
Engineering Applications of Artificial Intelligence 113 (2022) 104926

C
a
G
a

b

A

K
H
P
S
R
A

1

o
t
p
e
u
r
i
h
a
d
o
e
t
2
t
v

h
R
A
0

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

onstructing robust health indicators from complex engineered systems via
nticausal learning
eorgios Koutroulis a,∗, Belgin Mutlu a, Roman Kern b

Pro2Future GmbH, Inffeldgasse 25F, 8010 Graz, Austria
Know Center, Inffeldgasse 16, 8010 Graz, Austria

R T I C L E I N F O

eywords:
ealth indicator
rognostics and health management (PHM)
tructural causal models
obustness
nticausal prediction

A B S T R A C T

In prognostics and health management (PHM), the task of constructing comprehensive health indicators (HI)
from huge amounts of condition monitoring data plays a crucial role. HIs may influence both the accuracy
and reliability of remaining useful life (RUL) prediction, and ultimately the assessment of system’s degradation
status. Most of the existing methods assume apriori an oversimplified degradation law of the investigated
machinery, which in practice may not appropriately reflect the reality. Especially for safety–critical engineered
systems with a high level of complexity that operate under time-varying external conditions, degradation
labels are not available, and hence, supervised approaches are not applicable. To address the above-mentioned
challenges for extrapolating HI values, we propose a novel anticausal-based framework with reduced model
complexity, by predicting the cause from the causal models’ effects. Two heuristic methods are presented for
inferring the structural causal models. First, the causal driver is identified from complexity estimate of the
time series, and second, the set of the effect measuring parameters is inferred via Granger Causality. Once the
causal models are known, off-line anticausal learning only with few healthy cycles ensures strong generalization
capabilities that helps obtaining robust online predictions of HIs. We validate and compare our framework on
the NASA’s N-CMAPSS dataset with real-world operating conditions as recorded on board of a commercial jet,
which are utilized to further enhance the CMAPSS simulation model. The proposed framework with anticausal
learning outperforms existing deep learning architectures by reducing the average root-mean-square error
(RMSE) across all investigated units by nearly 65%.
. Introduction

All modern engineered systems inevitably go through a continu-
usly evolving health degradation process, which finally may lead to
heir replacement, usually via conventional preventive maintenance
olicies (Shafiee, 2015). It is extremely important to obtain a transpar-
nt knowledge of the machinery’s degradation levels so that unsched-
led maintenance activities with great operational cost and possible
eputational damage can be prevented (Rodrigues et al., 2012). Accord-
ng to Groenenboom (Groenenboom, 2018) in the domain of aviation,
andling such issues by deploying intelligent condition monitoring
pproaches may enable airlines to save about $3 bn. per year. For
eveloping such sophisticated solutions, it may be either impractical
r infeasible to measure the exact health status of the machinery (Lei
t al., 2018), let alone to unveil its hidden degradation trends. In
his regard, Prognostics and Health Management (PHM) (Goebel et al.,
017) aims for the prediction of the remaining useful life (RUL) of
he investigated machinery from comprehensive health indicator (HI)
alues that hopefully reflect the true health status. Such PHM schemes

∗ Corresponding author.
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may not only improve the system’s reliability and cost-efficiency, but
further prevent major accidents with potential loss of human lives.
Hence, the accurate estimation of HIs, in particular under time-varying
operating conditions with different degradation effects, plays a critical
role to the final assessment of the RUL prediction, and ultimately to the
effectiveness of the entire PHM framework.

Generally, two main categories of HIs are widely known based
on the direct association of the information carrier with the gradual
deterioration of the machinery (Hu et al., 2012; Lei et al., 2018). First,
Physical Health Indicators (PHIs) mostly utilize domain-driven features
that characterize the system’s degradation condition in a straightfor-
ward manner. In such PHI approaches (Javed et al., 2014; Medjaher
et al., 2013; Benkedjouh et al., 2013), signal processing methods (e.g,
wavelet transform) are usually employed with statistical-based ones
so that the physical characteristics of the system are captured. PHIs
are typically extracted from univariate raw vibration signals sampled
at high frequencies, and measured in single mechanical components,
such as bearings and gears (Ali et al., 2015; Hu et al., 2016). In
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more complex multi-component systems (e.g, jet engines) is much
more difficult for PHIs to accurately extract the overall health status.
Alternatively, Virtual Health Indicators (VHIs) are generally extracted
by applying fusion and dimensionality reduction techniques either
on multidimensional sensor readings or on individual physical fea-
tures (Yang et al., 2016; Baraldi et al., 2018; Wang et al., 2008; Lei
et al., 2018). In general, VHIs are one-dimensional unitless agents and
they should clearly depict the health status of the machine regardless
of any variations in the operating conditions. In this work, we focus on
the later category of HIs, which is considered more challenging, since
multifaceted degradation from complex systems must be extracted and
summarized into a single highly representative and robust HI.

VHIs can be constructed by supervised or unsupervised learning
methods, depending on the availability of the degradation (RUL) labels.
For instance, Guo et al. (2018) proposed a supervised method to con-
struct HIs via deep convolutional neural networks (CNN) by utilizing
the cumulative service life in percentage from rolling element bearings
as the target label. Although the authors used a non-linear mapping
to construct the HI, they assumed a linear degradation trajectory for
RUL labeling that adds a major restriction to the method, as different
operating conditions may vary within the service life of the asset, and
accordingly, they might accelerate or distort the degradation process.
Similarly, the authors in Chen et al. (2020) employed in a non-linear
way CNNs with long–short term memory neural networks (LSTMs) to
capture long term dependencies in the time series which they ultimately
used for bearing HI construction. Even though deep learning archi-
tectures are designed to overcome the tedious hand-crafting effort of
manual feature extraction (Qin et al., 2016), the former study require
sufficiently large amounts of run-to-failure vibration data to map the
automatically extracted features to the target value that represents the
health status of the investigated bearings. Both previous methods are
basically supervised and might work well for individual components.
However, in complex mechanical modules or systems, such as jet
engines, it is often extremely costly or even impossible to quantita-
tively capture the holistic degradation state with a high accuracy that
might be further used as the label at a specific service time. Finally,
the dependence of these methods on run-to-failure training data is
obviously an additional factor of limited applicability in real-operating
conditions of safety–critical systems. Such limitations pave the way
for unsupervised learning methods, in which only data from healthy
conditions are utilized to learn the prediction algorithms.

Data-driven approaches that employ machine learning models, and
especially deep neural network architectures, are currently proposed
for PHM applications under nonlinear and multidimensional settings
(Fink et al., 2020; Thoppil et al., 2021). Besides these fundamental
challenges, changing operating conditions in engineered systems may
rapidly deteriorate the model’s HI predictions due to sensitivity issues
to perturbations of the input independent variables, which is attributed
to the lack of robustness (Khan et al., 2021). Uncertainties that em-
anate either from measurement errors or from any stochasticity of the
degradation process further impact the robustness of the model (Lei
et al., 2018) in such a way that it is infeasible for HIs to be later
used for RUL prediction purposes. On the other hand, another source
of error might originate from model complexity itself. For example,
deep neural network architectures that are trained with vast amounts
of data, they consist of millions of parameters in order to learn the
mapping functions between the input variables and the output. Such
models usually suffer from increased complexity, and at the end they
might yield poor generalization performance on future unseen data.
Developing data-driven solutions with low model complexity that are
able to robustly account for data variations is the key for ensuring the
safety and reliability of engineered systems.

Most of the existing works rely on methods that learn horizontal
dependencies in the data without the underlying causal structure under
consideration. Such approaches usually lack generalization abilities
and robustness, since they may collapse in non-i.i.d. (independent and
2

identically distributed) regime, in which the probability distribution
may strongly vary between the source and the target domain (e.g., dif-
ferent operating conditions). Since causal relationships are inherently
invariant and stable over different domains (Bühlmann, 2020), models
that are built on this principle can effectively address the challenges
from non-i.i.d. settings. Such useful properties are actually entailed
in structural causal models (Pearl, 2009; Peters et al., 2017) that
mathematically describe the underlying causal relationships between
cause and effect via deterministic functions, and noise variables to
account any randomness in the model. Intuitively, SCMs represent
the mechanism that is responsible for the data generation, and they
represent a trade-off between physical and statistical models, as it is
summarized in Table 1. In the seminal work of Schölkopf et al. (2012),
the notion of structural causal models is utilized to investigate their
implications on machine learning problems, like covariate shift and
efficient usage of data in semi-supervised learning. In particular, the
authors showed that in case of alignment of the causal direction 𝑋 → 𝑌
with the predictive one (predicting 𝑌 from 𝑋), where the input of
he model 𝑋 is the cause and the target 𝑌 is the effect, robustness

to covariate shift is easier to achieve. On the other hand, when the
causal direction 𝑋 ← 𝑌 is the opposite with the predictive one, where
we are trying to predict the cause 𝑌 from the effect 𝑋, this is said to
be anticausal prediction and semi-supervised learning can interestingly
work. Experiments in Schölkopf et al. (2012) with linear models for
semi-supervised learning demonstrate the effectiveness of the approach,
which we also adopt in the proposed framework due to availability of
few data from healthy state.

Recently, the authors in Khan et al. (2021) highlight the impor-
tance of integrating causal models towards achieving robust AI-based
solutions for PHM applications. Furthermore, they assert that the black-
box problem in deep learning hinders any transparency of how input
variables are interrelated with each other and with the outcome. This
problem can be eliminated by the inherent interpretability of the
structural causal models. We employ causality to seamlessly model the
degradation process of the system and build multiple structural causal
models from the time series of the monitoring signals and the inferred
causal driver. Hence, we exploit the remarkable invariance properties
of the causal mechanisms (Bühlmann, 2020; Schölkopf, 2019) and
learn our models upon these mechanisms for better generalization and
robustness.

The main contributions of this work are summarized as follows:

1. A complexity-estimate metric for time series data to rank op-
erational and environmental parameters (potential causes) by
computing the largest variability in relation with the time scale.
The intuition behind this metric is that within same time periods
having more, and larger peaks and valleys will yield higher com-
plexity estimate. In addition to limited background knowledge
from the application domain, we finally select the causal driver
from the overall parameter set.

2. A causal feature selection for time series is developed based on
non-linear Granger Causality to capture complex dependencies
between the inferred causal driver and the measuring parame-
ters. The computed causal indices are then used for selecting the
dependent measuring parameters, from which a set of structural
causal models is yielded.

3. A novel HI is proposed by introducing anticausal learning for
robust predictions of the holistic health status of complex en-
gineered systems under time-varying operating conditions. To
the best of our knowledge, the proposed framework is the first
that integrates such powerful techniques from the field of causal
inference for PHM applications.

4. Our anticausal-based framework is capable of employing any
kind of regression method. However, we show empirically that
indeed the linear regression outperforms all other methods as
it inherently disentangles the derived structural causal models
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Table 1
Taxonomy of modeling approaches (Peters et al., 2017). Starting from top, physical models are the most detailed ones and
they are in principle described by ordinary differential equations. At the bottom, statistical models can be only learned by
observational data, and learning is not feasible under distribution shift (non i.i.d.). Striking a balance between two former
models, structural causal models, on the one hand, move beyond the i.i.d. settings by enabling specific graphical interventions,
while, on the other hand only limited physical knowledge of the system is necessary.
Model type Predict in i.i.d. regime Predict under distribution shift Require domain knowledge

Physical model Yes Yes Complete
Structural causal model Yes Yes Limited
Statistical model Yes No None
in the anticausal direction. Last but not least, the proposed
approach requires no assumption (e.g., bilinear) regarding the
underlying degradation law, which most of methods do.

The rest of the paper is organized as follows: Section 2 reviews the
elated work of data-driven methods employed for VHI construction in
ifferent PHM applications. Section 3 presents the required theoretical
ackground. In Section 4, the framework and details of the proposed
nticausal learning approach are briefly introduced. In Section 5, de-
ails of the experimental results with the analysis and discussion on the
ffectiveness of the proposed method is presented. Finally, Section 6
oncludes the paper and presents the potential of future work.

. Related work

To date, a large body of literature aimed for high robustness to
oisy data in their degradation modeling approaches (Lei et al., 2018;
uo et al., 2019). Noise in sensor data is ubiquitous in every real-
orld PHM application of complex systems that may largely distort

he quality of the predictions. Other sources of noise, such as stochas-
icity of the degradation and random fluctuations due to changeable
perating conditions, further exacerbate the prediction error of the HI.
owards the goal of constructing robust HIs in noisy data, Gugulothu
t al. (2017) used originally autoencoders (AE) (Malhotra et al., 2016,
017) for computing time series embeddings. In the hidden layers of
he architecture, Recurrent Neural Networks (RNNs) are trained in an
nsupervised manner with data from both normal and faulty operations
f the machines. To alleviate vanishing and exploding gradient issues
uring back-propagation (Hochreiter and Schmidhuber, 1997) in tradi-
ional RNNs, LSTM cells are employed that are capable of learning long
erm dependencies from non-linear and noisy time series (Karasu et al.,
020; Karasu and Altan, 2022). HI curves in Gugulothu et al. (2017) are
nitially derived from embedding distances that are computed with ref-
rence to normal instances. Although the authors clearly demonstrate
he robustness of the embeddings-based HI to noisy data, the approach
s highly dependent on run-to-failure data that is difficult to obtain
n safety–critical systems. Similar to our framework, the embeddings-
ased approach does not assume any specific degradation trend, and it
lso considers sensor data as time series. Fu et al. (2021) introduced
novel LSTM architecture with sequential updated reconstructions

or constructing robust HIs, and subsequently the RUL of turbofan
ngines. Although both model-based approaches generate HIs with
obust attributes, they mainly lack of interpretability, since extracted
eatures usually have no physical meaning regarding the degradation
rocess. Moreover, data abundance is usually required for training such
eep learning architectures, which is rather difficult due to limited
mount of degradation free data. Nguyen and Medjaher (2021) devel-
ped an end-to-end HI construction framework from automated low
evel feature extraction that accounts various performance criteria via
enetic programming. Experiments on the C-MAPSS turbofan engine
ataset (Saxena et al., 2008b) demonstrated the effectiveness of the
xtracted features over the raw sensor measurements in terms of mono-
onicity, smoothness and robustness, which we similarly integrate for
valuation of our approach.

In PHM, most of the signal reconstruction methods with deep learn-

ng are based on autoencoder schemes, as they considered a mainstream

3

network architecture for learning meaningful and compressed repre-
sentations of the data (Fink et al., 2020). In the beginning of the
machine’s operation, normal behavior is mostly dominant and it is
expected that accurate reconstruction of this behavior is feasible. On
the other hand, gradual abnormal behavior, due to system’s long-term
degradation, leads to poor reconstruction of the input data, and hence
higher prediction error. In alignment with this principle, Malhotra
et al. (2016) first introduced Long–Short Term Memory (LSTM) based
Encoder–Decoder architecture (LSTM-ED) for HI estimation, and sub-
sequently for RUL prediction. The authors utilized the reconstruction
error on test time series as the HI that represents the long term
degradation trend. Once the HI curve is constructed, a similarity-based
technique (Yu et al., 2019) is employed to estimate the RUL, which is
evaluated on C-MAPSS turbofan engine dataset and a real-world dataset
from a milling machine. In a recent study, Liu et al. (2020) compared
several generative methods on a real-world dataset from an aircraft air
conditioning system, including variational autoencoder (VAE) that are
able to reconstruct and denoise the input by learning a latent Gaussian
representation. Experimental results demonstrated the superiority of
HIs that are constructed from LSTM-AE and AE with the reconstruction
error approach. We also employ exactly these architectures as baseline
methods for comparison. Although deep learning methods exhibit high
potential for PHM applications, they still learn purely associational
relationships between set of features (Marcus, 2018) that might be
fragile to time-varying operating conditions and noisy environments.

Mechanical systems operate always at constantly varying and het-
erogeneous conditions (different speed, temperature, load, etc.), which
may to a considerable degree distort their canonical degradation tra-
jectory. As the authors in Li et al. (2019) pointed out, operational
variations may have great impact both on the degradation speed as
well as on the distortion of the sensor readings. In this regard, several
studies (Lei et al., 2018; Hu et al., 2012; Baraldi et al., 2018; Arias Chao
et al., 2022; Li et al., 2019) so far considered time-varying conditions
for degradation modeling. Luo et al. (2018) proposed a supervised deep
learning framework for health estimation of CNC machine tools under
non-stationary working conditions. The authors built a deep neural
network for classification of dynamical impulse/non-impulse modes
which they later used to compute the natural frequencies that remain
invariant in different operational schemes. However, the method is
strongly dependent on the intermediate classification step which in-
troduces a kind of aggregation scheme, that may influence the final
estimation of the HI. Recently, Zhai et al. (2021) introduced an un-
supervised deep learning approach for deriving HIs from large-scale
industrial data that it is mainly comprised of two stages. First, the
authors employed K-Means to cluster the different operating regimes
from the expert-selected operational parameters. Second, the labeling
information from the clustering step is passed to a conditional VAE
architecture so that a conditional probability distribution from the
healthy instances is learned. HIs are then computed as the distance
(Manhattan, Euclidean) between the reconstructed and the original
data. Although the generative-based model captures the machinery’s
degradation under various working conditions, the clustering approach
for obtaining the operational regime partitions may influence the per-
formance of the predictions in case of strong non-stationarities in the
time series. This can be easily confirmed since the approach in Zhai
et al. (2021) is evaluated with the C-MAPSS dataset from Saxena et al.
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(2008b) as well, in which all operational parameters are synthetic and
aggregated at the cycle level.

Very few studies have been proposed in the vast sphere of PHM liter-
ature using notions from causality. Nevertheless, very recently Baptista
et al. (2022) investigated the causal influence between the prognostic
model’s input and its output via the game-theoretical Shapley (SHAP)
values (Lundberg and Lee, 2017). The constructed SHAP values are
evaluated in the C-MAPSS dataset by computing monotonicity, trend-
ability, and prognosability metrics. Although most complex models
yielded the best performance in RUL prediction, the authors showed
that linear regression with higher interpretability outperforms other
methods with increased complexity in monotonicity scores. One of the
most known frameworks for inferring causal relationships in time series
data is the Granger causality, originally proposed by Granger (1969).
Zhu (2021) utilized Conditional Granger Causality (Geweke, 1984), an
extension of the original Granger’s method, for identifying linear causal
relationships between multivariate sensor signals, which is later used as
a variable reduction technique solely for the RUL prediction. However,
the constructed HIs follow a rather rigid assumption of an exponential
degradation model, where both operational and measuring variables
are included without causal hierarchy. For the HI construction, we
integrate a sensor selection technique by estimating non-linear Granger
causal indices (Ancona et al., 2004) between the causal driver and
the measuring parameters that ultimately yields the structural causal
model.

3. Theoretical background

In this section, we present the theories of nonlinear Granger
causality, additive noise models and anticausal learning with their
implications and assumptions, which constitute the foundations of the
proposed approach.

3.1. Estimation of bivariate causal indices

Granger causality (Granger, 1969) has already been widely used
with great success in many scientific domains, ranging from neuro-
science (Roebroeck et al., 2005) and finance (Hong et al., 2009) to
computer science (Qiu et al., 2012) and climate research (Lozano et al.,
2009). Specifically, let 𝑋𝑡 and 𝑌𝑡 be two time series and we say that
𝑋 Granger causes 𝑌 at a specified lag 𝜏, if the prediction error is
significantly reduced by regressing 𝑌𝑡 on both 𝑌𝑡−𝜏 and 𝑋𝑡−𝜏 than only
by incorporating the past of 𝑌𝑡 itself up to the lag 𝜏 that also represents
he order of the autoregressive model. In the context of linear bivariate
ime series, the following autoregressive models are compared:

𝑡 =
𝜏
∑

𝑖=1
𝛼𝑖𝑌𝑡−𝑖 + 𝜖

𝑦
𝑡 (1)

𝑌𝑡 =
𝜏
∑

𝑖=1
𝛼𝑖𝑌𝑡−𝑖 +

𝜏
∑

𝑖=1
𝛽𝑖𝑋𝑡−𝑖 + 𝜖

𝑦𝑥
𝑡 (2)

where the noise terms 𝜖𝑦𝑡 and 𝜖𝑦𝑥𝑡 are assumed to be independent and
identically distributed (i.i.d.) time series, respectively. Whenever the
noise term 𝜖𝑦𝑥𝑡 estimated by the residuals from the full model of Eq. (2)
has significant smaller variance than the noise term 𝜖𝑦𝑡 obtained by the
restricted model from Eq. (1), then it is inferred that 𝑋 Granger causes
𝑌 . Since the initial approach is purely linear, nonlinear extensions
have been already introduced (Ancona et al., 2004; Marinazzo et al.,
2008). Here, we present the nonlinear Granger causality based on radial
basis functions (RBF) (Ancona et al., 2004) that we use for the sensor
selection step.

The authors in Ancona et al. (2004) proposed a method provided
that the following property is satisfied: (P1) if the past time series 𝐘−

are statistically independent of 𝑋 and the past time series 𝐗−, then
𝑣𝑎𝑟(𝜖𝑥) = 𝑣𝑎𝑟(𝜖𝑥𝑦); if the past time series 𝐗− are statistically independent of
𝑌 and the past time series 𝐘−, then 𝑣𝑎𝑟(𝜖𝑦) = 𝑣𝑎𝑟(𝜖𝑦𝑥), where 𝑣𝑎𝑟(⋅) is the
4

estimate of the variance of the noise terms (residuals). Linear models
are quite limited to satisfy the property P1, as they require very large
time series. On the other hand, finding the right classes of nonlinear
models may overcome the size restriction of the time series. Hence, the
authors in Ancona et al. (2004) suggested RBFs for bivariate models
with a clustering procedure that are given by

𝑋 = 𝐰11Φ(𝐗−) + 𝐰12Ψ(𝐘−) (3)

𝑌 = 𝐰21Φ(𝐗−) + 𝐰22Ψ(𝐘−) (4)

where {𝐰} are four 𝑛-dimensional real vectors and Φ = (𝜙1,… , 𝜙𝑛),
Ψ = (𝜓1,… , 𝜓𝑛) are 𝑛 given nonlinear RBFs with 𝑛 the number of the
clusters for estimating the prototypes of 𝐗−, 𝐘− respectively. In Lun-
garella et al. (2007) and Edinburgh et al. (2021) various nonlinear
causal methods for bivariate time series are extensively compared and
a value of 50 for the number of clusters 𝑛 is suggested as an appropriate
choice. Cluster centers {�̂�−

𝜌 }
𝑛
𝜌=1, {�̂�

−
𝜌 }

𝑛
𝜌=1 are derived from both vector

spaces of 𝐗−, 𝐘− with 𝑘-means and are used to estimate the following
vectors in the nonlinear feature space

𝜙𝜌(𝐗−) = 𝑒𝑥𝑝(−‖𝐗− − �̂�−
𝜌 ‖

2∕2𝜎2), 𝜌 = 1,… , 𝑛, (5)

𝜓𝜌(𝐘−) = 𝑒𝑥𝑝(−‖𝐘− − �̂�−
𝜌 ‖

2∕2𝜎2), 𝜌 = 1,… , 𝑛, (6)

where 𝜎 is the scale parameter. The residuals are calculated by least
squares fit from the Eqs. (3)–(6) and the causal index in the case of the
unidirectional causality 𝑥 → 𝑦 is given by

𝑐𝑖𝑥→𝑦 = 𝑣𝑎𝑟(𝜖𝑦) − 𝑣𝑎𝑟(𝜖𝑦𝑥). (7)

Such bivariate nonlinear models are accurate with high detection
power, however they may not account indirect and common cause
(confounded) links for multivariate time series models. Further, a criti-
cal assumption is that all observed variables are included, namely there
are no hidden confounders. Even though in practice such assumption
seems restrictive, background knowledge may alleviate to a large ex-
tent both previous limitations. In particular, independent variables in
engineered systems can be relatively easy identified by domain experts,
since either are tied with the physical laws of nature (environmental)
or with direct interventional actions (operational). In the proposed
approach, we initially introduce a complexity-based metric from the
time series data mining field to rank all independent variables and
finally select the causal driver that will be used for estimating all causal
indices with the measuring parameters.

3.2. Anticausal learning

Before we rigorously present the notion of anticausal learning that
was originally presented by Schölkopf et al. (2012), we briefly intro-
duce structural causal models that set the foundation towards that
direction.

Let us first assume the directed acyclic graph (DAG) 𝐶 → 𝐸, where
𝐶 and 𝐸 are two observed random variables. In contrast to Granger
Causality, we say here that 𝐶 causes 𝐸 if we intervene on 𝐶, and the
same time all the rest variables in the graph are held fixed (if any),
then we should observe changes in the distribution of 𝐸. Note that, as
in the previous section, we assume Causal Sufficiency, namely there are
no hidden common causes of the variables in the observational data.
To represent mathematically the causal knowledge from the underlying
DAG, structural causal models (SCM) (Pearl, 2009; Peters et al., 2017)
are proposed that consist of a set of structural equations of the form

𝐶 = 𝑓1(𝜖1) (8)

𝐸 = 𝑓2(𝐶, 𝜖2) (9)

where 𝜖1, 𝜖2 are jointly independent noise variables and 𝑓1, 𝑓2 are
deterministic functions of the directed causes with the noise terms.
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More specifically, the SCM from Eq. (9) represents an autonomous
mechanism via the function 𝑓2 from which the effect 𝐸 is generated
by the cause 𝐶 and the noise term 𝜖2. The difference of the SCM

ith the equivalent algebraic equations is fundamental and should not
e confused, since all variables appear on the left-hand side are the
ependent variables and any change in this order breaks any connection
ith the underlying causal representation.

Inferring the causal direction even in the bivariate case by identi-
ying the asymmetry of the association is far from trivial (Mooij et al.,
016). Certain assumptions must hold for the underlying SCM in order
o have an identifiable causal direction. In this regard, Hoyer et al.
2008) first introduced the non-linear additive noise model (ANM) that
tilizes the statistical independence of the underlying noise term with
he cause variable for determining the true causal direction. Under this
ssumption, the SCM described by Eq. (9) can be rewritten as

= 𝑓 (𝐶) + 𝜖, 𝐶 ⟂⟂ 𝜖 (10)

here 𝑓 (⋅) is a arbitrary nonlinear regression method and 𝜖 the inde-
endent noise variable. The main assumption can be easily verified by
egressing the effect on the cause with a non-linear method and test the
egression residual for statistical independence with the cause. If the
ndependence hypothesis is rejected then the underlying causal model
s rejected as well. Note that there is no constraint on the selection
f a specific type of regression method. Even though this statement
ignificantly simplifies the applicability of ANM for detecting com-
lex causal relationships, however, any randomization in regression
ia perturbation techniques (e.g., random forest regression) may yield
orrelated noise that will violate the former assumption.

By considering the ANM from Eq. (10) we jointly determine the
onditional distribution 𝑃 (𝐸|𝐶) which represents the generating mech-
nism that transforms cause 𝐶 into effect 𝐸. In the causal direction,

we further assume that the mechanism is independent of the marginal
distribution of the cause 𝑃 (𝐶), which is entailed by the independence
causal mechanism principle (Janzing and Schölkopf, 2010). Intuitively,
this means that any change on the input of the causal model does
not influence whatsoever the causal mechanism 𝑃 (𝐸|𝐶). On the other
hand, trying to predict the cause from the effect, which is referred
in Schölkopf et al. (2012) as anticausal prediction, the marginal distri-
bution of the effect 𝑃 (𝐸) and the conditional distribution 𝑃 (𝐶|𝐸) share
information, and they become dependent, which means that knowing
the input distribution may help for learning the output conditional
distribution 𝑃 (𝐶|𝐸). Therefore, such anticausal schemes may greatly
benefit semi-supervised settings, since only a small amount of labeled
data is available for training. It should be noted that no concrete semi-
supervised learning (SSL) method, like in Zhou et al. (2005), is utilized
on the proposed anticausal framework. Since the assumption for SSL
from the anticausal model holds, just few data from the reference
(healthy) cycles are used to train the regression models. Besides the
former useful attribute, anticausal predictions may be extremely robust
with strong generalization, provided that the underlying causal model
is known, as rigorously presented in Kilbertus et al. (2018). In PHM
applications, we usually obtain a rather small subset at the beginning of
the operation life of the system which corresponds to the healthy state
of the system and it is also used for training the prediction models.
In real-world scenarios, on-line data are evaluated with strong non-
stationarities due to distributional shifts that may affect the predictions
of the HI. By intertwining such powerful techniques from the causal
inference field, we achieve robustness on the predictions of the output
that are in the later step used for constructing the HI of the investigated
engineered system.

4. HI construction via anticausal learning

Establishing the right HI is a key factor for the overall success
of a PHM maintenance strategy, since it strongly affects the predic-
tion of the RUL, and ultimately the health assessment of the system.
 r

5

Besides the monotonic trend of the HI over time that need to be
sufficiently fulfilled, one has to consider the robustness to continually
changing operating conditions, an ubiquitous challenge in PHM appli-
cations (Khan et al., 2021). Especially, in case of cyclic datasets with
large non-stationarities in their operational conditions between consec-
utive cycles, training directly machine learning models with data in
healthy state might result in HIs of poor performance. Mainly, this hap-
pens since the model has learned the underlying patterns originating
from specific operating schemes and any departure from this behavior
will be falsely captured in the HI as a deterioration state. The complete
procedure of the proposed approach for the estimation of the HI is
depicted in Fig. 1. It consists of two main modes: first establishing and
training an anticausal model from the selected variables and second the
online prediction of the HI from incoming data. In anticausal learning
mode, two phases are further unfolded. First, a heuristic method is
introduced for ranking the operational and environmental parameters
that corresponds to various time-varying operating conditions. The time
series of the parameter with the largest weighted complexity metric
yields the causal driver with the most of the temporal variability
due to exogenous interventions and is selected as the target of the
anticausal prediction model. Background knowledge also confirms this
outcome. Second, bivariate causal indices are computed with nonlinear
Granger causality between the measuring parameters and the causal
driver from the first step. The set of the selected sensor parameters
yield the definition of the individual structural causal models that
jointly formulate the multivariate regression model in the anticausal
direction. In the online mode, the HI of incoming data is estimated
from the mean absolute prediction error and is evaluated based on its
resulted trajectory. Note that in the offline mode, it is assumed that
all training data correspond to the initial non-degraded system state,
and thus represent the healthy reference model. Finally, we validate
our framework with real-world operating conditions that reflect a wide
range of flight scenarios.

4.1. Weighted complexity estimate

Usually, complex machinery need to operate throughout its lifetime
under different time-varying conditions that may accordingly result
to different degradation behavior, but same causal mechanism. For
example, machine tools operate under various working conditions that
are directly affected by many factors, such as cutting speed, load,
vibration, etc. These parameters are recorded via sensor signals and
holistically may represent specific operational schemes. However, not
all these operational parameters that describe the external conditions
have equal influence on the system’s state. Hence, we introduce a
metric to rank all operational parameters and ultimately select the
causal driver that we later integrate into the proposed framework.

In the context of causality, as we already defined in Section 3.2,
performing controlled interventions is the only way to verify causal
relationships. In practice, however, it may be difficult or even infeasible
to perform such interventions, especially in safety–critical complex
systems such as commercial aircrafts. Under these pure observational
settings, and assuming that there are no hidden common causes, we
introduce the following metric for selecting the causal driver in the
system.

Let us consider an univariate time series 𝑌 = [𝑦1, 𝑦2,… , 𝑦𝑇 ] with a
ength of 𝑇 , from which we obtain complexity estimate (Batista et al.,
014) for every sliding window of size 𝑠𝑤 as follows:

𝐸(𝑌𝑡∶𝑡+𝑠𝑤−1) =

√

√

√

√

𝑡+𝑠𝑤−1
∑

𝑘=𝑡
(𝑦𝑘 − 𝑦𝑘+1)2 (11)

Intuitively, the complexity estimate expresses the volatility in terms
f measuring lengths of stretched time series. For example, within the
ame time period a time series is more complex than the other, if
e stretch them in a straight line and the more complex one would

esult to a greater length. In our proposed method for PHM, we extend
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p

Fig. 1. Schematic representation of the proposed framework that integrates anticausal learning. The reference anticausal model captures the underlying generative process of the
causal driver from the selected measuring parameters in the initial healthy state. Any deviation in the online mode of the predicted causal driver from the reference state represents
the comprehensive HI from the corresponding cycle.
the existing complexity metric from Eq. (11) and introduce a weighted
version

(𝑌𝑡∶𝑡+𝑠𝑤−1) = 𝐶𝐸(𝑌𝑡∶𝑡+𝑠𝑤−1) × 1(𝜎(𝑌𝑡∶𝑡+𝑠𝑤−1) > 1) (12)

where 1(⋅) denotes the indicator function and 𝜎(⋅) the standard devia-
tion of the sliding window. Note also that the time series is normalized
by removing the mean and scaling to unit variance. In this way, only
those windows are accounted which contain both large volatility and
variability. Among a set of candidate causal drivers, the time series with
the largest weighted complexity estimate is selected as the parameter
that will be used for establishing the structural causal models, from
which the anticausal predictive scheme is formulated. It is worth to
point out that we choose to pick a single potential cause to ensure the
underlying causal process is disentangled from the presence of other
potential causal parents that might influence the anticausal learning
process.

4.2. HI construction with multivariate anticausal regression

Let us first denote 𝐘 = {𝑌1, 𝑌2,… , 𝑌𝑁} as the multivariate time
series that represent the operating and environmental conditions, 𝐗 =
{𝑋1, 𝑋2,… , 𝑋𝑀} as the measuring parameters and {𝐗,𝐘} ∈ 𝑙, where
𝑙 the domain with index 𝑙 ∈ {1, 2,… , 𝐿}. A domain,1 for instance, in
the context of PHM, could represent a complete flight route of a com-
mercial aircraft. Note that in this phase all 𝐿 domains are represented
as set of observations from the healthy condition of the system and time
series from these domains are concatenated to form the training set.
Assuming that these operational time series are independent with each
other, since each parameter describes separate temporal interventions
on a specific system’s component, we compute the weighted complexity

1 The terms cycle and domain, are interchangeably used throughout this
aper.
6

estimate introduced in the previous section. Yet, any dependence that
might be present can be explained either by background knowledge
(e.g., physical laws) or directly by a domain expert so that these
variables to be omitted from the selection set. Finally, we select the
causal driver 𝑌𝑖∗ such that

𝑖∗ = argmax
𝑖

( 𝑖), 𝑖 ∈ {1, 2,… , 𝑁}. (13)

Once the causal driver 𝑌𝑖∗ is inferred, the next step is sensor selection
from which all measuring time series are recorded. Thus, all causal
indices 𝑐𝑖𝑌𝑖∗→𝑋𝑗 from Eq. (7) are calculated for each domain 𝑙 to yield
the final set 𝑆𝑋∗ of cardinality 𝑀∗ such that

𝑆𝑋∗ =
⋃

{𝑋𝑗∗ ∶ 𝑗∗ = argmax
𝑗

(𝑐𝑖𝑌𝑖∗→𝑋𝑗 )}𝑙 . (14)

Since all causal dependencies are inferred we define the set of the
underlying structural causal models as follows

𝑋𝑗 = 𝑓𝑗 (𝑌𝑖∗ ) + 𝜖𝑗 , for 𝑗 = 1,… ,𝑀∗, (15)

where 𝜖𝑗 the independent noise terms that need to satisfy the assump-
tion for the ANM, which is presented in the previous section. Graph-
ically, these equations are illustrated in Fig. 2 as a causal graphical
model. Further, the opposite direction, which represents the anticausal
prediction, is shown with red, where we consider the input to be the set
of the effect variables and the target the cause variable itself.

Although this setting may seem rather counterintuitive, in machine
learning field it is indeed ubiquitous. For example, one can say that
in the image classification task of handwritten digits, there is a causal
relationship between the class label and the generated image. This
might be justified from the causal reasoning that is expressed via a
person’s will to write down a specific digit that will be later captured
in a structured digital form. In this regard, the class label causes the
image, however, the predictive task is actually anticausal.

In the later phase of our proposed approach, a multivariate regres-

sion model is trained from the concatenated data in all healthy domains
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𝑙 such that 𝑓𝑎 ∶ 𝑆𝑋∗ ↦ 𝑌𝑖∗ which represents the anticausal prediction.
nlike other methods (Ye and Yu, 2021; Zhai et al., 2021) that use the
robabilistic reconstruction error of associational models to quantify
he degradation of the system, we simply estimate the mean absolute
rror from the test predictions for each cycle. The underlying idea of
ur model is that it does not need to explicitly learn the patterns in
ach healthy domain. Large shifts, due to system’s degradation, in the
nput distribution 𝑃 (𝑆𝑋∗ ) can be accurately captured on the output

conditional distribution 𝑃 (𝑌𝑖∗ |𝑆𝑋∗ ) via the invariant causal mechanism,
as discussed in the previous section. Hence, generalization on new
unseen domains is achieved in a quite efficient and robust way. For
online evaluation of a new incoming domain ′ the degradation is
computed as follows

𝑑′ = 1
𝑇

𝑇
∑

𝑘=1
|𝑌𝑖∗ (𝑘) − 𝑌𝑖∗ (𝑘)| (16)

here 𝑇 is the length of the time series and 𝑌𝑖∗ the anticausal prediction
f the causal driver. Finally, the health index (HI) of a new cycle can be
btained by normalizing the degradation values into the range [0, 1] by

𝐼 = 1 −
𝑚𝑎𝑥(𝑑(𝑗)′ ) − 𝑑

(𝑗)
′

𝑚𝑎𝑥(𝑑(𝑗)′ ) − 𝑚𝑖𝑛(𝑑
(𝑗)
′ )

, 𝑗 = 1,… , (17)

where  > 𝐿 the total number of cycles for the investigated unit.

4.3. Metrics for evaluation of HI

Since the constructed HIs are deployed in safety–critical systems,
in which the accuracy of the RUL prediction is strongly dependent on
them, they must fulfill several specific requirements. Specifically, at the
beginning of the system’s faultlessly operation, the HI should start at
a maximum threshold value, i.e., HI=1; which outlines the ‘‘as-new’’
state. Based on the physical degradation laws, HI is decreasing over
time, usually with a bilinear manner (but not necessarily), up to the on-
set of the abnormal degradation. Mathematically, the aforementioned
behavior of the HI trajectory may be expressed with three evaluation
metrics that are presented in Lei et al. (2018).

Fundamentally, a machine’s health condition decreases over oper-
ating time, as most of the mechanical components in the system, some
more and some less, is subjected to dynamical loads that may accelerate
the overall degradation rate. Hence, the HI is expected to demonstrate
a negative trend with the cycle or domain index. In order to handle
non-linearities that occur more often in practice, the trendability is
calculated from the Spearman correlation coefficient between the HI
and the time index.

𝑇 𝑟𝑒(𝑋,𝐶) =
|

|

|

|

|

𝐾
(

∑𝐾
𝑘=1 �̃�𝑘𝑐𝑘

)

−
(

∑𝐾
𝑘=1 �̃�𝑘

)(

∑𝐾
𝑘=1 𝑐𝑘

)

√

[

𝐾
∑𝐾
𝑘=1 �̃�

2
𝑘 −

(

∑𝐾
𝑘=1 �̃�𝑘

)2
][

𝐾
∑𝐾
𝑘=1 𝑐

2
𝑘 −

(

∑𝐾
𝑘=1 𝑐𝑘

)2
]

|

|

|

|

|

,

(18)

where {�̃�}𝑘=1∶𝐾 and {𝑐}𝑘=1∶𝐾 are the rank sequence of the HI {𝑥}𝑘=1∶𝐾
and cycle {𝑐}𝑘=1∶𝐾 , respectively. 𝐾 denotes the total number of cycles
at the 100% of the operational life. Since the correlation coefficient
should be negative to represent the degradation trajectory and as close
as possible to −1, we put trendability in absolute value to ensure
positivity on the final metric.

Any random fluctuations that reflect on the HI curve may have a
great impact on the final evaluation results. To express any variability
of the HI, that might originate either from the stochasticity of the
degradation process or from the variability of the operating conditions,
into a comprehensible value, we compute the robustness of HIs as
follows,

𝑅𝑜𝑏(𝑋) = 1
𝐾
∑

exp
(

−
|

|

|

|

𝑥𝑘 − 𝑥𝑇𝑘 ||
|

|

)

, (19)

𝐾 𝑘=1 |

𝑥𝑘
|
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Fig. 2. Structural causal models between the causal driver 𝑌𝑖∗ derived by the maximum
eighted complexity (potential cause) and the selected set 𝑆𝑋∗ of the measuring

parameters (effects). Red line indicates the opposite direction that maps the set of
the effect variables with the cause as the target via a function 𝑓𝑎 and represents the
anticausal prediction model.

where 𝑥𝑘 is the estimated value of the HI at cycle 𝑘 and 𝑥𝑇𝑘 is the mean
trend value of the HI at cycle 𝑘 that is obtained by smoothing or decom-
position techniques. A high value of robustness will yield a smoother
HI curve, which ultimately will enable more robust predictions of the
RUL.

In real operating conditions, the machinery fails most of the time
gradually in terms of the severity-based stages. HIs should be able to
capture these degradation transitions in time, which is expressed via
the identifiability metric. Similarly, as with trendability, identifiability
yields the nonlinear correlation between the HI and the stage sequence.

𝐼𝑑𝑒(𝑋,𝐶) =
(𝑚𝑒 − 𝑚𝑙)2

𝜎2𝑒 + 𝜎
2
𝑙

, (20)

where 𝑚𝑒, 𝜎2𝑒 and 𝑚𝑙, 𝜎2𝑙 are the mean and the variance of the early
and later degradation class, respectively. High identifiability further
indicates that the HI can very well identify the true onset of the degra-
dation, and hence accurately represents its stage sequence. Identifiabil-
ity can be easily extended to more than two degradation classes (Lei
et al., 2018), however we focus on a two-stage degradation pattern.
Besides the three former metrics, for the convenience of comparison
and validation of the proposed method, we introduce the Applicability
(App = Tre + Rob + Ide) for the final evaluation of the computed HIs.

5. Experimental results

5.1. N-CMAPSS turbofan engine dataset

In the last decade, an extensively large amount of research in the
field of PHM has been conducted, evaluated, and assessed with the
CMAPSS (Commercial Modular Aero-Propulsion System Simulation)
dataset of a large turbofan engine (Saxena et al., 2008b; Lei et al.,
2018). A great advantage of the CMAPSS dataset is the incorporation
of run-to-failure trajectories, an indispensable attribute for evalua-
tion of data-driven prognostics algorithms. Usually, such real-worlds
datasets are proprietary and they are quite seldom shared publicly
by their operators. Although in the CMAPSS dataset, a wide range
of operating values with the appropriate amount of mixed noise are
set to approximate as close as possible the actual flight conditions,
still the multifaceted complexity that is met in real data is missing.
Further, individual measurement snapshots per flight are employed
to the CMAPSS, so that health indices of the components of interest
are inferred. This means that no temporal information during each
flight is accounted into the simulation model, which seems a rather
strong limitation that might lead to dubious conclusions regarding the
efficiency of the developed algorithms. Finally, such aggregation on

the flight data would not enable to capture any dependencies between
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Fig. 3. Real-world time series of throttle-resolver angle (TRA), temperature of inlet fan (T2), altitude (alt) and speed (Mach) for a single unit across an entire flight course cycle
climb–cruise–descend).
𝑘
n

he operation history and the abnormal degradation profile, which is a
biquitous characteristic in every safety–critical system.

Recently, an improvement of the existing CMAPSS dataset is in-
roduced in Arias Chao et al. (2021), also known as N-CMAPSS, that
ddresses all aforementioned gaps and challenges. First and foremost,
eal-world data that correspond to various climb, cruise and descend
onditions are employed to the CMAPSS model, which realistically
over a wide range of flight routes. These flight conditions are captured
y four operational and environmental parameter: flight Mach number,
ltitude, thrust-resolver angle and total temperature at fan inlet. An
xemplary flight route of a given unit (cycle) with its four operational
arameters is shown in Fig. 3. Since the entire temporal profile of the
ost critical operational parameters is observed, it is stochastically

ssociated with the degradation modeling process by controlling the
nset of the abnormal degradation. At the initial operation cycles of
he engine, the components in various modules of interest are subjected
o a normal degradation, mainly due to manufacturing imperfections,
owever, their state is still classified as healthy. In the next phase
normal continuous degradation is modeled by linearly adjusting

he flow and efficiency parameters of five critical engine modules:
an, low pressure compressor (LPC), high pressure compressor (HPC),
igh pressure turbine (HPT), low pressure turbine (LPT). Finally, at
he abnormal degradation, the estimated wear trend on the specific
odules follows an exponential damage propagation law, as in the

riginal CMAPSS model (Saxena et al., 2008b), and hence the system
s labeled as unhealthy up to the point where the engine fails.

In general, the CMAPSS system model consists of a set of non-linear
quations, in which the input is the four scenario-descriptor variables
nd the unobserved degradation trajectories of flow and efficiency from
he affected engine modules. The outputs of the system model are
he measuring parameters in various components that are presented in
able 2 with their descriptions, and an additional set of parameters
rom virtual sensors. Since we propose a purely data-driven solution,
e exclude from our analysis the inferred set of the virtual sensors. On

loser examination of the CMAPSS equation presented in Arias Chao
t al. (2021), the degraded flight condition variables appear on the

ight-hand side enable a directed generating process of the variables
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Table 2
Physical measuring parameters that are estimated from the CMAPSS model.

# Symbol Description Units

1 Wf Fuel flow pps
2 Nf Physical fan speed rpm
3 Nc Physical core speed rpm
4 T24 Total temperature at LPC outlet ◦R
5 T30 Total temperature at HPC outlet ◦R
6 T48 Total temperature at HPT outlet ◦R
7 T50 Total temperature at LPT outlet ◦R
8 P15 Total pressure in bypass-duct psia
9 P2 Total pressure at fan inlet psia
10 P21 Total pressure at fan outlet psia
11 P24 Total pressure at LPC outlet psia
12 Ps30 Static pressure at HPC outlet psia
13 P40 Total pressure at burner outlet psia
14 P50 Total pressure at LPT outlet psia

in the left-hand side (i.e., observed and virtual sensors), and not the
other way around. Within the paradigm of structural causal models the
operational parameters represent the cause variables, the degradation
process the causal mechanism, and finally the measuring parameters
the effect variables.

We evaluate the proposed framework with the DS02 dataset from
N-CMAPSS dataset, which has already been used for data-driven prog-
nostics in Arias Chao et al. (2022). The dataset in total contains nine
units and each unit is consisted of a specific number of cycles ranging
from the beginning of the operation up to the point of engine failure.
Each cycle comprises different kinds of flights in terms of duration and
operational profiles (i.e., Mach speed, altitude). Table 3 summarizes the
units from the DS02 dataset with the transition times 𝑡𝑘 of the cycle

that designate the onset of the component’s degradation, the total
umber of samples, the end-of-life time cycle 𝑡𝐸𝑂𝐿 and the types of

failure mode. In this work, we aim at finding the best representation
of the entire system’s health, and hence the investigation of the degra-
dation of each component is out of scope. However, we show that our
framework might indeed provide an intuition to domain experts from
the sensor selection step that would indicate the possible root cause of

the upcoming engine degradation.
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Fig. 4. Mean values of the weighted complexity from the four operational and
environmental parameters that characterize the time-varying operating conditions. The
bootstrap technique with 100 iterations is performed to calculate 95% confidence
intervals.

Table 3
Dataset characteristics of the investigated engine units with their failure modes.
Superscripts (f), (e) denote the flow capacity and efficiency of the corresponding
sub-components, respectively.

Unit Time steps 𝑡𝑘 𝑡𝐸𝑂𝐿 Failure mode

2 853,142 17 75 HPTe

5 1,033,420 17 89 HPTe

10 952,711 17 82 HPTe

16 765,295 16 63 HPTe+LPTe+LPTf

18 890,719 17 71 HPTe+LPTe+LPTf

20 768,160 17 66 HPTe+LPTe+LPTf

11 663,495 19 59 HPTe+LPTe+LPTf

14 156,778 36 76 HPTe+LPTe+LPTf

15 433,470 24 67 HPTe+LPTe+LPTf

5.2. Data preparation for anticausal learning

In real-world settings, each turbofan engine unit manifests a unique
degradation footprint due to its multivariate operational profile, which
need to be captured by those parameters that encode invariant causal
structures. Even though in the N-CMAPSS dataset the operational vari-
ables are already established, it is non-trivial to infer which one of those
operational variables is the causal driver. Based on the heuristic method
that we introduce in Section 4.1, we compute the weighted complexity
for all four operational variables across all units. In particular, within
each unit the first 20% of the operating cycles are considered as healthy
and are included for the computation of the weighted complexity.
From here onwards, we refer as the training set the first 20% of the
operational useful life and as test set the 80% remaining cycles for each
investigated unit. The complexity within the training set from each unit
is computed using a sliding window approach with a size of 10% of the
total cycle length. In the purpose of computation of the complexity the
data is normalized with the z-score method by removing the mean and
scaling to unit variance.

Fig. 4 presents the averaged weighted complexity of the four oper-
ational and environmental parameters. The results clearly rank TRA as
the operation parameter that varies most in time with potentially the
largest casual footprint on the measuring parameters. Our findings may
easily be derived based on engineering principles that are mainly appli-
cable in civil aviation industry. Flight operational parameters, such as
cruise speed (Mach) and altitude (alt), are mostly changing gradually
due to adjustment of the cabin pressure. Any sudden large fluctuations
of those parameters might have an impact for both the crew, the
passengers, and the normal operation of the aircraft. Temperature at
the fan inlet (T2) is basically influenced by the altitude, provided that
no other external conditions are applied. Throttle-resolver angle (TRA)
9

Table 4
Sensor selection per unit via bivariate Granger causality.

#Unit Wf Nf Nc T24 T30 T48 T50 P15 P2 P21 P24 Ps30 P40 P50

2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

16 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

18 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

20 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

11 ✓ ✓ ✓ ✓ ✓ ✓ ✓

14 ✓ ✓ ✓ ✓ ✓ ✓

15 ✓ ✓ ✓ ✓ ✓ ✓ ✓

controls the overall thrust of the engine, which subsequently influences
the speed of the aircraft, and ultimately the ability of the aircraft to fly.

Once the causal driver is inferred, we perform sensor selection on
the measuring parameters from the bivariate Granger causality indices
introduced in Section 3.1. Each unit is investigated separately since
the flight scenarios are from real-world data and generate unique
degradation trajectories. In all experiments, we set the lag to a single
time step so that to capture the closest in time causal dependencies.
Table 4 shows the selected measurements for each investigated unit.
The same training set as in the ranking phase is used here as well. Each
of these feature set 𝑆𝑋∗ denotes the effect variables which, based on
our hypothesis, are mainly generated from the causal driver, namely
TRA. Hence, individual structural causal models are defined for each
unit that will be later used for training the multivariate regression in
the anticausal direction.

5.3. HI construction

We further perform experiments to compare the effectiveness and
robustness of the anticausal approach. In the first set of evaluation
methods, two deep learning architectures from Malhotra et al. (2016)
and Liu et al. (2020) are used as state-of-the-art, which aim to estimate
the reconstruction error of the input for deriving the health index of the
system. For the sake of comparison, feature extraction methods are not
included, as the sampling frequency of 1 Hz in the N-CMAPSS dataset
is relatively low, and hence frequency spectra may be inherently bi-
ased. In the second set, both linear and non-linear regression with the
anticausal approach are evaluated to highlight and verify the power of
the proposed framework. As in the previous steps of our framework,
we used as training set the 20% of the operational life of each unit and
the rest of the data for evaluation purposes.

Deep learning models. First, a reconstruction-based approach with
LSTM layers (LSTM-AE) of the entire time series parameter set (opera-
tional and measuring) is considered for comparison purposes. LSTM-AE
contains an input layer of 32 LSTM cells in the encoder, and accordingly
an output layer of 32 LSTM cells in the decoder. The dimension of the
latent space is set to 5, from which the data are reconstructed via the
decoder layer. Previous hyperparameters are set in accordance with
Liu et al. (2020). Note that no hidden layers are inserted, since few
data are available for training, and as such, lower model complexity
is preferred (Khan et al., 2021). Nevertheless, we further conducted
experiments with an additional hidden layer on the architecture and
it showed no improvement on the results from the main setting. This
fact verifies indeed the previous assertion regarding model complex-
ity. Since the input of the LSTM-AE needs to be in multiple sliding
windows, the length of each window and its stride is set to 10 and 1,
respectively. Moreover, as a baseline approach we build an autoencoder
(AE) network architecture, which integrates a single-layered encoder,
a hidden latent representation, and finally, the single-layered decoder
that reconstructs the input data. Considering the limited amount of
training data, we set one input and output layer of size 32 neurons for
both encoder and decoder, respectively. The latent dimension of the
middle layer is set to 8 neurons. For training of both architectures, the
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Adam optimizer is used with a learning rate of 0.001 and a batch size
of 64 for 50 epochs. Throughout both network architectures, rectified
linear units (ReLu) are used as activation functions. To further prevent
overfitting, early stopping with a patience of 5 epochs is implemented.
All experiments are performed on Python 3.8.6 with Tensorflow 2.4.0
software platform under a laptop with Intel-i7 8565U 1.8 GHz CPU,
16 GB RAM.

As in Liu et al. (2020), the health index 𝐻𝐼𝑟 at both cases is
calculated from the root mean square error of the original multivariate
input data 𝐗 and the reconstructed input �̂�.

𝐻𝐼𝑟 = 𝑅𝑀𝑆(�̂� − 𝐗) (21)

In both aforementioned methods, both operational and measuring pa-
rameters are concatenated and used for training the networks across
all units. Note that no feature selection, like in the proposed approach,
is applied, since all parameters are included. Hence, the dimension of
the input space (i.e., 𝑋 ∈ R𝑇×18) is constant, where 𝑇 is the size of the
concatenated time series of the reference (healthy) cycles and 18 of the
input size, namely 14 measuring and 4 operational parameters.

Anticausal regression. To demonstrate the low model complexity
of our approach we employ three linear regression methods with anti-
causal learning: ordinary least-squares (LR+), support vector machine
with a linear kernel (LSVR+) and least-squares with l2 regularization
(RR+). Moreover, a multi-layer perceptron (MLP) is selected as a non-
linear regression with wide applicability so that to investigate the
behavior of the proposed approach in settings with higher model com-
plexity. We employed a rather simple MLP architecture that comprises
two layers with 64 neurons each that are activated by ReLu functions.
Except least-squares regression, all other methods require adjustment of
their hyperparameter (e.g., 𝜆2 for ridge regression and 𝐶 regularization
parameter for the linear support vector machine). For that purpose,
we employ a grid search scheme with a fivefold cross validation for
obtaining the optimal set of the above hyperparameters. The search
procedure for RR+ yielded a value of 𝜆2 = 0.01 and for LSVR+ a
regularization parameter of 𝐶 = 40. Note that the dimension of the
input space for anticausal learning varies, as it depends on the sensor
selection step for each unit, which is displayed in Table 4. For example,
in Unit 2 the dimension of the input space is 𝑋 ∈ R𝑇×10 that shows that
the number of the measuring parameters is reduced to 10.

5.4. Results and discussion

In this section, the constructed HIs are extrapolated on test cycles for
all units to compare their performance based on the evaluation metrics
that are presented in Section 4.3. In particular, Table 5 summarizes
each of these metrics that show the effectiveness of the proposed
method. Note that no smoothing is applied on the HI values, which
renders the evaluation process more challenging, and at the same time
highlights the robustness of the proposed approach. Interestingly, based
on the overall applicability metric, all three linear regression methods
that are used with the proposed anticausal learning outperform both
state-of-the-art deep learning methods, as well as the non-linear regres-
sion. In contrast to other methods with increased model complexity,
linear regression disentangles the individual structural causal models
in the anticausal direction by avoiding any deterioration of the causal
power via its inherent additivity. MLP+ outperforms both autoencoder
architectures, still it has worse performance than the linear regression,
as deep neural networks have been found to not strongly generalize
for anticausal learning schemes (Kilbertus et al., 2018). Two regression
methods that employ l2-regularization (LSVR+, RR+) deliver similar
results, and indeed, better that the least-squares method, highlighting
the positive impact of the regularization on the final performance.

Comparing the trendability values shown from different models (see
Table 5), all three linear methods (LR+, LSVR+, RR+) consistently have
the best results. This indicates how well the monotonic trend of the

engine’s degradation is captured by the anticausal approach, even with

10
Table 5
Resulted metrics for all HIs values averaged across all units. Best results for each
category metric is highlighted in bold.

HI method Trendability Robustness Identifiability Applicability

LSTM-AE 0.6739 0.9461 0.4720 2.0921
AE 0.7494 0.9506 0.4131 2.1131
LR+ 0.9120 0.9714 0.8497 2.7330
LSVR+ 0.9325 0.9745 0.8798 2.7868
RR+ 0.9311 0.9735 0.8716 2.7763
MLP+ 0.7097 0.9500 0.6684 2.3281

the linear models. On the other hand, AE-based methods exhibit lower
trendability values, since they captured associational relationships that
may collapse under changeable operating conditions. Traditionally,
these methods require huge amounts of data to perform well. Training
such architectures with fewer data may lead to large bias, which in our
case is also reflected to the identifiability that is dropped almost to the
half of the one computed from the linear models.

To further highlight the generalization performance of the proposed
approach, we obtain the aggregated values from the true individual
degradation parameters used in the C-MAPSS simulation model. In each
engine unit, and for a specific operating cycle, flow and efficiency of
various critical sub-components is subjected to a degradation that is
captured by health degradation parameters 𝜃(𝑘), where 𝑘 is the index
cycle. Finally, the minimum value is computed by the aggregation of
all non-zero degradation parameters and is denoted as:

𝐻𝐼𝜃(𝑘) = 𝑚𝑖𝑛([𝜃𝑓𝑐 (𝑘), 𝜃
𝑒
𝑐 (𝑘)]) (22)

where 𝜃𝑓𝑐 (𝑘), 𝜃𝑒𝑐 (𝑘) is the health degradation of flow and efficiency from
a corresponding sub-component 𝑐 respectively.

Fig. 5 illustrates the predicted HI values with the proposed approach
and the true aggregated values. Note that all values are min–max
normalized so that to be in the range of 0 and 1. It is evident that
the approximation of the underlying degradation is very well captured
from the proposed approach. Especially, in unit 16 the predictions in
the test cycles are almost overlapping with the true values. It is worth
noticing that in unit 15 with a multi-modal failure mode, some outliers
in the HIs are present, however the overall degradation trajectory is
not distorted since the minimum predicted HI corresponds to the actual
failure cycle of the engine. Such implication is probably a result of the
causal sufficiency assumption, since it might affect the definition of
the structural causal models by selecting a single causal driver. Fur-
thermore, any deterioration in the HI predictions might originate from
the linearity of the anticausal model, however the overall degradation
trend is well captured without any significant deviations.

Fig. 6 clearly illustrates that both least-squares and linear SVM
with l2-regularization outperform the state-of-the-art with very small
averaged RMSE values. In almost all units, both methods show a
consistent behavior, while least-squares regression performs similarly
well with an exception in unit 2, which is due to the aforementioned
implications. Nevertheless, across all units linear regression is better
than both deep learning methods that shows the power of the anticausal
scheme combined with low complexity models. On the other hand,
computational models with higher complexity, such as MLP, performs
worse in some of the units. This deterioration in performance of the
MLP is mainly caused due to limitations of this family of models in
anticausal learning (Kilbertus et al., 2018). Finally, lack of training
data from few cycles is an additional factor that largely influences the
performance of the former non-linear models.

As this article primarily focuses on the development of the HI
construction methodology for degradation monitoring, the prognosis of
the RUL was not deeply investigated. However, we used the proposed
HI to further evaluate its prognostic performance to highlight the
effectiveness, and hence, the utility in practical applications.

Considering the RUL estimation from the constructed HI, a HI-

based RUL prediction approach as in Yang et al. (2016) is adopted that
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Fig. 5. Predicted HI values via anticausal learning with linear support vector regression (LSVR+). Black dashed line represents the ground truth of the aggregated health degradation
alues for each unit. Blue points depict the cycles that are used for training and green points depict the test cycles for extrapolating HIs.
akes account units with different lifetimes. Since the method needs to
ggregate the predictions in an ensemble manner, first, the resulted HIs
rom each training unit (2, 5, 10, 16, 18 and 20) and the corresponding
UL are used to build a model for each of these units. For obtaining

he final RUL prediction on each cycle within a testing unit, single
redictions from multiple models are averaged (ensemble). According
o Arias Chao et al. (2021), units 11, 14 and 15 are selected for testing
s their operational flight conditions are significantly different than
hose of the training units. Due to the limited number of instances
cycles) within each unit, k-nearest neighbors (KNN) is selected as the
on-linear regression method for direct mapping HI → RUL. We used
he default parameter from the package scikit-learn for the number of
eighbors to obtain unbiased final results of the prognostic metrics.

In this study two common metrics (Saxena et al., 2008a) are used
o evaluate the system health prognostics of the proposed method: root
ean square error (𝑒) and PHM score (𝑠). The equations of calculating

oth metrics are expressed as follows

=
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⎪
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√
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𝑁 𝑖=1

11
where 𝛥𝑟𝑖 denotes the error between the predicted and the true RUL of
the 𝑖th testing cycle, respectively. Due to the asymmetry of the predic-
tion metric 𝑠 the overestimation of the RUL (degradation level is lower
than failure threshold) is penalized more than the underestimation
(degradation level is higher than failure threshold). Therefore, lower
values of 𝑠 indicate that the proposed method can successfully address
the overestimation issue that may have more severe implications in
practice. Table 6 presents the prognostic results from the RUL that
are derived by the HI-based ensemble approach. Interestingly, HIs
that are constructed with anticausal learning yield better results in
both metrics. It is worth noting that the anticausal HI with the linear
regression achieves the lowest error values, which demonstrates its
high performance with very low model complexity. The findings from
the prognostics evaluation are completely consistent with the previous
results (presented in Table 5) that show all linear anticausal-based HIs
have better performance in terms of monotonicity and robustness than
the rest of the compared methods. These results show a promising
aspect of the proposed approach regarding its utility for prognostics
in further studies.

6. Conclusion

In this work, a novel VHI is developed for degradation monitoring of
safety–critical engineered systems that operate under time-varying con-
ditions. By incorporating limited domain knowledge with a two-phase
heuristics approach, a causal driver and a set of measuring parameters
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Fig. 6. Matrix with RMSE values of predicted HI values across all investigated units. Brighter colors indicate smaller RMSE values, while darker colors larger RMSE values.
veraged values are displayed in the first column on the right-hand side.
Table 6
Prognostic performance of all HIs across testing units 11, 14 and 15. The first column
for each unit presents the root mean square 𝑒 of the RUL in cycles, while the second one
presents the PHM score 𝑠. Smaller values of both metrics indicate better performance.

HI method Unit 11 Unit 14 Unit 15

e [cycles] s [–] e [cycles] s [–] e [cycles] s [–]

LSTM-AE 14.24 161 17.76 314 14.70 232
AE 13.84 149 20.35 404 10.38 107
LR+ 11.49 130 10.91 114 8.92 82
LSVR+ 12.27 148 11.24 124 9.36 86
RR+ 12.50 154 12.88 151 8.95 83
MLP+ 11.53 132 11.15 127 18.25 249

are selected. In the next phase, structural causal models are built that
entail the invariance properties of the causal mechanism. Anticausal
learning from only few degradation-free cycles is then performed via
models with low computational complexity and high interpretability.
Finally, robust HIs are extrapolated on noisy test cycles for capturing
holistic degradation trends.

The performance and efficiency of the proposed framework is
evaluated on the N-CMAPSS turbofan engine dataset, which contains
real-world operational time series data. Multifaceted degradation tra-
jectories of flow and efficiency in specific components was generated
by the CMAPSS simulation model. For comparison and validation
purposes, reconstruction-based methods with increased computational
complexity were employed for extracting HI values. Anticausal HIs with
linear methods exhibited outstanding monotonic behavior, and low
prediction error values that proved its consistency on the ground truth
degradation trajectories. In addition, the constructed HIs were further
evaluated on RUL prediction and it showed that anticausal learning
with linear regression even outperformed other deep learning methods,
thus highlighting the utility of the proposed approach for practical
applications in PHM.

Still, several issues remain open that need further investigation.
First and foremost, more than one causal driver may be included for
analysis to address the hidden confounder issue. Hence, more complex
causal structures could be learned that might accordingly deliver more
accurate predictions. Second, shape quality metrics of the HIs could be
integrated in existing causal structure learning algorithms for building
targeted optimization schemes. Future work will further address how
robust RUL predictions with physics-based approaches can be obtained
by integrating the proposed health indicator. Towards that direction,
model parameter uncertainty on the RUL predictions will be also
in-depth investigated.

CRediT authorship contribution statement

Georgios Koutroulis: Conceptualization, Methodology, Software,
alidation, Formal analysis, Investigation, Data curation, Writing –
12
original draft, Writing – review & editing, Visualization. Belgin Mutlu:
Project administration, Funding acquisition, Writing – review & edit-
ing. Roman Kern: Conceptualization, Resources, Writing – review &
editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work has been supported by the FFG, Contract No. 881844:
‘‘Pro2Future is funded within the Austrian COMET Program Compe-
tence Centers for Excellent Technologies under the auspices of the
Austrian Federal Ministry for Climate Action, Environment, Energy,
Mobility, Innovation and Technology, the Austrian Federal Ministry for
Digital and Economic Affairs and of the Provinces of Upper Austria and
Styria. COMET is managed by the Austrian Research Promotion Agency
FFG’’.

References

Ali, J.B., Fnaiech, N., Saidi, L., Chebel-Morello, B., Fnaiech, F., 2015. Application of
empirical mode decomposition and artificial neural network for automatic bearing
fault diagnosis based on vibration signals. Appl. Acoust. 89, 16–27. http://dx.doi.
org/10.1016/j.apacoust.2014.08.016.

Ancona, N., Marinazzo, D., Stramaglia, S., 2004. Radial basis function approach to
nonlinear granger causality of time series. Phys. Rev. E 70 (5), 056221. http:
//dx.doi.org/10.1103/PhysRevE.70.056221.

Arias Chao, M., Kulkarni, C., Goebel, K., Fink, O., 2021. Aircraft engine run-to-failure
dataset under real flight conditions for prognostics and diagnostics. Data 6 (1), 5.
http://dx.doi.org/10.3390/data6010005.

Arias Chao, M., Kulkarni, C., Goebel, K., Fink, O., 2022. Fusing physics-based and
deep learning models for prognostics. Reliab. Eng. Syst. Saf. 217, 107961. http:
//dx.doi.org/10.1016/j.ress.2021.107961.

Baptista, M.L., Goebel, K., Henriques, E.M., 2022. Relation between prognostics predic-
tor evaluation metrics and local interpretability SHAP values. Artificial Intelligence
306, 103667. http://dx.doi.org/10.1016/j.artint.2022.103667.

Baraldi, P., Bonfanti, G., Zio, E., 2018. Differential evolution-based multi-objective
optimization for the definition of a health indicator for fault diagnostics and
prognostics. Mech. Syst. Signal Process. 102, 382–400. http://dx.doi.org/10.1016/
j.ymssp.2017.09.013.

Batista, G.E., Keogh, E.J., Tataw, O.M., De Souza, V.M., 2014. CID: An efficient
complexity-invariant distance for time series. Data Min. Knowl. Discov. 28 (3),
634–669. http://dx.doi.org/10.1007/s10618-013-0312-3.

Benkedjouh, T., Medjaher, K., Zerhouni, N., Rechak, S., 2013. Remaining useful life
estimation based on nonlinear feature reduction and support vector regression.
Eng. Appl. Artif. Intell. 26 (7), 1751–1760. http://dx.doi.org/10.1016/j.engappai.
2013.02.006.

Bühlmann, P., 2020. Rejoinder: Invariance, causality and robustness. Statist. Sci. 35
(3), 434–436. http://dx.doi.org/10.1214/20-STS797.

Chen, L., Xu, G., Zhang, S., Yan, W., Wu, Q., 2020. Health indicator construction of
machinery based on end-to-end trainable convolution recurrent neural networks. J.
Manuf. Syst. 54, 1–11. http://dx.doi.org/10.1016/j.jmsy.2019.11.008.

http://dx.doi.org/10.1016/j.apacoust.2014.08.016
http://dx.doi.org/10.1016/j.apacoust.2014.08.016
http://dx.doi.org/10.1016/j.apacoust.2014.08.016
http://dx.doi.org/10.1103/PhysRevE.70.056221
http://dx.doi.org/10.1103/PhysRevE.70.056221
http://dx.doi.org/10.1103/PhysRevE.70.056221
http://dx.doi.org/10.3390/data6010005
http://dx.doi.org/10.1016/j.ress.2021.107961
http://dx.doi.org/10.1016/j.ress.2021.107961
http://dx.doi.org/10.1016/j.ress.2021.107961
http://dx.doi.org/10.1016/j.artint.2022.103667
http://dx.doi.org/10.1016/j.ymssp.2017.09.013
http://dx.doi.org/10.1016/j.ymssp.2017.09.013
http://dx.doi.org/10.1016/j.ymssp.2017.09.013
http://dx.doi.org/10.1007/s10618-013-0312-3
http://dx.doi.org/10.1016/j.engappai.2013.02.006
http://dx.doi.org/10.1016/j.engappai.2013.02.006
http://dx.doi.org/10.1016/j.engappai.2013.02.006
http://dx.doi.org/10.1214/20-STS797
http://dx.doi.org/10.1016/j.jmsy.2019.11.008


G. Koutroulis, B. Mutlu and R. Kern Engineering Applications of Artificial Intelligence 113 (2022) 104926
Edinburgh, T., Eglen, S.J., Ercole, A., 2021. Causality indices for bivariate time series
data: A comparative review of performance. Chaos 31 (8), 083111. http://dx.doi.
org/10.1063/5.0053519.

Fink, O., Wang, Q., Svensen, M., Dersin, P., Lee, W.-J., Ducoffe, M., 2020. Potential,
challenges and future directions for deep learning in prognostics and health
management applications. Eng. Appl. Artif. Intell. 92, 103678. http://dx.doi.org/
10.1016/j.engappai.2020.103678.

Fu, S., Zhong, S., Lin, L., Zhao, M., 2021. A novel time-series memory auto-encoder
with sequentially updated reconstructions for remaining useful life prediction. IEEE
Trans. Neural Netw. Learn. Syst. http://dx.doi.org/10.1109/TNNLS.2021.3084249.

Geweke, J.F., 1984. Measures of conditional linear dependence and feedback between
time series. J. Amer. Statist. Assoc. 79 (388), 907–915. http://dx.doi.org/10.2307/
2288723.

Goebel, K., Daigle, M.J., Saxena, A., Roychoudhury, I., Sankararaman, S., Celaya, J.R.,
2017. Prognostics: The science of making predictions.

Granger, C., 1969. Investigating causal relations by econometric models and cross-
spectral methods. Econometrica 37 (3), 424–438. http://dx.doi.org/10.2307/
1912791.

Groenenboom, J., 2018. The changing MRO landscape: IATA maintenance
cost conference, athens, Greece. URL https://www.iata.org/contentassets/
81005748740046de878439e6c54f2355/d1-1100-1130-the-changing-mro-
landscape_icf.pdf.

Gugulothu, N., Tv, V., Malhotra, P., Vig, L., Agarwal, P., Shroff, G., 2017. Predicting
remaining useful life using time series embeddings based on recurrent neural
networks. 9,

Guo, L., Lei, Y., Li, N., Yan, T., Li, N., 2018. Machinery health indicator construction
based on convolutional neural networks considering trend burr. Neurocomputing
292, 142–150. http://dx.doi.org/10.1016/j.neucom.2018.02.083.

Guo, J., Li, Z., Li, M., 2019. A review on prognostics methods for engineering
systems. IEEE Trans. Reliab. 69 (3), 1110–1129. http://dx.doi.org/10.1109/TR.
2019.2957965.

Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Comput. 9 (8),
1735–1780.

Hong, Y., Liu, Y., Wang, S., 2009. Granger causality in risk and detection of extreme
risk spillover between financial markets. J. Econometrics 150 (2), 271–287. http:
//dx.doi.org/10.1016/j.jeconom.2008.12.013.

Hoyer, P.O., Janzing, D., Mooij, J.M., Peters, J., Schölkopf, B., et al., 2008. Non-
linear causal discovery with additive noise models. In: NIPS, Vol. 21. Citeseer
pp. 689–696.

Hu, C., Smith, W.A., Randall, R.B., Peng, Z., 2016. Development of a gear vibration
indicator and its application in gear wear monitoring. Mech. Syst. Signal Process.
76, 319–336. http://dx.doi.org/10.1016/j.ymssp.2016.01.018.

Hu, C., Youn, B.D., Wang, P., Yoon, J.T., 2012. Ensemble of data-driven prognostic
algorithms for robust prediction of remaining useful life. Reliab. Eng. Syst. Saf.
103, 120–135. http://dx.doi.org/10.1016/j.ress.2012.03.008.

Janzing, D., Schölkopf, B., 2010. Causal inference using the algorithmic Markov
condition. IEEE Trans. Inform. Theory 56 (10), 5168–5194. http://dx.doi.org/10.
1109/TIT.2010.2060095.

Javed, K., Gouriveau, R., Zerhouni, N., Nectoux, P., 2014. Enabling health monitoring
approach based on vibration data for accurate prognostics. IEEE Trans. Ind.
Electron. 62 (1), 647–656. http://dx.doi.org/10.1109/TIE.2014.2327917.

Karasu, S., Altan, A., 2022. Crude oil time series prediction model based on LSTM
network with chaotic henry gas solubility optimization. Energy 242, 122964.
http://dx.doi.org/10.1016/j.energy.2021.122964.

Karasu, S., Altan, A., Bekiros, S., Ahmad, W., 2020. A new forecasting model
with wrapper-based feature selection approach using multi-objective optimization
technique for chaotic crude oil time series. Energy 212, 118750. http://dx.doi.org/
10.1016/j.energy.2020.118750.

Khan, S., Tsutsumi, S., Yairi, T., Nakasuka, S., 2021. Robustness of AI-based prognostic
and systems health management. Annu. Rev. Control 51, 130–152. http://dx.doi.
org/10.1016/j.arcontrol.2021.04.001.

Kilbertus, N., Parascandolo, G., Schölkopf, B., 2018. Generalization in anti-causal
learning. In: NeurIPS 2018 Workshop on Critiquing and Correcting Trends in
Machine Learning. authors are listed in alphabetical order.

Lei, Y., Li, N., Guo, L., Li, N., Yan, T., Lin, J., 2018. Machinery health prognostics:
A systematic review from data acquisition to RUL prediction. Mech. Syst. Signal
Process. 104, 799–834. http://dx.doi.org/10.1016/j.ymssp.2017.11.016.

Li, N., Gebraeel, N., Lei, Y., Bian, L., Si, X., 2019. Remaining useful life prediction
of machinery under time-varying operating conditions based on a two-factor state-
space model. Reliab. Eng. Syst. Saf. 186, 88–100. http://dx.doi.org/10.1016/j.ress.
2019.02.017.

Liu, C., Sun, J., Liu, H., Lei, S., Hu, X., 2020. Complex engineered system health
indexes extraction using low frequency raw time-series data based on deep learning
methods. Measurement 161, 107890. http://dx.doi.org/10.1016/j.measurement.
2020.107890.

Lozano, A.C., Li, H., Niculescu-Mizil, A., Liu, Y., Perlich, C., Hosking, J., Abe, N., 2009.
Spatial-temporal causal modeling for climate change attribution. In: Proceedings of
the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. pp. 587–596. http://dx.doi.org/10.1145/1557019.1557086.

Lundberg, S.M., Lee, S.-I., 2017. A unified approach to interpreting model predictions.
Adv. Neural Inf. Process. Syst. 30.
13
Lungarella, M., Ishiguro, K., Kuniyoshi, Y., Otsu, N., 2007. Methods for quantifying the
causal structure of bivariate time series. Int. J. Bifurcation Chaos 17 (03), 903–921.
http://dx.doi.org/10.1142/S0218127407017628.

Luo, B., Wang, H., Liu, H., Li, B., Peng, F., 2018. Early fault detection of machine tools
based on deep learning and dynamic identification. IEEE Trans. Ind. Electron. 66
(1), 509–518. http://dx.doi.org/10.1109/TIE.2018.2807414.

Malhotra, P., TV, V., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P., Shroff, G.,
2016. Multi-sensor prognostics using an unsupervised health index based on LSTM
encoder-decoder. arXiv preprint arXiv:1608.06154.

Malhotra, P., TV, V., Vig, L., Agarwal, P., Shroff, G., 2017. TimeNet: PRe-trained
deep recurrent neural network for time series classification. arXiv preprint arXiv:
1706.08838.

Marcus, G., 2018. Deep learning: A critical appraisal. arXiv preprint arXiv:1801.00631.
Marinazzo, D., Pellicoro, M., Stramaglia, S., 2008. Kernel method for nonlinear

granger causality. Phys. Rev. Lett. 100 (14), 144103. http://dx.doi.org/10.1103/
PhysRevLett.100.144103.

Medjaher, K., Zerhouni, N., Baklouti, J., 2013. Data-driven prognostics based on
health indicator construction: Application to PRONOSTIA’s data. In: 2013 European
Control Conference (ECC). IEEE, pp. 1451–1456. http://dx.doi.org/10.23919/ECC.
2013.6669223.

Mooij, J.M., Peters, J., Janzing, D., Zscheischler, J., Schölkopf, B., 2016. Distinguishing
cause from effect using observational data: methods and benchmarks. J. Mach.
Learn. Res. 17 (1), 1103–1204.

Nguyen, K.T., Medjaher, K., 2021. An automated health indicator construction method-
ology for prognostics based on multi-criteria optimization. ISA Trans. 113, 81–96.
http://dx.doi.org/10.1016/j.isatra.2020.03.017.

Pearl, J., 2009. Causality. Cambridge University Press.
Peters, J., Janzing, D., Schölkopf, B., 2017. Elements of Causal Inference: Foundations

and Learning Algorithms. The MIT Press.
Qin, Y., Wang, D., Zhao, X., Ma, H., Jia, L., Zhang, Y., 2016. Performance degradation

assessment of train rolling bearings based on SVM and segmented vote method.
In: 2016 Prognostics and System Health Management Conference (PHM-Chengdu).
IEEE, pp. 1–6. http://dx.doi.org/10.1109/PHM.2016.7819891.

Qiu, H., Liu, Y., Subrahmanya, N.A., Li, W., 2012. Granger causality for time-series
anomaly detection. In: 2012 IEEE 12th International Conference on Data Mining.
IEEE, pp. 1074–1079. http://dx.doi.org/10.1109/ICDM.2012.73.

Rodrigues, L.R., Yoneyama, T., Nascimento, C.L., 2012. How aircraft operators can
benefit from PHM techniques. In: 2012 IEEE Aerospace Conference. IEEE, pp. 1–8.
http://dx.doi.org/10.1109/AERO.2012.6187376.

Roebroeck, A., Formisano, E., Goebel, R., 2005. Mapping directed influence over
the brain using granger causality and fMRI. Neuroimage 25 (1), 230–242. http:
//dx.doi.org/10.1016/j.neuroimage.2004.11.017.

Saxena, A., Celaya, J., Balaban, E., Goebel, K., Saha, B., Saha, S., Schwabacher, M.,
2008a. Metrics for evaluating performance of prognostic techniques. In: 2008
International Conference on Prognostics and Health Management. IEEE, pp. 1–17.
http://dx.doi.org/10.1109/PHM.2008.4711436.

Saxena, A., Goebel, K., Simon, D., Eklund, N., 2008b. Damage propagation modeling
for aircraft engine run-to-failure simulation. In: 2008 International Conference on
Prognostics and Health Management. IEEE, pp. 1–9. http://dx.doi.org/10.1109/
PHM.2008.4711414.

Schölkopf, B., 2019. Causality for machine learning. arXiv preprint arXiv:1911.10500.
Schölkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang, K., Mooij, J., 2012. On causal

and anticausal learning. In: Proceedings of the 29th International Coference on
International Conference on Machine Learning. In: ICML’12, Omni Press, Madison,
WI, USA, pp. 459–466.

Shafiee, M., 2015. Maintenance strategy selection problem: an MCDM overview. J.
Qual. Maint. Eng. http://dx.doi.org/10.1108/JQME-09-2013-0063.

Thoppil, N.M., Vasu, V., Rao, C., 2021. Deep learning algorithms for machinery health
prognostics using time-series data: A review. J. Vib. Eng. Technol. 1–23.

Wang, T., Yu, J., Siegel, D., Lee, J., 2008. A similarity-based prognostics approach
for remaining useful life estimation of engineered systems. In: 2008 International
Conference on Prognostics and Health Management. IEEE, pp. 1–6. http://dx.doi.
org/10.1109/PHM.2008.4711421.

Yang, F., Habibullah, M.S., Zhang, T., Xu, Z., Lim, P., Nadarajan, S., 2016. Health
index-based prognostics for remaining useful life predictions in electrical machines.
IEEE Trans. Ind. Electron. 63 (4), 2633–2644. http://dx.doi.org/10.1109/TIE.2016.
2515054.

Ye, Z., Yu, J., 2021. Health condition monitoring of machines based on long short-
term memory convolutional autoencoder. Appl. Soft Comput. 107, 107379. http:
//dx.doi.org/10.1016/j.asoc.2021.107379.

Yu, W., Kim, I.Y., Mechefske, C., 2019. Remaining useful life estimation using a
bidirectional recurrent neural network based autoencoder scheme. Mech. Syst.
Signal Process. 129, 764–780. http://dx.doi.org/10.1016/j.ymssp.2019.05.005.

Zhai, S., Gehring, B., Reinhart, G., 2021. Enabling predictive maintenance integrated
production scheduling by operation-specific health prognostics with generative deep
learning. J. Manuf. Syst. http://dx.doi.org/10.1016/j.jmsy.2021.02.006.

Zhou, Z.-H., Li, M., et al., 2005. Semi-supervised regression with co-training. In: IJCAI,
Vol. 5. pp. 908–913.

Zhu, H., 2021. Real-time prognostics of engineered systems under time varying external
conditions based on the COX PHM and VARX hybrid approach. Sensors 21 (5),
1712. http://dx.doi.org/10.3390/s21051712.

http://dx.doi.org/10.1063/5.0053519
http://dx.doi.org/10.1063/5.0053519
http://dx.doi.org/10.1063/5.0053519
http://dx.doi.org/10.1016/j.engappai.2020.103678
http://dx.doi.org/10.1016/j.engappai.2020.103678
http://dx.doi.org/10.1016/j.engappai.2020.103678
http://dx.doi.org/10.1109/TNNLS.2021.3084249
http://dx.doi.org/10.2307/2288723
http://dx.doi.org/10.2307/2288723
http://dx.doi.org/10.2307/2288723
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb15
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb15
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb15
http://dx.doi.org/10.2307/1912791
http://dx.doi.org/10.2307/1912791
http://dx.doi.org/10.2307/1912791
https://www.iata.org/contentassets/81005748740046de878439e6c54f2355/d1-1100-1130-the-changing-mro-landscape_icf.pdf
https://www.iata.org/contentassets/81005748740046de878439e6c54f2355/d1-1100-1130-the-changing-mro-landscape_icf.pdf
https://www.iata.org/contentassets/81005748740046de878439e6c54f2355/d1-1100-1130-the-changing-mro-landscape_icf.pdf
https://www.iata.org/contentassets/81005748740046de878439e6c54f2355/d1-1100-1130-the-changing-mro-landscape_icf.pdf
https://www.iata.org/contentassets/81005748740046de878439e6c54f2355/d1-1100-1130-the-changing-mro-landscape_icf.pdf
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb18
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb18
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb18
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb18
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb18
http://dx.doi.org/10.1016/j.neucom.2018.02.083
http://dx.doi.org/10.1109/TR.2019.2957965
http://dx.doi.org/10.1109/TR.2019.2957965
http://dx.doi.org/10.1109/TR.2019.2957965
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb21
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb21
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb21
http://dx.doi.org/10.1016/j.jeconom.2008.12.013
http://dx.doi.org/10.1016/j.jeconom.2008.12.013
http://dx.doi.org/10.1016/j.jeconom.2008.12.013
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb23
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb23
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb23
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb23
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb23
http://dx.doi.org/10.1016/j.ymssp.2016.01.018
http://dx.doi.org/10.1016/j.ress.2012.03.008
http://dx.doi.org/10.1109/TIT.2010.2060095
http://dx.doi.org/10.1109/TIT.2010.2060095
http://dx.doi.org/10.1109/TIT.2010.2060095
http://dx.doi.org/10.1109/TIE.2014.2327917
http://dx.doi.org/10.1016/j.energy.2021.122964
http://dx.doi.org/10.1016/j.energy.2020.118750
http://dx.doi.org/10.1016/j.energy.2020.118750
http://dx.doi.org/10.1016/j.energy.2020.118750
http://dx.doi.org/10.1016/j.arcontrol.2021.04.001
http://dx.doi.org/10.1016/j.arcontrol.2021.04.001
http://dx.doi.org/10.1016/j.arcontrol.2021.04.001
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb31
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb31
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb31
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb31
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb31
http://dx.doi.org/10.1016/j.ymssp.2017.11.016
http://dx.doi.org/10.1016/j.ress.2019.02.017
http://dx.doi.org/10.1016/j.ress.2019.02.017
http://dx.doi.org/10.1016/j.ress.2019.02.017
http://dx.doi.org/10.1016/j.measurement.2020.107890
http://dx.doi.org/10.1016/j.measurement.2020.107890
http://dx.doi.org/10.1016/j.measurement.2020.107890
http://dx.doi.org/10.1145/1557019.1557086
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb36
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb36
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb36
http://dx.doi.org/10.1142/S0218127407017628
http://dx.doi.org/10.1109/TIE.2018.2807414
http://arxiv.org/abs/1608.06154
http://arxiv.org/abs/1706.08838
http://arxiv.org/abs/1706.08838
http://arxiv.org/abs/1706.08838
http://arxiv.org/abs/1801.00631
http://dx.doi.org/10.1103/PhysRevLett.100.144103
http://dx.doi.org/10.1103/PhysRevLett.100.144103
http://dx.doi.org/10.1103/PhysRevLett.100.144103
http://dx.doi.org/10.23919/ECC.2013.6669223
http://dx.doi.org/10.23919/ECC.2013.6669223
http://dx.doi.org/10.23919/ECC.2013.6669223
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb44
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb44
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb44
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb44
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb44
http://dx.doi.org/10.1016/j.isatra.2020.03.017
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb46
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb47
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb47
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb47
http://dx.doi.org/10.1109/PHM.2016.7819891
http://dx.doi.org/10.1109/ICDM.2012.73
http://dx.doi.org/10.1109/AERO.2012.6187376
http://dx.doi.org/10.1016/j.neuroimage.2004.11.017
http://dx.doi.org/10.1016/j.neuroimage.2004.11.017
http://dx.doi.org/10.1016/j.neuroimage.2004.11.017
http://dx.doi.org/10.1109/PHM.2008.4711436
http://dx.doi.org/10.1109/PHM.2008.4711414
http://dx.doi.org/10.1109/PHM.2008.4711414
http://dx.doi.org/10.1109/PHM.2008.4711414
http://arxiv.org/abs/1911.10500
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb55
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb55
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb55
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb55
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb55
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb55
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb55
http://dx.doi.org/10.1108/JQME-09-2013-0063
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb57
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb57
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb57
http://dx.doi.org/10.1109/PHM.2008.4711421
http://dx.doi.org/10.1109/PHM.2008.4711421
http://dx.doi.org/10.1109/PHM.2008.4711421
http://dx.doi.org/10.1109/TIE.2016.2515054
http://dx.doi.org/10.1109/TIE.2016.2515054
http://dx.doi.org/10.1109/TIE.2016.2515054
http://dx.doi.org/10.1016/j.asoc.2021.107379
http://dx.doi.org/10.1016/j.asoc.2021.107379
http://dx.doi.org/10.1016/j.asoc.2021.107379
http://dx.doi.org/10.1016/j.ymssp.2019.05.005
http://dx.doi.org/10.1016/j.jmsy.2021.02.006
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb63
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb63
http://refhub.elsevier.com/S0952-1976(22)00147-6/sb63
http://dx.doi.org/10.3390/s21051712

	Constructing robust health indicators from complex engineered systems via anticausal learning
	Introduction
	Related work
	Theoretical background
	Estimation of bivariate causal indices
	Anticausal learning

	HI construction via anticausal learning
	Weighted complexity estimate
	HI construction with multivariate anticausal regression
	Metrics for evaluation of HI

	Experimental results
	N-CMAPSS turbofan engine dataset
	Data preparation for anticausal learning
	HI construction
	Results and discussion

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


