2 → z2) ∈ E , (z2 → y2) ∈ E
10: E = E \ {(y1 → z1) ∪ (z1 → y1) ∪ (y2 → z2) ∪ (z2 → y2)}
11: E = E ∪ (y1 → y2) ∪ (y2 → y1) ∪ (z1 → z2) ∪ (z2 → z1)

A ADDITIONAL RESULTS
Table 4 contains the topological features of the 9 additional graphs
we consider, and Table 5 contains the average CC before (*) and
after (**) applying of the rewiring procedure. Table 6 contains the
averages of the topological features for 4 created graphs over 5
runs, which serves as an indicator that our method consistently
creates graphs of desired size and properties. The number of edges
in the created graphs naturally diverges as we are sampling the
reciprocal, the in- and the out-degree from distributions which
in turn influences most of the other topological features, but the
differences are negligible.

Figure 3 gives the spectrum of eigenvalues on the LWCC for G1.
Similarly to Figure 2, Figures 4 through 7 reproduce the community
size distribution of G2 through G5.

B REWIRING STEP
Algorithm 2 depicts the extension of the actual rewiring step from
undirected graphs as presented in [3] to directed graphs and applied
in the rewiring procedure in Algorithm 1.

Figure 4: Community size distribution in G2

Figure 5: Community size distribution in G3

Figure 6: Community size distribution in G4

Figure 7: Community size distribution in G5
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Table 4: Topological features of the additional crawled (line 1) and the corresponding created graphs (line 2)

G6 G7 G8 G9 G10 G11 G12 G13 G14

Nodes 8,277 21,464 13,646 2,013 15,299 6,003 2,464 1,239 2,932

Edges 791,905 530,302 517,916 18,781 692,534 223,175 43,572 30,285 44,261
799,792 541,986 529,675 17,042 692,364 218,306 41,980 28,819 44,627

Density 0.0116 0.0012 0.0028 0.0046 0.0030 0.0062 0.0072 0.0197 0.0052
0.0117 0.0012 0.0028 0.0042 0.0030 0.0061 0.0069 0.0188 0.0052

LSCC 7,352 12,793 9,977 1,154 13,001 5,286 2,100 1,094 1,917
7,105 11,411 9,639 990 12,173 5,009 1,882 1,141 1,686

LWCC 8,272 21,418 13,631 1,912 15,288 5,964 2,443 1,224 2,797
8,203 19,946 13,022 1,609 14,574 5,805 2,290 1,222 2,493

Density* 0.0116 0.0011 0.0028 0.0051 0.0030 0.0063 0.0073 0.0202 0.0056
0.0119 0.0014 0.0031 0.0066 0.0033 0.0065 0.0080 0.0193 0.0072

ASPL* 2.52 2.49 2.69 2.65 2.65 2.70 3.04 2.68 2.41
2.33 2.00 2.38 2.11 2.64 2.68 2.55 2.59 2.18

Diameter* 7 10 10 11 9 9 10 7 11
5 7 7 7 7 7 7 5 7

Average CC* 0.339 0.266 0.244 0.260 0.319 0.234 0.321 0.303 0.310
0.380 0.150 0.215 0.176 0.240 0.240 0.251 0.312 0.210

Runtime 9h 2h 2h 1min 2.5h 1h 5min 2min 4min

ρ1 0.619 0.420 0.489 0.262 0.586 0.658 0.592 0.656 0.419
0.578 0.345 0.425 0.167 0.523 0.578 0.457 0.544 0.333

ρ2 0.707 0.605 0.664 0.253 0.584 0.564 0.577 0.611 0.315
0.676 0.474 0.564 0.192 0.503 0.476 0.486 0.496 0.245

ρ3 0.424 0.349 0.297 -0.001 0.400 0.242 0.258 0.267 0.148
0.370 0.266 0.238 -0.035 0.337 0.182 0.192 0.170 0.135

Table 5: Average CC of the additional created graphs before (*) and after (**) applying the rewiring procedure

G6 G7 G8 G9 G10 G11 G12 G13 G14

Nodes 8,277 21,464 13,646 2,013 15,299 6,003 2,464 1,239 2,932
Average CC* 0.122 0.040 0.053 0.073 0.049 0.060 0.083 0.113 0.093
Average CC** 0.380 0.150 0.215 0.176 0.240 0.240 0.251 0.312 0.210

Table 6: Average topological features and rank correlations of 4 created graphs over 5 runs

Nodes Edges Density LSCC LWCC Density* ASPL* Diameter* Average CC* ρ1 ρ2 ρ3

G1 11,015 390,377 0.00322 8,315.4 10,184.2 0.00374 2.604 7 0.2306 0.4708 0.5284 0.2354
G6 8,277 795,898.4 0.0116 7,118 8,189.8 0.01188 2.334 5.2 0.376 0.5734 0.6694 0.374

G7 21,464 522,546.4 0.0012 11,480.8 19,959.6 0.0014 2.01 7 0.154 0.3486 0.4712 0.2732
G8 13,646 526,870 0.00282 9,670.4 13,011.8 0.0031 2.406 7 0.2128 0.4314 0.5698 0.2526
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